MODEL ANSWERS TO HWK \#1

4.1. Suppose that $f: X \longrightarrow Y$ is a finite morphism of schemes. Since properness is local on the base, we may assume that $Y=\operatorname{Spec} B$ is affine. By (3.4) it follows that $X=\operatorname{Spec} A$ is affine and A is a finitely generated B-module. It follows that A is integral over B. There are two ways to proceed.
Here is the first. f is separated as X and Y are affine. As A is a finitely generated B-module it is certainly a finitely generated B-algebra and so f is of finite type. Since the property of being finite is stable under base extension, to show that f is universally closed it suffices to prove that f is closed.
Let $I \unlhd A$ be an ideal and let $J \unlhd B$ be the inverse image of I. I claim that $f(V(I))=V(J)$. One direction is clear, the LHS is contained in the RHS. Otherwise suppose $\mathfrak{q} \in V(J)$, that is, $J \subset \mathfrak{q}$. We want to produce $I \subset \mathfrak{p}$ whose image is \mathfrak{q}. Equivalently we want to lift prime ideals of B / J to prime ideals of A / I. But A / I is integral over B / J and what we want is the content of the Going up Theorem in commutative algebra.
Here is the second. Pick $a_{1}, a_{2}, \ldots, a_{n} \in A$ which generate A as a B module. Let $C=B\left[a_{1}\right]$ and let $Z=\operatorname{Spec} C$. Then there are finite morphisms $X \longrightarrow Z$ and $Z \longrightarrow Y$. Since the composition of proper morphisms is proper, we are reduced to the case $n=1$, by induction. Since A is integral over B, we may find a monic polynomial

$$
m(x)=x^{d}+b_{d-1} x^{d-1}+\cdots+b_{0} \in B[x],
$$

such that $m(a)=0$. Thus we have a closed immersion $X \subset \mathbb{A}_{Y}^{1}$. Let

$$
M(X, Y)=X^{d}+b_{d-1} X^{d-1} Y+\cdots+b_{0} Y^{d} \in B[X, Y]
$$

be the homogenisation of $m(x)$. Note that the corresponding closed subset of \mathbb{P}_{B}^{1} is the same as the closed subset \mathbb{A}_{B}^{1}, since the coefficient in front of X^{d} does not vanish. Thus there is a closed immersion $X \longrightarrow \mathbb{P}_{Y}^{1}$ and so $X \longrightarrow Y$ is projective, whence proper.
4.2. Let $h: X \longrightarrow Y \underset{S}{\times} Y$ be the morphism obtained by applying the universal property of the fibre product to both f and g. Then the image of h (set-theoretically) must land in the image of the diagonal morphism, as this is true on a dense open subset, and the image of the diagonal is closed. As X is reduced then in fact h factors through the diagonal morphism and so $f=g$.
(a) Let X be the subscheme of \mathbb{A}_{k}^{2} defined by the ideal $\left\langle x^{2}, x y\right\rangle$, so that X is the union of the x-axis and the length two scheme $\left\langle y, x^{2}\right\rangle$ (in fact X contains any length 2 scheme with support at the origin). Then there are many morphisms of X into $Y=\mathbb{A}_{k}^{3}$ which are the identity on the x-axis. Indeed pick any plane π containing the x-axis. Any isomorphism of \mathbb{A}_{k}^{2} which is the identity on the x-axis to the plane π determines a morphism from X, by restriction. Moreover π is the smallest linear space through which this morphism factors. Thus any two such maps are different if we choose a different plane but all such morphisms are the same if we throw away the origin from X.
(b) Let Y be the non-separated scheme obtained by identifying all of the points of two copies of \mathbb{A}_{k}^{1}, apart from the origins. If p_{1} and p_{2} are the images of the origins in Y then $Y-\left\{p_{1}, p_{2}\right\}$ is a copy of $\mathbb{A}_{k}^{1}-\{0\}$. This gives us an isomorphism $\mathbb{A}_{k}^{1}-\{0\} \longrightarrow Y-\left\{p_{1}, p_{2}\right\}$ and by composition a morphism $\mathbb{A}_{k}^{1}-\{0\} \longrightarrow Y$. Clearly there are two ways to extend the morphism $\mathbb{A}_{k}^{1}-\{0\} \longrightarrow Y$ to the whole of $X=\mathbb{A}_{k}^{1}$. 4.3. Consider the commutative diagram

where the bottom arrow is the natural morphism induced by the natural inclusions $i: U \longrightarrow X$ and $j: V \longrightarrow X$. Suppose that W maps to both X and $U \underset{S}{\times} V$ over $X \underset{S}{\times} X$. Then there are two morphisms to U and V, which become equal when we compose with i and j. Hence the image of this morphism must lie in $U \cap V$ and so this commutative diagram is in fact a fibre square.
As $X \longrightarrow S$ is separated, the diagonal morphism $\Delta: X \longrightarrow X \underset{S}{\times} X$ is a closed immersion. As closed immersions are stable under base extension, $U \cap V \longrightarrow U \underset{S}{\times} V$ is a closed immersion. But $U \underset{S}{\times} V$ is affine, since U, V and S are all affine. (II.3.11) implies that every closed subset of an affine scheme is affine and so $U \cap V$ is affine.
Let $S=\operatorname{Spec} k$, where k is a field and let Y be the non-separated scheme obtained by taking two copies of \mathbb{A}_{k}^{2} and identfiying all of their points, except the origins. Then Y contains two copies U and V of \mathbb{A}_{k}^{2}, both of which are open and affine. However, the intersection $U \cap V$ is a copy of $\mathbb{A}_{k}^{2}-\{0\}$, which is not affine.
4.5. (a) We apply the valuative criteria for separatedeness. Let $T=$ Spec R and $U=\operatorname{Spec} K$. Then there is a morphism $U \longrightarrow X$, obtained
by sending t_{1} to the generic point of X. Suppose that the valuation has centres x and $y \in X$. Then R dominates both $\mathcal{O}_{X, x}$ and $\mathcal{O}_{X, y}$ and by (II.4.4) there are two morphisms $T \longrightarrow X$ obtained by sending t_{0} to x or y. As X is separated these two morphisms are the same by the valuative criteria. In particular $x=y$ and the centre of every valuation of K / k is unique.
(b) Since proper implies separated, uniqueness follows from (a). Once again there is a morphism $U \longrightarrow X$. By the valuative criteria for properness this gives a morphism $T \longrightarrow X$. By (II.4.4) if x is the image of x_{0} then R dominates $\mathcal{O}_{X, x}$. But then x is the centre of the corresponding valuation.
(c) First some generalities about valuations. Let R be a valuation ring in the field L. Suppose we are given a diagram

