## MODEL ANSWERS TO HWK \#6

1. A dense open subset is given by taking $l$ distinct reduced points. For each point we have $\infty^{n}$ choices (any point of $X$ ) and so the dimension is $n l$.
2. (i) Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then

$$
\operatorname{dim}_{k} \frac{R}{\mathfrak{m}^{p+1}}
$$

is the number of monomials of degree at most $p$ in $n$ variables, which is the same as the number of monomials of degree $p$ in $n+1$ variables. The usual stars and bars argument says that this is

$$
\binom{n+p}{n}
$$

So the length of $z$ is

$$
l=\binom{n+p}{n}-q
$$

(ii) Clear, since we just define the product of any element of $W$ with any homogeneous element of degree at least one to be zero.
(iii) The dimension of $V$ is equal to

$$
m=\binom{n+p-1}{n-1}
$$

the number of monomials of degree $p$ in $n$ variables. The dimension of the Grassmannian of $q$ planes in the vector space of planes in $V$ is then $q(m-q)$. Thus the space of such zero dimensional schemes has dimension

$$
q(m-q)
$$

3. Varying the support, we get dimension

$$
n+q(m-q)
$$

If we fix $p$ and $n$ then we want to maximise

$$
n+q(m-q)
$$

Clearly we should take $q=\llcorner m / 2\lrcorner$. In order to simplify the notation, let's assume that $m$ is even, so that $q=m / 2$.

Let us take $n=3$. Then the dimension of the space of curvilinear schemes is

$$
3 l=3\binom{3+p}{3}-3 / 2\binom{p+2}{2}
$$

and the dimension of the space of schemes from (iii) is

$$
3+1 / 4\binom{p+2}{2}^{2}
$$

Therefore, if $p$ is large enough then we win, since the first expression is a polynomial of degree 3 in $p$ and the second expression is a polynomial of degree 4 in $p$. It is still interesting to figure out exactly when this happens; in fact $p=7$ will do, in which case the length is 102 . In $\mathbb{A}_{k}^{4}$, $p=3$ will do.
4. (i) A closed immersion of

$$
\operatorname{Spec} \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} .
$$

is by definition the same as a morphism

$$
\phi: \operatorname{Spec} \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \longrightarrow X,
$$

modulo isomorphisms

$$
\psi: \operatorname{Spec} \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \longrightarrow \operatorname{Spec} \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle},
$$

over $\operatorname{Spec} k$ and the latter are the same as local ring isomorphisms

$$
f: \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} \longrightarrow \frac{k[\epsilon]}{\left\langle\epsilon^{2}\right\rangle} .
$$

(Since one is sent to one, any such automatically fixes $k$ ). The group of local ring isomorphisms is given by $\left\{\mu_{\lambda}\right\}_{\lambda \in k^{*}}$, and the action on $T_{x} X$ is the standard one which gives $\mathbb{P}\left(T_{x} X\right)$.
(ii) Let $U_{i}$ be the open set of length two schemes of the form

$$
\left\langle x_{1}+a_{1} x_{i}, x_{2}+a_{2} x_{i}, \ldots, x_{1}+a_{n} x_{i}\right\rangle+\mathfrak{m}^{2},
$$

where we omit the $i$ th term. We first show that $\pi^{-1}\left(U_{i}\right)$ is isomorphic to $\mathbb{A}_{U_{i}}^{n-1}=\mathbb{A}_{k}^{2(n-1)}$ over $U_{i}$. By symmetry we may suppose that $i=n$. Let $z$ be a length three scheme with ideal $I$ such that $I+\mathfrak{m}^{2} \in U_{n}$ (here we cheat a little and identify a length two scheme with its ideal). Suppose that

$$
I+\mathfrak{m}^{2}=\left\langle x_{1}+a_{1} x_{n}, x_{2}+a_{2} x_{n}, \ldots, x_{n-1}+a_{n-1} x_{n}\right\rangle+\mathfrak{m}^{2}
$$

