TWELFTH HOMEWORK, PRACTICE PROBLEMS

1. Let $\vec{F}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the vector field given by

$$
\vec{F}(x, y, z)=a y^{2} \hat{\imath}+2 y(x+z) \hat{\jmath}+\left(b y^{2}+z^{2}\right) \hat{k} .
$$

(i) For which values of a and b is the vector field \vec{F} conservative?
(ii) Find a function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ such that $\vec{F}=\operatorname{grad} f$, for these values.
(iii) Find the equation of a surface S with the property that for every smooth oriented curve C lying on S,

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{s}=0
$$

for these values.
2. Let S be the rectangle with vertices $(0,0,0),(1,0,0),(1,2,2)$ and $(0,2,2)$. Find the flux of the vector field $\vec{F}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$, given by

$$
\vec{F}(x, y, z)=y^{2} \hat{\imath}-z^{2} \hat{\jmath}+x^{2} \hat{k}
$$

through S in the direction of the unit normal vector \hat{n}, for which $\hat{n} \cdot \hat{k}>$ 0 .
3. Let $C_{a}(P)$ be the circle of radius a centered at P and oriented counter-clockwise. A smooth rotation free vector field \vec{F} is defined on the whole of \mathbb{R}^{2}, except for the points $P_{0}=(0,0), P_{1}=(4,0)$, and $P_{3}=(8,0)$, and
$\int_{C_{2}\left(P_{0}\right)} \vec{F} \cdot \mathrm{~d} \vec{s}=-2, \quad \int_{C_{6}\left(P_{0}\right)} \vec{F} \cdot \mathrm{~d} \vec{s}=1 \quad$ and $\quad \int_{C_{10}\left(P_{0}\right)} \vec{F} \cdot \mathrm{~d} \vec{s}=3$.
Find the following line integrals.
(a)

$$
\int_{C_{1}\left(P_{1}\right)} \vec{F} \cdot \mathrm{~d} \vec{s} .
$$

(b)

$$
\int_{C_{1}\left(P_{2}\right)} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

(c)

$$
\int_{C_{6}\left(P_{2}\right)} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

4. (6.3.16)
5. (7.1.4)
6. (7.1.20)
7. (7.2.13)
8. (7.2.17)
9. (7.3.11)
10. (7.3.13)
11. (7.3.16)
12. (7.3.18)
13. (7.3.19)

Just for fun: Let ω be a k-form on \mathbb{R}^{n}. Show that

$$
\mathrm{d}(\mathrm{~d} \omega)=0
$$

This basic fact about d is often expressed in the formula $d^{2}=0$.

