
MODEL ANSWERS TO HWK #2

4.8. (d) Let fi : Xi −→ Yi be two morphisms, i = 1, 2, having property
P . Let f1 × f2 : X1 ×X2 −→ Y1 × Y2 be the induced morphism. If we
consider the fibre square,

Y1 ×X2
- X2

Y1 × Y2

i×f2
?

- Y2,

f2

?

where the bottom arrow is the natural projection, then we see that
Y1×X2 −→ Y1×Y2 satisfies property P by (c). Now consider the fibre
square

X1 ×X2
- X1

Y1 ×X2

f1×i
?

- Y1,

f1

?

where the bottom arrow is the natural projection. Then X1 ×X2 −→
Y1 ×X2 satisfies property P by (c). On the other hand, f1 × f2 is the
composition of these two morphisms and so f1 × f2 satisfies property
P by (b).
(e) Consider the commutative diagram

X - Y

X ×
Z
Y

Γf

?
- Y ×

Z
Y,

∆Y

?

where the bottom row is induced from the top row and the fact that the
fibre product defines a functor. Suppose that W maps to both X ×

Z
Y

and Y over Y ×
Z
Y . As there is a natural morphism X ×

Z
Y −→ X, W

maps to X by composition, and so this commutative diagram is a fibre
square. As ∆Y is a closed immersion, it satisfies property P by (a) and
it follows that Γf satisfies property P by (c).
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On the other hand, if we consider the fibre square

X ×
Z
Y - X

Y
?

- Z,

g◦f
?

then (c) implies that the natural morphism X ×
Z
Y −→ Y satisfies

property P .
Finally observe that f is the composition of these two morphisms, so
that f satisfies property P by (b).
(f) Note that the following commutative diagram

Xred
- X

Yred

fred
?

- Y,

f

?

is a fibre square. So fred satisfies property P by (c).
4.9. We first show that there is a closed immersion

σ : PrZ ×
Z

PsZ −→ Prs+r+sZ .

As closed immersions are stable under base extension, it suffices to
prove this in the special case when Z = Spec Z. Put coordinates Zij
on Prs+r+sZ . PrZ ×

Z
PsZ is covered by open affine subsets

Ui ×
Z
Uj = Spec Z[x0, x1, . . . , x̂i, . . . , xm, y0, y1, . . . , ŷj, . . . , yn].

Define a morphism Ui ×
Z
Ui −→ Uij on this open subset by the rule

(x0, x1, . . . , x̂i, . . . , xm, y0, y1, . . . , ŷj, . . . , yn) −→ (xkyl).

It is easy to see that these morphisms patch together to give a morphism
σ. Let I be the ideal generated by the polynomials

ZijZkl − ZilZkj.
It is proved in an old hwk set that these equations generate the ideal
of the image of σ. In particular the image of σ is closed. To check that
σ is a closed immersion it suffices to check that the map of sheaves

OPrs+r+s
Z

−→ σ∗OPr
Z×

Z
Ps

Z
,

is surjective. As this can be checked locally, we can work on one of the
standard open affines. In this case we have already seen that the map
on coordinate rings is surjective, so that the map on stalks is certainly
surjective.

2



Now suppose that f : X −→ Y and g : Y −→ Z are two projective
morphisms. By assumption, f and g factor as i : X −→ PrY and
j : Y −→ PsZ followed by the canonical projections, where i and j are
closed immersions. Note that there is a commutative diagram (which
also happens to be a fibre square; we won’t need this)

PrY - PrZ

Y
?

g- Z,
?

by the functorial properties of PrS = PrZ ×Z
S. It follows that there is a

commutative diagram
PrY - Y

PrZ ×
Z

PsZ
?

- PsZ .

j

?

