
9. Linear systems

Theorem 9.1. Let X be a scheme over a ring A.

(1) If φ : X −→ PnA is an A-morphism then L = φ∗OPnA(1) is an
invertible sheaf on X, which is generated by the global sections
s0, s1, . . . , sn, where si = φ∗xi.

(2) If L is an invertible sheaf on X, which is generated by the
global sections s0, s1, . . . , sn, then there is a unique A-morphism
φ : X −→ PnA such that L = φ∗OPnA(1) and si = φ∗xi.

Proof. It is clear that L is an invertible sheaf. Since x0, x1, . . . , xn gen-
erate the ring A[x0, x1, . . . , xn], it follows that x0, x1, . . . , xn generate
the sheaf OPnA(1). Thus s0, s1, . . . , sn generate L. Hence (1).

Now suppose that L is an invertible sheaf generated by s0, s1, . . . , sn.
Let

Xi = { p ∈ X | si /∈ mpLp }.
Then Xi is an open subset of X and the sets X0, X1, . . . , Xn cover X.
Define a morphism

φi : Xi −→ Ui,

where Ui is the standard open subset of PnA, as follows: Since

Ui = SpecA[y0, y1, . . . , yn],

where yj = xj/xi, is affine, it suffices to give a ring homomorphism

A[y0, y1, . . . , yn] −→ Γ(Xi,OXi).
We send yj to sj/si, and extend by linearity. The key observation is
that the ratio is a well-defined element of OXi , which does not depend
on the choice of isomorphism L|Xi ' OXi .

It is then straightforward to check that the set of morphisms {φi}
glues to a morphism φ with the given properties. �

Example 9.2. Let X = P1
k, A = k, L = OP1

k
(2).

In this case, global sections of L are generated by S2, ST and T 2.
This morphism is represented globally by

[S : T ] −→ [S2 : ST : T 2].

The image is the conic XZ = Y 2 inside P2
k.

More generally one can map P1
k into Pnk by the invertible sheaf OP1

k
(n).

More generally still, one can map Pmk into Pnk using the invertible sheaf
OPmk (1).

Corollary 9.3.

Aut(Pnk) ' PGL(n+ 1, k).
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Proof. First note that PGL(n+1, k) acts naturally on Pnk and that this
action is faithful.

Now suppose that φ ∈ Aut(Pnk). Let L = φ∗OPnk (1). Since Pic(Pnk) '
Z is generated by OPnk (1), it follows that L ' OPnk (±1). As L is globally
generated, we must have L ' OPnk (1). Let si = φ∗xi. Then s0, s1, . . . , sn
is a basis for the k-vector space H0(Pnk ,OPnk (1)). But then there is a
matrix

A = (aij) ∈ GL(n+ 1, k) such that si =
∑
ij

aijxj.

Since the morphism φ is determined by s0, s1, . . . , sn, it follows that φ
is determined by the class of A in GL(n+ 1, k). �

Lemma 9.4. Let φ : X −→ PnA be an A-morphism. Then φ is a closed
immersion if and only if

(1) Xi = Xsi is affine, and
(2) the natural map of rings

A[y0, y1, . . . , yn] −→ Γ(Xi,OXi) which sends yi −→
σi
σj
,

is surjective.

Proof. Suppose that φ is a closed immersion. Then Xi is isomorphic to
φ(X)∩Ui, a closed subscheme of affine space. Thus Xi is affine. Hence
(1) and (2) follows as we have surjectivity on all of the localisations.

Now suppose that (1) and (2) hold. Then Xi is a closed subscheme
of Ui and so X is a closed subscheme of PnA. �

Theorem 9.5. Let X be a projective scheme over an algebraically
closed field k and let φ : X −→ Pnk be a morphism over k, which is
given by an invertible sheaf L and global sections s0, s1, . . . , sn which
generate L. Let V ⊂ Γ(X,L) be the space spanned by the sections.

Then φ is a closed immersion if and only if

(1) V separates points: that is, given p and q ∈ X there is σ ∈ V
such that σ ∈ mPLp but σ /∈ mqLq.

(2) V separates tangent vectors: that is, given p ∈ X the set

{σ ∈ V |σ ∈ mpLp },
spans mpLp/m2

pLp.

Proof. Suppose that φ is a closed immersion. Then we might as well
consider X ⊂ Pnk as a closed subscheme. In this case (1) is clear.
Just pick a linear function on the whole of Pnk which vanishes at p but
not at q (equivalently pick a hyperplane which contains p but not q).
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Similarly linear functions on Pnk separate tangent vectors on the whole
of projective space, so they certainly separate on X.