I claim that any such is uniquely of the form,
$I=\left\langle x_{1}+a_{1} x_{n}+b_{1} x_{n}^{2}, x_{2}+a_{2} x_{n}+b_{2} x_{n}^{2}, \ldots, x_{n-1}+a_{n-1} x_{n}+b_{n-1} x_{n}^{2}\right\rangle+\mathfrak{m}^{3}$.
If we project this scheme down to any of the coordinate hyperplanes, this is the same as dropping the corresponding variable. Uniqueness is then clear by induction on $n$. On the other hand any ideal $I$ such that

$$
I+\mathfrak{m}^{2}=\left\langle x_{1}+a_{1} x_{n}, x_{2}+a_{2} x_{n}, \ldots, x_{n-1}+a_{n-1} x_{n}\right\rangle+\mathfrak{m}^{2}
$$

contains quadratic monomials of the form $x_{i} x_{j}+a_{i} x_{j} x_{n}$, where $1 \leq i \leq$ $n-1$ and $1 \leq j \leq n$. It is then clear that we can put find $b_{1}, b_{2}, \ldots, b_{n-1}$ such that
$I=\left\langle x_{1}+a_{1} x_{n}+b_{1} x_{n}^{2}, x_{2}+a_{2} x_{n}+b_{2} x_{n}^{2}, \ldots, x_{n-1}+a_{n-1} x_{n}+b_{n-1} x_{n}^{2}\right\rangle+\mathfrak{m}^{3}$.
There is then an obvious isomorphism $\pi^{-1}\left(U_{i}\right) \longrightarrow \mathbb{A}_{U_{i}}^{n-1}$.
Now consider what happens on overlaps. Suppose that $I \in U_{1} \cap U_{n}$. Then
$I=\left\langle x_{1}+a_{1} x_{n}+b_{1} x_{n}^{2}, x_{2}+a_{2} x_{n}+b_{2} x_{n}^{2}, \ldots, x_{n-1}+a_{n-1} x_{n}+b_{n-1} x_{n}^{2}\right\rangle+\mathfrak{m}^{3}$.
and also

$$
I=\left\langle x_{2}+a_{2}^{\prime} x_{1}+b_{2}^{\prime} x_{1}^{2}, x_{3}+a_{3}^{\prime} x_{1}+b_{3}^{\prime} x_{1}^{2}, \ldots, x_{n}+a_{n}^{\prime} x_{1}+b_{n}^{\prime} x_{1}^{2}\right\rangle+\mathfrak{m}^{3}
$$

By assumption $a_{1} \neq 0$. Therefore

$$
1 / a_{1}\left(x_{1}+a_{1} x_{n}+b_{1} x_{n}^{2}\right)=x_{n}+\left(1 / a_{1}\right) x_{1}+\left(b_{1} / a_{1}\right) x_{n}^{2} .
$$

It follows that $a_{n}^{\prime}=1 / a_{1}$. On the other hand,

$$
\left(x_{i}+a_{i} x_{n}+b_{i} x_{n}^{2}\right)-a_{i}\left(x_{1}+a_{1} x_{n}+b_{1} x_{n}^{2}\right) / a_{1}=x_{i}-\left(a_{i} / a_{1}\right) x_{1}+\left(b_{i} a_{1}-b_{1} a_{i}\right) / a_{1} x_{n}^{2} .
$$

Therefore $a_{i}^{\prime}=-a_{i} / a_{1}$.

$$
\left(x_{1}^{2}+a_{1} x_{1} x_{n}\right)-a_{1}\left(x_{1} x_{n}+a_{1} x_{n}^{2}\right)=x_{1}^{2}-a_{1}^{2} x_{n}^{2} .
$$

Therefore $x_{n}^{2}=x_{1}^{2} / a_{1}^{2}$ modulo $I$. It follows that

$$
x_{n}+\left(1 / a_{1}\right) x_{1}+\left(b_{1} / a_{1}\right) x_{n}^{2}=x_{n}+\left(1 / a_{1}\right) x_{1}+\left(b_{1} / a_{1}^{3}\right) x_{1}^{2}
$$

and
$x_{i}-\left(a_{i} / a_{1}\right) x_{1}+\left(b_{i} a_{1}-b_{1} a_{i}\right) / a_{1} x_{n}^{2}=x_{i}-\left(a_{i} / a_{1}\right) x_{1}+\left(b_{i} a_{1}-b_{1} a_{i}\right) / a_{1}^{3} x_{n}^{2}$,
modulo $I$. In particular the transition functions are linear in $b_{1}, b_{2}, \ldots, b_{n-1}$ and so $\pi$ is an affine bundle.
(iii) A length two scheme is determined by the line which contains it. Given a line we get a unique length $n$ curvilinear scheme. This gives a section of $\pi$. Algebraically, given a curvilinear scheme of length two, determined by the ideal $\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle+\mathfrak{m}^{2}$, let $\sigma$ be the curvilinear scheme of length three given by $\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle+\mathfrak{m}^{3}$.

Since the transition functions are linear, they fix this section and so $\pi$ is a vector bundle.

