
MODEL ANSWERS TO HWK #5

1. We may assume that Y is projective. Let W ⊂ Y ×B be the closure
of the image of X under the morphism f × π. Then we may factor π
into two morphisms,

X
h- W

B,

p

?

π

-

where p is restriction of the second projection. Note that the second
morphism is automatically projective and the first morphism is pro-
jective as the composition is projective and the second morphism is
separated.
By assumption h(π−1(b0)) is a point w0 in W . But w0 is then the fibre
of p over b0. By upper semi-continuity of the dimensions of a fibre, it
follows that there is an open subset U of B, such that p−1(b) is zero
dimensional, for every b ∈ U . In this case, the dimension of the fibres
of h over p−1(U) is at least n, whence the dimension of any fibre of h
is at least n.
Pick w ∈ W . Then the fibre h−1(w) has dimension at least n. On
the other hand, h−1(w) ⊂ π−1(p(w)), which has dimension n, so that
h−1(w) is a union of some of the irreducible components of π−1(p(w)).
It follows that h(π−1(p(w))) = p−1(p(w)) is a finite set of points. As
π−1(p(w)) is connected, it follows that the image is a point.
2. Let π : A × A −→ A be projection onto the first factor and let
f : A × A −→ A be the morphism which sends (g, h) to ghg−1. Then
π−1(e) = {e} × A is sent to a point by f . As the fibres of π are
irreducible of the same dimension and π is surjective, it follows that if
a ∈ A then f sends {a}×A to a point. As f sends (a, e) to e it follows
that aba−1 = e, so that A is commutative.
3. It suffices to prove that if π sends the identity to the identity then π is
a group homomomorphism. Consider the morphism of quasi-projective
varieties

f : A× A −→ B,

which sends (a1, a2) to π(a1 + a2)−π(a1)−π(a2). Let φ : A×A −→ A
denote projection onto the first factor. Then f sends φ−1(e) to the
identity of B, where e is the identity of A. By the rigidity lemma f
sends {a} × A to a point. But f(a, e) is the identity so f(a1, a2) is
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the identity of B, for every a1 and a2 ∈ A. But then π is a group
homomomorphism.
4. We may suppose that π sends the zero to zero and we need to prove
that π is a group homomorphism in this case. Since Gn

m is a product in
the category of varieties and algebraic groups, it suffices to prove this
result when H = Gm. We are given a ring homomorphism

K[Z] −→ K[Zn],

which sends the maximal ideal of the origin to the maximal ideal of
the origin. So we are given a semigroup homomorphism

Z −→ Zn,

which sends 0 to 0. This map is determined by the image of 1. But the
group homomorphism which sends xi to tai sends 1 to (a1, a2, . . . , an).
This exhausts all possibilities for where to send 1, whence the result.
5. We first show that f is a morphism. One can use the valuative
criteria but it is more straightforward to prove this result directly. It
suffices to prove that if we are given a rational map

f : A1 −→ Pn,
then f is defined at the origin. Using the local description of mor-
phisms, we have

t −→ [f0 : f1 : · · · : fn],

where fi = gi/hi is a rational function. Let mi = ν(fi), where ν
measures the multiplicity of fi at the origin. Let m = minmi. Then f
is equally well represented

t −→ [f ′0 : f ′1 : · · · : f ′n],

where f ′ = tmfi. By our choice of m, f ′i has no pole at 0 and at least
one f ′i is non-zero at 0. Thus f is a morphism.
We may assume that f(0) is the identity of A. As P1 − {∞} ' Ga it
follows that f(a + b) = f(a) + f(b), for all a and b ∈ P1 − {∞}. As
P1−{0,∞} ' Gm it follows that f = τp ◦ g, where g(1) is the identity.
In this case g(ab) = g(a)g(b) and so

f(ab)− p = g(ab) = g(a) + g(b) = f(a) + f(b)− 2p,

that is

f(ab) + p = f(a) + f(b) = f(a+ b).

This is clearly absurd, unless f(a) is the identity of A, for every a ∈ P1.
Now suppose that the groundfield is C. Then A is a complex torus,
the quotient of Cn by a lattice Λ of rank 2n and P1 is the Riemann
sphere. The universal cover of A is Cn and the universal cover of P1 is
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the Riemann sphere. By the universal property of the universal cover,
there is an induced commutative diagram

P1 g- Cn

P1
?

f- A.
?

If g is not constant then one of the induced holomorphisms

P1 −→ C,
is not constant. By the open mapping theorem the image is open; as
P1 is compact the image is compact, whence closed. The only open and
closed subset of C is C itself, but this is not compact, a contradiction.
Hence g is constant and so f is constant as well.
6 (i) Consider the morphism X × Y −→ G(1, n). As X and Y live
in complementary linear spaces this map is injective. So the image
j(X, Y ) has dimension d + e. The universal family J (X, Y ) over this
has dimension d + e + 1 and the natural morphism to Pn is injective,
so the image J(X, Y ) has dimension d+ e+ 1.
(ii) Pick Λ1 and Λ2 copies of Pn embedded as complementary linear
subspaces of P2n+1. This induces X̃ and Ỹ embeddings of X and Y in
P2n+1, in complementary linear spaces. By (a),

dim J(X̃, Ỹ ) = d+ e+ 1.

Now pick a projection πΛ : P2n+1 99K Pn, from a linear space Λ of
dimension n, so that Λi get mapped isomorphically down to Pn. For
example if Λ1 is the zero locus of Zn+1, Zn+2, . . . , Z2n+1 and Λ2 is the
zero locus of Z0, Z1, . . . , Zn then project from the linear space Zi =
Zn+1+i, 0 ≤ i ≤ n. Consider a line l = 〈x, y〉, where x ∈ X̃ and
y ∈ Ỹ . Then l does not intersect Λ, since x 6= y are points of Pn, so
that J(X̃, Ỹ ) does not intersect Λ. But then projection down to Pn is
morphism, with zero dimensional fibres, and so

dim J(X, Y ) = dim J(X̃, Ỹ ) = d+ e+ 1.

(iii) If d + e ≥ n then d + e + 1 > n. By (ii) it follows that X and Y
intersect.
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