Now suppose that (1) and (2) hold. Then φ is clearly injective. Since
X is proper over Spec k and Pnk is separated over Spec k it follows that
φ is proper. In particular φ(X) and φ is a homeomorphism onto φ(X).
It remains to show that the map on stalks

OPnk ,p −→ OX,x,
is surjective. But the same piece of commutative algebra as we used in
the proof of the inverse function theorem, works here. �

Definition 9.6. Let X be a noetherian scheme. We say that an invert-
ible sheaf L is ample if for every coherent sheaf F there is an integer
n0 > 0 such that F ⊗

OX
Ln is globally generated, for all n ≥ n0.

Lemma 9.7. Let L be an invertible sheaf on a Noetherian scheme.
TFAE

(1) L is ample.
(2) Lm is ample for all m > 0.
(3) Lm is ample for some m > 0.

Proof. (1) implies (2) implies (3) is clear.
So assume that M = Lm is ample and let F be a coherent sheaf.

For each 0 ≤ i ≤ m − 1, let Fi = F ⊗ Li. By assumption there is an
integer ni such that Fi ⊗Mn is globally generated for all n ≥ ni. Let
n0 be the maximum of the ni. If n ≥ (n0 + 1)m, then we may write
n = qm+ i, where 0 ≤ i ≤ m− 1 and q ≥ n0 ≥ ni.

But then
F ⊗ Lm = Fi ⊗Mq,

which is globally generated. �

Theorem 9.8. Let X be a scheme of finite type over a Noetherian ring
A and let L be an invertible sheaf on X.

Then L is ample if and only if Lm is very ample for some m > 0.

Proof. Suppose that Lm is very ample. Then there is an immersion
X ⊂ PrA, for some positive integer r, and Lm = OX(1). Let X̄ be
the closure. If F is any coherent sheaf on X then there is a coherent
sheaf F on X̄, such that F = F|X . By Serre’s result, F(k) is globally
generated for some positive integer k. It follows that F(k) is globally
generated, so that Lm is ample, and the result follows by (9.7).

Conversely, suppose that L is ample. Given p ∈ X, pick an open
affine neighbourhood U of p so that L|U is free. Let Y = X−U , give it
the reduced induced strucure, with ideal sheaf I. Then I is coherent.
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Pick n > 0 so that I ⊗ Ln is globally generated. Then we may find
s ∈ I ⊗ Ln not vanishing at p. We may identify s with s′ ∈ OU and
then p ∈ Us ⊂ U , an affine subset of X.

By compactness, we may cover X by such open affines and we may
assume that n is fixed. Replacing L by Ln we may assume that n =
1. Then there are global sections s1, s2, . . . , sk ∈ H0(X,L) such that
Ui = Usi is an open affine cover.

Since X is of finite type, each Bi = H0(Ui,OUi) is a finitely generated
A-algebra. Pick generators bij. Then snbij lifts to sij ∈ H0(X,Ln).
Again we might as well assume n = 1.

Now let PNA be the projective space with coordinates x1, x2, . . . , xk
and xij. Locally we can define a map on each Ui to the standard open
affine, by the obvious rule, and it is standard to check that this glues
to an immersion. �

Definition 9.9. Let L be an invertible sheaf on a smooth projective
variety over an algebraically closed field. Let s ∈ H0(X,L). The divisor
(s) of zeroes of s is defined as follows. By assumption we may cover X
by open subsets Ui over which we may identify s|Ui with fi ∈ OUi. The
defines a Cartier divisor {(Ui, fi)}.

It is a simple matter to check that the Cartier divisor does not depend
on our choice of trivialisations. Note that as X is smooth the Cartier
divisor may safely be identified with the corresponding Weil divisor.

Lemma 9.10. Let X be a smooth projective variety over an alge-
braically closed field. Let D0 be a divisor and let L = OX(D0).

(1) If s ∈ H0(X,L), s 6= 0 then (s) ∼ D0.
(2) If D ≥ 0 and D ∼ D0 then there is a global section s ∈

H0(X,L) such that D = (s).
(3) If si ∈ H0(X,L), i = 1 and 2, are two global sections then

(s1) = (s2) if and only if s2 = λs1 where λ ∈ k∗.

