MODEL ANSWERS TO HWK #8

1. (i) Call a line standard if it is either horizontal or vertical.

It is expedient to prove an even stronger result. We prove that if
f: U — C is any function, where U is the complement of finitely
many standard lines, which restricts to a polynomial on any standard
line contained in U, then f is a polynomial. We will be somewhat
sloppy and say that a standard line is contained in U if it is not one of
the deleted lines (strictly speaking, only the line minus finitely many
points lies in U).

Note that if V' C U is obtained from U by deleting finitely many more
standard lines and f|y is a polynomial, then f is a polynomial. Indeed
f|v extends to a polynomial function g: U — C. If [ is a line in U
then f|; and g|; agree on an open subset of the line and so are equal.
But then f =g.

Let d be the smallest positive integer such that there are uncountably
many real numbers r such that the restriction of f to the vertical line
x = r is a polynomial of degree at most d and there are uncountably
many real numbers s such that the restriction of f to the horizontal
line y = s is a polynomial of degree at most d.

We proceed by induction on d. Suppose that d < 0, so that f(z,y)
restricts to the zero function on infinitely many horizontal and infinitely
many vertical lines. If [ is any standard line contained in U then the
restriction of f to [ is a polynomial with infinitely many zeroes, so
that f must be the zero function, which is represented by the zero
polynomial.

Suppose that d > 0. Note that the change of coordinates xt — x — a
does not change the property that U is the complement of finitely many
standard lines, that f restricted to any standard line is a polynomial
and it also does not change the value of d. So we might as well assume
that the x-axis is contained in U and f(z,0) is a polynomial of degree
at most d. Let g(x,y) = f(x,y) — f(x,0). Then the restriction of
g(x,y) to every vertical line is a polynomial in y which vanishes at the
origin. Let V' C U be the set obtained by deleting the line y = 0. Let

h:V — C,

be the function h(z,y) = f(x,y)/y. Then V is obtained from C? by
deleting finitely many standard lines, h(z,y) is a function which when

restricted to any standard line in V' is a polynomial, which has degree
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at most d—1 on uncountably many standard lines. By induction h(z,y)
is a polynomial function. It follows that f(z,y) = yh(z,y) + f(z,0) is
a polynomial function on V', whence on U. Thus P(C) is true.
(ii) Enumerate, c1,co,... the points of Q and let h,(y) (respectively
vn(2)) be the polynomial which vanishes on the first n horizontal (re-
spectively vertical) lines. Let
f(z,y) = Z hi(y)vi(z).
i=0
It is clear that f(z,y) is not a polynomial. But suppose we pick a
horizontal line, given by, y = b. Then b = ¢, for some n and so
flw,b) = hi(b)vi(w),
i<n
so that f(x,b) is a polynomial. By symmetry the restriction of f(z,y)

to any vertical line is a polynomial. So P(Q) fails.
(iii) Clear, from (i) and (ii) and the Lefschetz principle.
2. (i) Let p € V, ¢ € V and let A € k. Then

¢z — X,

is a morphism of schemes over k, such that the unique point of z goes
to x. But then ¢ corresponds to a morphism of local rings over k,

. _ M
f: Oxe — 75

Similarly suppose that 1 corresponds to g. Note that the function
k k
m,\:ﬂ—>ﬂ given by a+ be — a + Abe,
(€?) (€?)
is a morphism of local rings, which is an isomorphism if and only if
A # 0. Let Ap be the morphism of schemes corresponding to the
morphism of local rings m o f. Similarly, define a map
kle]  klea]  Kle]
a: — ,
(1) * () (€?)
by sending both e¢;and €; to € and extend by linearity to get a morphism
of local rings. Composing with the natural map
kle _ kle]
() & (€3)

we get a morphism of local rings and this defines a morphism

o+ z — X.
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This defines an operation of scalar multiplication and addition of vec-
tors, which clearly satisfy the axioms for a vector space.
(i) If p € T, X and
kel

:O0xp — 750,
is the corresponding morphism of local rings, then the kernel of f con-
tains m2. On the other hand, the inverse image of (€) is by definition
contained in m. It follows that we get a linear map of vector spaces

m
o R k(e) ~ k,
that is, an element of the dual space

m *
()
and it is not hard to see that this assignment induces a bijection.
2. 1. By assumption there are open subsets U and V' and isomorphisms
Lly ~ Oy, M|y ~ Oy. Passing to the open subset U NV we may as
well assume that £ = M = Ox. It suffices to check that the map is an
isomorphism on stalks. Suppose that z € X andlet A = Ox,. Then A
is a local ring and we are given a surjective A-module homomorphism
¢: A — A. ¢is given by multiplication by an element a of A. Suppose
that ¢(b) = 1. Then ab =1 and so a is a unit and ¢ is an isomorphism.
Thus f is an isomorphism on stalks and f is an isomorphism.
2. Suppose that m > n. As dimV < n + 1 it follows that ¢; is a
linear combination of the other sections, for some 1 < i < m. Let
7m: P™ — P! be the projection map which drop the ith coordinate.
The composition
mog: X — P71
is the morphism given by to,t1, ..., %, ..., t,. SO we may assume m = n
by induction on m — n.
Suppose first that dim|V| = dimV — 1 = n. In this case both
S1,82,...,8, and t1,ts,...,t, are bases of V. So there is a unique
matrix A = (a;;) such that
ti = Z OJZ']'SJ'.

This matrix corresponds to an isomorphism o: P* — P™ and it is
clear that v = o 0 ¢.