As

(PrZ ×
Z

PsZ) ×
Ps

Z

Y = PrZ ×
Z
Y = PrY ,

this diagram is a fibre square.
As j is a closed immersion and closed immersions are stable under base
extension, it follows that the morphism

PrY −→ PrZ ×
Z

PsZ ,

is a closed immersion. Composing with i, and the Segre morphism
PrZ ×

Z
PsZ −→ Prs+r+sZ and using the fact that a composition of closed

immersions is a closed immersion, we get a closed immersion

X −→ Prs+r+sZ ,

over Z, which is what we had to prove.
4.10. (a) Assume that this result holds if X is irreducible.
As X is of finite type over S and S is Noetherian, X is Noether-
ian. It follows that X is a finite union of irreducible components
X1, X2, . . . , Xk. As the natural inclusion Xi −→ X is a closed im-
mersion, a closed immersion is proper and the composition of proper
morphisms is proper, it follows that the natural morphism Xi −→ S is
proper. By hypothesis, for each i, we may find a morphism gi : X

′
i −→

Xi and an open subset Ui ⊂ Xi such that g−1
i (Ui) −→ Ui is an isomor-

phism and X ′i −→ S is projective. Let X ′ be the disjoint union of the
X ′i. Then the natural morphism X ′ −→ S is projective.
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On the other hand, letX0 be the disjoint union ofX1, X2, . . . , Xk. Then
there are natural morphisms, X ′ −→ X0 and h : X0 −→ X. There is an
open subset V of X such that h−1(V ) −→ V is an isomorphism. Let U0

be the union of Ui and let U be the image of U0∩h−1(V ). Then U is an
open subset of X (indeed it is an open subset of V ) and if g : X ′ −→ X
denotes the composition, then g−1(U) −→ U is an isomorphism.
(b) As S is Noetherian we can cover S by finitely many open affines
S1, S2, . . . , Sk. As f is of finite type we can cover f−1(Sj = SpecA) by
finitely many open affines Ui = SpecB ⊂ X, U1, U2, . . . , Un where B is
a finitely generated A-algebra. If we pick generators a1, a2, . . . , am for
A as a A-algebra then we get a surjective rimg homomorphism

A[x1, x2, . . . , xm] −→ B.

Thus there is a closed immersion Ui −→ Am
Sj

. As there is an open
immersion Si −→ S it follows that there is an open immersion Am

Si
−→

Am
S . Composing with the open immersion Am

S −→ PmS , we get an open
immersion Am

Si
−→ PmS . Taking the closure Pi of the image of Ui in PmS ,

we get an open immersion Ui −→ Pi, where Pi is projective over S. In
particular U1, U2, . . . , Un are quasi-projective over S.
(c) Note that h : X ′ −→ P is proper as P −→ S is separated and the
composition X ′ −→ S is proper (see (d) of (II.4.8)). In particular h
is closed. Given x′ ∈ X ′ let x ∈ X be the image. Then x ∈ Ui, some
1 ≤ i ≤ n. Let p ∈ P be the image of x in P and let pi be the image
of p in Pi under the natural projection. By assumption the induced
morphism hi : X

′ −→ OPi
is a closed immersion in a neighbourhood of

x. Since closed immersions satisfy properties (a-c) of (II.4.8) it follows
that h is closed immersion in a neighbourhood of x. Therefore h is a
closed immersion.
(d) As the natural morphism U −→ Ui is an open immersion and the
composition of open immersions is an open immersion, it follows that
U −→ X and U −→ Pi are all open immersions. But then U −→ P is
an isomorphism onto its image and g−1(U) −→ U is an isomorphism.
1. Suppose that X is contained in a coordinate hyperplane. If this
coordinate hyperplane is defined by the equation Xi = 0 then X is
defined by the monomial Xi and polynomials which don’t involve Xi.
Replacing Pn by this coordinate hyperplane and applying induction we
may assume therefore assume that X intersects the torus G = Gn

m ⊂
Pn. Acting by an element of G won’t change whether or not X is
defined by binomials. So we may as well assume that the identity
e = [1 : 1 : 1 : · · · : 1] of G is contained in X.
By assumption we may find a dense open subset H = Gk

