
MODEL ANSWERS TO HWK #7

6.1. It is clear that X × Pn
k is Noetherian and integral. The morphism

X × Pn
k −→ X is projective, whence separated. As the composition of

separated morphisms is separated, X × Pn
k is separated.

Suppose that η ∈ X×Pn
k is a codimension one point, so that the closure

of η is a prime divisor Y in X×Pn
k . We want to show that Y is defined

by a single equation locally about η. So we may assume that X is affine
and we are free to replace Pn

k by An
k . We are reduced to the case n = 1

by induction on n.
If Y does not dominate X then Y is locally over the image of the form
W × A1, where X ′ is a divisor in X. If g ∈ A defines W locally about
the generic point of W then g ∈ A[t] also defines Y about the generic
point η of Y .
Let ξ be the generic point of X, with residue field K. Then Y ′ =
Y ∩ A1

K = {η} and we may easily find f(x) ∈ K[x] which cuts out η.
Let U = X × An

k be the open subset of X × Pn
k , given by one of the

standard open affines An
k ⊂ Pn

k . Then X × Pn−1 is a prime divisor and
so there is an exact sequence

Z −→ Cl(X × Pn
k) −→ Cl(X × An

k) −→ 0.

We first check that
Cl(X × An

k) = Cl(X).

By induction on n we may assume that n = 1 and we may apply
(II.6.6). Finally we check that we have injectivity on the left. This is
clear if we restrict to {η} × Pn, since then Z is sent to the class of a
hyperplane.
6.4. Let K be the field of fractions of A. Then

K =
k(x1, x2, . . . , xn)[z]

〈z2 − f〉
.

This is a quadratic extension of the field L = k(x1, x2, . . . , xn). As the
characteristic is not 2, K is the splitting field of z2 − f so that K/L is
Galois, with Galois group Z/2Z given by the involution z −→ −z.
Every element α of K is uniquely of the form g + hz, where g and
h ∈ k(x1, x2, . . . , xn). Then the conjugate β of α is g − hz so that

(X − α)(X − β) = X2 − (α + β)X + (αβ) = X2 − 2gX + (g2 − h2f),

is the minimal polynomial of α. α is in the integral closure of k[x1, x2, . . . , xn]
inside K if and only if 2g and g2 − h2f ∈ k[x1, x2, . . . , xn]. But
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2g ∈ k[x1, x2, . . . , xn] if and only if g ∈ k[x1, x2, . . . , xn]. In this case
g2 − h2f ∈ k[x1, x2, . . . , xn] if and only if h2f ∈ k[x1, x2, . . . , xn]. As
f is square free and k[x1, x2, . . . , xn] is a UFD this happens if and
only if h ∈ k[x1, x2, . . . , xn]. But then A is the integral closure of
k[x1, x2, . . . , xn].
In particular A is integrally closed.
6.5. (a) Note that if r ≥ 2 then x2

0 + x2
1 + x2

2 + . . . x2
r is irreducible, as

the characteristic is not two. In particular it is square free and we may
apply (6.4).
(b) As k is algebraically closed there is an element i such that i2+1 = 0.
Consider the change of variables which replaces x0 by ix0 and fixes the
other variables. This has the effect of replacing

x2
0 + x2

1 + x2
2 + . . . x2

r by − x2
0 + x2

1 + x2
2 + · · ·+ x2

r.

Now consider the change of variables which sends

2x0 −→ x0 + x1 and 2x1 −→ x0 − x1,

and fixes the other variables. As

x2
1 − x2

0 = (x0 + x1)(x1 − x0),

this has the effect of replacing

−x2
0 + x2

1 + x2
2 + · · ·+ x2

r by x0x1 + x2
2 + · · ·+ x2

r.

Finally multiplying x0 by −1 we can put the equation for X into the
form

x0x1 = x2
2 + · · ·+ x2

r.

(1) X is toric as it is defined by the binomial equation

x0x1 = x2
2.

If n = r = 2, then we have already proved that Cl(X) = Z2. There
are two ways to prove the general case. The first is directly, which
basically repeats the same computation. On the other hand, note first
that X = Y ×Gn−r

m . Now

Y ×Gn−r
m ⊂ Y × An

k ,

is an open subset. It follows that there is a surjection

Cl(Y × An
k) −→ Cl(X).