where $U=\operatorname{Spec} L$ and $T=\operatorname{Spec} R$. By (II.4.4) $k \subset R$ so that R is a valuation ring of L / k. Let x_{1} be the image of t_{1} and let Z be the closure of x_{1}, with the reduced induced structure. Let M be the function field of Z. By (II.4.4) we are given an inclusion $M \subset L$. Let $R^{\prime}=R \cap M \subset M$. It is easy to see that R^{\prime} is a local ring. As M is a quotient of $\mathcal{O}_{X, x_{1}}$, we can lift R^{\prime} to a ring $S^{\prime} \subset \mathcal{O}_{X, x_{1}} \subset K$. Finally, by Zorn's Lemma, we may find a local ring $S \subset K$ containing S^{\prime}, maximal with this property, so that S is a valuation ring of K / k.
Now suppose that every valuation of K / k has at most one centre on X. Suppose we are given two morphisms $T \longrightarrow X$. Let x and y be the images of t_{0}. By (II.4.4) we are given inclusions $\mathcal{O}_{Z, x} \subset R$ and $\mathcal{O}_{Z, y} \subset R$. So $\mathcal{O}_{Z, x} \subset R^{\prime}$ and $\mathcal{O}_{Z, y} \subset R^{\prime} . \mathcal{O}_{Z, x}$ and $\mathcal{O}_{Z, y}$ lift to $\mathcal{O}_{X, x}$ and $\mathcal{O}_{X, y}$ in $\mathcal{O}_{X, x_{1}}$, so that $\mathcal{O}_{X, x} \subset S^{\prime}$ and $\mathcal{O}_{X, y} \subset S^{\prime}$. Thus $\mathcal{O}_{X, x} \subset S$ and $\mathcal{O}_{X, y} \subset S$ so that x and y are two centres of S. But then $x=y$ by hypothesis and so the valuative criteria implies X is separated.
Now suppose that every valuation of K / k has a unique centre on X. By hypothesis S has a centre x on X. In this case $\mathcal{O}_{X, x} \subset S . x \in Z$ so that in fact $\mathcal{O}_{X, x} \subset S^{\prime}$. It follows that $\mathcal{O}_{Z, x} \subset R^{\prime} \subset R$. By (II.4.4) this gives us a lift $T \longrightarrow X$ and by the valuative criteria X is proper over k.
(d) Suppose not. Then we may find $a \in \Gamma\left(X, \mathcal{O}_{X}\right)$ such that $a \notin k$. Then $1 / a \in K$ is not in k. As k is algebraically closed, $k[1 / a]$ is isomorphic to a polynomial ring and $k[1 / a]_{1 / a}$ is a local ring. By Zorn's Lemma there is a ring R such that $1 / a \in \mathfrak{m}_{R}$ and R is maximal with
respect to domination, that is, R is a valuation ring. As X is proper, R has a unique centre x on X. Thus $a \in \mathcal{O}_{X, x} \subset R$ so that $a \in R$. This contradicts the fact that $1 / a \in \mathfrak{m}_{R}$.
4.6. Suppose that $X=\operatorname{Spec} A$ and $Y=\operatorname{Spec} B$. First assume that X and Y are reduced, that is A and B have no nilpotents. Note that X is Noetherian as X is of finite type over k. Let K be the field of fractions of A. Let $R \subset K$ be a valuation ring which contains B.
By (II.4.4) we get a diagram

As f is proper, it follows that we may find a morphism $T \longrightarrow X$ making the diagram commute. Let $x \in X$ be the image of $x_{0} \in T$. By (II.4.4) $A \subset \mathcal{O}_{X, x} \subset R$. Since this is true for every R, (II.4.11A) implies that A is contained in the integral closure of B inside L. But then A is a finitely generated B-module, as it is a finitely generated B-algebra.
We now prove the general case. Note that the following commutative diagram

is a fibre square. So $f_{\text {red }}$ is a proper morphism. Now $X_{\text {red }}=\operatorname{Spec} A / I$ and $Y_{\text {red }}=\operatorname{Spec} B / J$, where I and J are the ideals of nilpotent elements and by what we have already proved A / I is a finite B / J-module. It follows that A / I is an integral extension of B / J. This implies that A / I is integral over B. As A is integral over A / I (the polynomial $x^{n} \in A[x]$ is monic) it follows that A is integral over B. As A is finitely generated B-algebra it follows that A is a finitely generated B-module.