In general the image of X is contained in linear spaces A;, ¢ = 1 and 2 of
dimension dim |V| = dim V' — 1. Pick complimentary linear subspaces
AL 'We have already exhibited an isomorphism o;: Ay — Ay, such
that ¢ = 010¢ and we may extend this to an isomorphism of o: P* —
P™ such that o(A}) = A} and ¢ = o 0 ¢.
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3. (a) Let £ = ¢*Opn(1). As Pic(P™) = Z it follows that £ = Opn(d),
for some integer d. As L is globally generated d > 0. If d = 0 then
¢(P") is a point. Otherwise d > 0 and L is ample. Suppose that
C' C P" is an irreducible curve. As £ is ample, L|¢ is not the trivial
invertible sheaf. If z € C' then we may find a section o € H°(P", L)
which does not vanish at . As L|¢ is not the trivial invertible sheaf,
o|c must vanish somewhere. Therefore the image of C' is curve. Let
X = ¢(P"). If dim X < n, then the fibres of ¢: P" — X are positive
dimensional. But then the fibres must contain curves C' (just cut by
hyperplanes) which are sent to a point, a contradiction.

(b) As stated, this is obviously false. Let ¢: P! — P? be the morphism

[S:T] —[S:5:T].

It is clear in this case that d = 1. The 1-uple embedding is the identity.
But then we cannot hope to project from P! down to P2.

So let’s assume that the image of ¢ is non-degenerate, that is, not
contained in a hyperplane. ¢ is given by a linear system. It follows that
there is an invertible sheaf £ and a collection of sections s1, $o,...,5, C
H°(P", L). Since Pic(P") ~ Z, generated by Opn(1), it follows that
L = Opn(d), up to isomorphism. Let tg,t1,...,ty be the standard
basis of H°(P", Opn(d)) given by monomials of degree d. Then the
induced morphism is the d-uple embedding P* — PV, Let

VvV c H'(P", L),
be the subvector space spanned by s, sg, ..., S,. Our assumption that
¢ is non-degenerate means that si, so, ..., s, are a basis of V. We may

extend this to a basis of H°(P", £) and this defines an automorphism o
of PV, Projecting down to the first a+1 coordinates gives the morphism
¢. Finally note that applying an automorphism of PV is the same as
projecting from the linear space L, which is the image under o of the
space spanned by the last N —a — 1 coordinates and an automorphism
of P".

4. (a) If £ is ample then £™ is very ample, for some positive integer
m. But then there is an immersion X — P} for some positive integer
n and it follows that X is separated.

(b) By assumption there are two open subsets U; and Uy both of which
are isomorphic to Aj. Let £ be an invertible sheaf on X and let £; be
the restriction of £ to U;. As Pic(U;) = 0 it follows that £; ~ Oy,.
Suppose that {p;, p2} are the double points of X so that

X — {p1,]92}4= Ui — {p:}-



The section 1 on U; corresponds to a non-vanishing section f(z) on Us.
It follows that f(z) = ax™, for some positive integer m and a non-zero
scalar a. Multiplying through by automorphisms of U which fix py we
can assume that a = 1. Let’s call this invertible sheaf £,,. If we tensor
L,, with £, we get the global section 1 on U; and the global section
f(z) = 2™ on Us. It follows that Pic(X) = Z (the inverse of the £,
is the invertible sheaf £_,, which has a global section which restricts
to 2™ on Uy and 1 on U,).

Now let’s consider if any of these line bundles are ample. By symmetry
we may suppose that m > 0. Sections of £,, correspond to pairs g(z)
on U; and z™g(x) on Uy, where g(z) is a polynomial. There are two
cases. If m > 0 then this section always vanishes at p;. If m = 0
then this section only vanishes at p; if g(z) has a zero at p;, in which
case the section also vanishes at ps. Either way, £,, does not separate
points.

5. (a) Let F be a coherent sheaf. By assumption there is an integer
ng such that 7 @ L" is globally generated for all n > ny. Pick z € X.
Then we may find Iy, Iy, ...,l, € H(X, F® L") whose images generate
the stalk at . Pick m € M not vanishing at x. Then m™ly, m"ls, ...,
m'l;, are naturally global sections of 7 ® L™ ® M"™ which generate the
stalk at x. Hence F ® L™ @ M™" is globally generated so that £ ® M
is ample.

(b) As L is ample, we may pick [ so that M ® L! is globally generated.
If m > 0 is any positive integer, then

MLm= Me Lo L™,

is ample by (a). So M ® L" is ample for any n > [.
(c) Since Oy is globally generated we may find & > 0 so that MF is
globally generated. As £ is ample then so is £*. But then

(Lo M) =LcFe M,
is ample by (a). It follows that
LM,

is ample.

(d) By assumption we may find sections ly,1ls,...,l, € H°(X, L) and
my, ma,...,my € H(X, M) such that X;, and Xm; are an open affine
cover of X. Consider the sections {;m; € H°(X,L ® M). Note that
Xij = X, N Xy, is affine. Since m; is not zero on Xj;, the images

li/mj li’




generate HY(X;;, Ox), since the images even generate H°(X),, Ox). It
follows that the sections [;m; define an immersion of X into P" into
projective space such that the pullback of Opn(1) is £ ® M. But then
L ® M is very ample.

(e) First of all we know that there is a positive integer m such that £™
is very ample. On the other hand, by the definition of ample, we know
that there is an integer my such that L£" is globally generated for all
n > mg. Let ng = mg +m. If n > ng +m then

£n — Enfm ® ﬁm’
is very ample by (d).