But we have already seen that

Cl(Y ) = Cl(Y × An
k),

and this easily implies that

Cl(X) = Cl(Y ).
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(2) Note that we can put X into the form

x0x1 = x2x3.

As this is a binomial equation it follows that X is again toric. As in
(1) we are reduced to the case n = r + 1 = 3.
Pick four vectors v0, v1, v2 and v3 any three of which span the standard
lattice in NR = R3 such that

v0 + v2 = v1 + v3,

and let σ be the cone spanned by these vectors. We compute the dual
cone σ̌. σ has four faces and so there are four vectors w0, w1, w2 and
w3 which span σ̌. It is easy to check that

〈vi, wj〉 = δij.

It follows easily from this that any three of the four vectors w0, w1, w2

and w3 span MR = R3 and that

w0 + w2 = w1 + w3.

Note that the equation for the associated affine toric variety is

x0x2 = x1x3,

which is obtained from the original equation by a simple permutation
of the variables. There are four invariant divisors D0, D1, D2 and D3,
corresponding to the four vectors v0, v1, v2 and v3, which are primitive
generators of the rays they span. Dotting with f1 = w0, f2 = w1 and
f3 = w3 ∈M gives three relations

D0 = D4, D1 = D4 and D3 = D4.

So

Cl(X) = Z.
(3) Note that the hyperplane X1 = 0 intersects X in the closed set Z
defined by X2

2 + . . . x2
r, which is irreducible. Let U be the complement.

Consider projection down to Pn−1
k , from the point [1 : 0 : 0 : · · · : 0].

Let V ' An−1
k ⊂ Pn−1

k be the standard open subset where X1 6= 0.
Given [a1 : a2 : · · · : an] ∈ V , note that there is a unique point

a0 =
−1

a1

(a2
2 + a2

3 + . . . a2
n),

such that [a0 : a1 : · · · : an] ∈ U projects down to V . It follows easily
that V ' U = An−1

k . In particular Cl(U) = 0. On the other hand Z
is linearly equivalent to zero so that Cl(X) = 0 using the usual exact
sequence.
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(c) All of this follows from (II.6.3.b), except the first isomorphism (there
are two abelian groups which are extensions of Z2 by Z, Z ⊕ Z2 and
Z).
In fact cases (1) and (2) are toric varieties, so we reduce to the case
when n = r. In case (1), we have X0X1 = X2

2 in P2, which is a copy
of P1. So the class group is Z. It is clear that a line in P2 cuts out two
points, that is, twice a generator.
(2) is the toric variety P1× P1. There are a million ways to check that
the Class group is Z2.
(d) We already know that the homogeneous coordinate ring of Q is
integrally closed and that the class group of the corresponding affine
variety is zero. It follows that the homogeneous coordinate ring of Q
is a UFD by (II.6.2).
Y ∼ dH, for some positive integer d, as H generates Cl(Q). It follows
that there is a rational function f ∈ K(Q) such that (f) = Y − dH.
Suppose that H is defined by the linear polynomial X0. The restriction
of f to the open affine Q0 = Q∩U0 is a rational function with no poles.
It follows that Y ∩ Q0 is a prime divisor which is linearly equivalent
to zero. As Cl(Q0) = 0, the ideal of Y0 = Y ∩ Q0 is principal. Thus
there a polynomial g which defines Y0. If we homogenize g then we get
a homogeneous polynomial G which defines Y .
6.6. (a) We are given two group laws on C, one given by the rule,

(P,Q) −→ R,

where (P − P0) + (Q− P0) ∼ R− P0 and the other given by the rule

(P,Q) −→ R,

where P , Q and −R are collinear. Suppose that P , Q and R are
collinear. Then there a linear polynomial L such that (L)0 = P+Q+R.
On the other hand, the line X = Z is a flex line to the cubic at P0 so
that (X − Z) = 3P0. But then

(P − P0) + (Q− P0) + (R− P0) = (L/(X − Z)) ∼ 0.