m ⊂ X isomor-
phic to a torus and a group homomorphism ρ : H −→ G. Replacing H
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by its image we may assume that H ⊂ G. Let Z be the closure of X.
Then H is a dense open subset of Z and the action of H extends to Z.
Therefore Z is a non-normal toric variety and the natural inclusion of
Z into Pn is a toric morphism.
Now G acts on K[X0, X1, . . . , Xn] and H acts on K[X0, X1, . . . , Xn] by
restriction. K[X0, X1, . . . , Xn] decomposes as a direct sum of eigenspaces
and these eigenspaces are direct sums of eigenspaces for the action of
G, that is the eigenspaces of the action of H have a basis of monomials.
Let I be the ideal of Z. Then I is invariant under the action of H and
so I is generated by eigenpolynomials F .
Suppose that we pick two monomials M1 and M2 of the same degree
with the same eigenvalue. Now G = M1−M2 vanishes at e. Therefore
it vanishes on the orbit of e, that is on a dense subset of Z. Therefore
G vanishes on Z. But then it is clear that every eigenpolynomial F ∈ I
is a sum of binomials G ∈ I.
As both X and Z are unions of orbits of H it follows that Z − X
is a union of orbits of H. Since H is a subgroup of G these orbits
are contained in the coordinate hyperplanes. Let ν : Y −→ Z be the
normalisation of Z. Then ν−1(H) −→ H is an isomorphism and the
action of H on Z lifts to an action on Y , by the universal property of
the normalisation. Hence Y is a toric variety. By the general theory of
toric varieties it follows that Y has finitely many orbits all of which are
toric varieties. Therefore Z has finitely many orbits. It follows that
the orbits of H on Z are just the intersection of the orbits of G with
Z, which are given by the coordinate linear subspaces. Thus X ⊂ Z is
given by the non-vanishing of some mononomials G1, G2, . . . , Gq.
The last statement about the point [1 : 1 : 1 : · · · : 1] is immediate.
2. Let U be the free abelian monoid generated by v1, v2, . . . , vm (so that
U is abstractly isomorphic to Nm). Define a monoid homomorphism
U −→ Sσ by sending vi to ui. This is surjective and the kernel is
generated by relations of the form∑

aivi −
∑

bivi,

where ∑
aiui =

∑
biui.

The group algebra Aσ is generated by xi = χui . Define a ring homo-
morphism

K[x1, x2, . . . , xn] −→ Aσ,

by sending xi to χui . Then the kernel is generated by equations of the
form

xa1
1 x

a2
2 . . . xam

m = xb11 x
b2
2 . . . xbmm ,
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where ∑
aiui =

∑
biui,

since if we quotient out by these relations then we get the vector space
spanned by the monomials χu, u ∈ Sσ.
3. Let Z be the closure ofX. Then Z is an irreducible projective variety
defined by the vanishing of binomials. We first prove the stronger
statement that Z is a non-normal toric variety. As Z is defined by
binomials, Hilbert’s basis theorem implies that Z is defined by finitely
many binomials. If Z is contained in a coordinate hyperplane H then
we might as well replace Pn by this coordinate hyperplane. So we may
assume that Z intersects the torus G = Gn

m ⊂ Pn. If we act by G this
won’t change binomial equations, so that we might as well suppose that
Z contains the identity e = [1 : 1 : 1 : · · · : 1] so that the equations
defining Z take the form monomial equals monomial.
Let W ⊂ An+1

K be the affine variety defined by the same polynomials
as Z. Suppose that W is defined by monomial equations of the form

xa1
0 x

a1
1 x

a2
2 . . . xan

n = xb00 x
b1
1 x

b2
2 . . . xbnn .

Let U be the free monoid with generators v0, v1, . . . , vn and let S be
the quotient monoid by the relations∑

aivi −
∑

bivi.

Then the coordinate ring of W is isomorphic to K[S]. Embed U ⊂ Rn.
Then the vectors

∑
aivi−

∑
bivi define a subspace U0. If we project U

onto U/U0 = Rm this defines an embedding S ⊂M ' Zm. Let τ ⊂MR
be the cone spanned by the images u0, u1, . . . , un of v0, v1, . . . , vn. Then
τ is a rational polyhedral cone. Let σ = τ̌ be the dual cone. We may
assume that τ spans MR so that σ is strongly convex. Then τ = σ̌ and
we have already seen that S ⊂ Sσ is a non-normal affine toric variety
defined by the same equations as W . In other words W is a non-normal
affine toric variety. But then the action of Gm

m descends to an action on
Z, so that Z is a non-normal toric projective variety and the natural
inclusion morphism Z −→ Pn is a toric morphism.
As in the proof of (1) it follows that the action of the torus H ⊂ Z on
Z has only finitely many orbits which correspond to the finitely many
coordinate linear subspaces. So X is a union of orbits and it follows
that X is a toric variety and that the natural inclusion of X into Pn is
a toric morphism.
We saw in class that the curve C = V (y2−x3) ⊂ A2

K admits an action
of Gm and yet this curve is not normal. On the other hand, it is defined
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by the vanishing of Y 2Z−X3 and the non-vanishing of Z, both of which
are binomials.
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