SECOND HOMEWORK, DUE THURSDAY SEPTEMBER 23RD

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. (10 pts) (1.3.27).

2. (5 pts) Let $\vec{u} = (1, -1, 2)$, $\vec{v} = (2, 1, 1)$, and $\vec{w} = (0, 2, -1)$. Is the triple $\vec{u}, \vec{v}, \vec{w}$ a right-hand set or a left-handed set? Why? 3. (15 pts) (a) Let

$$A = A(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},$$

and let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the function which sends the vector $\vec{v} = (x, y)$ to the vector $\vec{w} = f(\vec{v}) = A\vec{v}$. Show that $\vec{w} = f(\vec{v})$ is the vector \vec{v} rotated around the origin through an angle of θ , so that the function f represents rotation around the origin through an angle of θ .

(b) Show, by direct computation, that if $B = A(\theta)$ and $C = A(\phi)$, then $BC = A(\theta + \phi)$.

- (c) Explain why (b) holds.
- 4. (5 pts) (1.4.6).
- 5. (5 pts) (1.4.11).
- 6. (5 pts) (1.4.18).
- 7. (8 pts) (1.4.26).
- 8. (5pts) (1.5.7)
- 9. (5 pts) (1.5.8).
- 10. (5 pts) (1.5.9).
- 11. (5 pts) (1.5.12).
- 12. (5 pts) (1.5.20).
- 13. (5 pts) (1.5.24).
- 14. (5 pts) (1.5.28).
- 15. (5 pts) (1.6.9).
- 16. (5 pts) (1.6.11).
- 17. (5 pts) (1.6.14).
- 18. (5 pts) (1.6.21).