But then it is clear that the two group laws are equivalent.
Or, to crack a nut using a sledgehammer, we could appeal to the fact
that as C is projective, the two group laws makes C into two abelian
varieties. The identity morphism of C clearly fixes the identity, and so
it must be a group isomorphism, by rigidity.
(b) By (a) 2P is equivalent to zero in the group law on X if and only if
there is a line defined by a linear polynomial L such that (L)0 = 2P+P0.
But the only line which intersects C in a point with multiplicity two is
the tangent line.
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(c) By (a) 3P is equivalent to zero in the group law on X if and only if
there is a line defined by a linear polynomial such that (L)0 = 3P . By
(b) this line is the tangent line and by definition P is then an inflection
point.
(d) It suffices to show that if P , Q and R are collinear and P and Q
have their coordinates in Q then so does R. Suppose L is the line such
that

L ∩ C = P +Q+R.

Then L is the line spanned by P and Q. It follows that L is defined by
an equation

aX + bY + cZ = 0,

where a, b and c ∈ Q. Applying a change of rational change of coordi-
nates, we may assume that L is the line Z = 0. This won’t change the
set of points with rational coordinates and the equation of C becomes
a cubic F ∈ Q[X, Y, Z] with rational coefficients. Restricting to L we
get a cubic G(X, Y ) = F (X, Y, 0) ∈ Q[X, Y ] with rational coefficients
and two rational roots. It follows that the third root is rational, so
that R has rational coordinates.
In retrospect the most sensible answer to this question is “No, I cannot
determine the rational points.” But let us suppose we are not sensible.
If we dehomogenize we get the equation

y2 = x3 − x = x(x− 1)(x+ 1).

If y = 0 then we get three points, P = [0 : 0 : 1], Q = [1 : 0 : 1],
R = [−1 : 0 : 1]. The line through the point P and P0 is the line
X = 0. The cubic equation reduces to

Y 2Z = 0.

This has a double root at Y = 0 so that this line is tangent to the cubic
at P and P is torsion, 2P = 0. Similarly the line through Q and P0 is
the line X = Z. The cubic equations reduces to

Y 2X = X3 −X3 = 0.

This has a double root at Y = 0, so that the line X = Z is tangent to Q
and 2Q = 0. As P , Q and R are collinear it follows that P +Q+R = 0
so that 2R = 0. The group generated by P , Q and R is Z2 ⊕ Z2.
Suppose that [a : b : c] is a point with rational coordinates. We may
assume that a, b and c are coprime integers. If one of a, b or c is zero,
then we have one of the four points P0, P , Q or R. So we assume that
abc 6= 0. We have

a2c = b(b− c)(b+ c).
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If p is a prime factor of c, then p must divide one of b, b− c and b+ c.
Therefore p divides b and so c divides b. It follows that c3 divides the
RHS, so that c2 divides a2. If we replace a, b and c by a/c, b/c and 1
we get an integer solution with c = 1.
So now we have two points on the cubic, [b : a : 1] and [0 : 0 : 1]. The
line through these points is ax = by and this intersects the cubic in one
more point. Solving we get

a2x2 = b2y2 = b2(x3 − x).

So

x2 − a2

b2
x− 1 = 0.

It follows that the other root is x = −1/b and y = −a/b2. So

[−b : −a : b2],

is a point of the cubic, with integer coordinates. As b2 is supposed to
divide −b, we must have b = ±1. But then a = 0 and so the only
rational points are the ones we listed.
2. The space of curvilinear schemes of length two is a copy of P1 =
P(TxX). It is covered by two open affines,

U0 = { 〈y+ax〉+m2 | a ∈ k } and U1 = { 〈x+a′y〉+m2 | a′ ∈ k }.
On the overlap, U0 ∩ U1, we have aa′ = 1. Now a typical length three
scheme which lies over U0 is of the form y + ax + bx2 and a typical
length three scheme which lies over U1 is of the form x+ a′x+ b′y2. If
a 6= 0 then

y + ax+ bx2 = a(x+ y/a+ b/ax2).

Now

xy+ax2 ∈ 〈y+ax+bx2〉+m3 and y2+axy ∈ 〈y+ax+bx2〉+m3.

so that
y2 ≡ −a2x2 mod 〈y + ax+ bx2〉+ m3.

Therefore

(x+ y/a+ b/ax2) ≡ x+ y/a− b

a3
y2 mod 〈y + ax+ bx2〉+ m3.

So the transition function are cubes of 1/a.
The final step is to compare this with the transition functions for
OP1(1). In this case sections over the open set U0 are generated by
x and over the open subset U1 they are generated by y = 1/x. It
follows that the line bundle above corresponds to OP1(3).
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