Proof. As OX(D0) ⊂ K, the section s corresponds to a rational func-
tion f . If D0 is the Cartier divisor {(Ui, fi)} then OX(D0) is locally
generated by f−1

i so that multiplication by fi induces an isomorphism
with OUi . D is then locally defined by ffi. But then

D = D0 + (f).

Hence (1).
Now suppose that D > 0 and D = D0 + (f). Then (f) ≥ −D0.

Hence
f ∈ H0(X,OX(D0)) ⊂ H0(X,K) = K(X),

and the divisor of zeroes of f is D. This is (2).
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Now suppose that (s1) = (s2). Then

D0 + (f1) = (s1) = (s2) = D0 + (f2).

Cancelling, we get that (f1) = (f2) and the rational function f1/f2

has no zeroes nor poles. Since X is a projective variety, f1/f2 = λ, a
constant. �

Definition 9.11. Let D0 be a divisor. The complete linear system
associated to D0 is the set

|D0| = {D ∈ Div(X) |D ≥ 0, D ∼ D0 }.

We have seen that

|D| = P(H0(X,OX(D0))).

Thus |D| is naturally a projective space.

Definition 9.12. A linear system is any linear subspace of a com-
plete linear system |D0|.

In other words, a linear system corresponds to a linear subspace,
V ⊂ H0(X,OX(D0)). We will then write

|V | = {D ∈ |D0| |D = (s), s ∈ V } ' P(V ) ⊂ P(H0(X,OX(D0))).

Definition 9.13. Let |V | be a linear system. The base locus of |V |
is the intersection of the elements of |V |.

Lemma 9.14. Let X be a smooth projective variety over an alge-
braically closed field, and let |V | ⊂ |D0| be a linear system.
V generates OX(D0) if and only if |V | is base point free.

Proof. If V generates OX(D0) then for every point x ∈ X we may find
an element σ ∈ V such that σ(x) 6= 0. But then D = (σ) does not
contain x, and so the base locus is empty.

Conversely suppose that the base locus is empty. The locus where
V does not generated OX(D0) is a closed subset Z of X. Pick x ∈ Z
a closed point. By assumption we may find D ∈ |V | such that x /∈
D. But then if D = (σ), σ(x) 6= 0 and σ generates the stalk Lx, a
contradiction. Thus Z is empty and OX(D0) is globally generated. �

Example 9.15. Consider OP1(4). The complete linear system |4p|
defines a morphism into P4, where p = [0 : 1] and q = [1 : 0], given
by P1 −→ P4, [S : T ] −→ [S4 : ST 3 : S2T 2 : ST 3 : T 4]. If we project
from [0 : 0 : 1 : 0 : 0] we will get a morphism into P3, [S : T ] −→ [S4 :
ST 3 : ST 3 : T 4]. This corresponds to the sublinear system spanned by
4p, 3p+ q, p+ 3q, 4q.
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Consider OP2(2) and the corresponding complete linear system. The
map associated to this linear system is the Veronese embedding P2 −→
P5, [X : Y : Z] −→ [X2 : Y 2 : Z2 : Y Z : XZ : XY ].

Note also the notion of separating points and tangent directions be-
comes a little clearer in this more geometric setting. Separating points
means that given x and y ∈ X, we can find D ∈ |V | such that x ∈ D
and y /∈ D. Separating tangent vectors means that given any irre-
ducible length two zero dimensional scheme z, with support x, we can
find D ∈ |V | such that x ∈ D but z is not contained in D. In fact the
condition about separating tangent vectors is really the limiting case
of separating points.

Thinking in terms of linear systems also presents an inductive ap-
proach to proving global generation. Suppose that we consider the
complete linear system |D|. Suppose that we can find Y ∈ |D|. Then
the base locus of |D| is supported on Y . On the other hand suppose
that I is the ideal sheaf of Y in X. Then there is an exact sequence

0 −→ I −→ OX −→ OY −→ 0

As X is smooth D is Cartier and OX(D) is an invertible sheaf. Ten-
soring by locally free preserves exactness, so there are short exact se-
quences,

0 −→ I(mD) −→ OX(mD) −→ OY (mD) −→ 0.

Taking global sections, we get

0 −→ H0(X, I(mD) −→ H0(X,OX(mD) −→ H0(Y,OY (mD).

At the level of linear systems there is therefore a linear map

|D| −→ |D|Y |.

It is interesting to see what happens for toric varieties. Suppose that
X = X(F ) is the toric variety associated to the fan F ⊂ NR. Recall
that we can associate to a T -Cartier divisor D =

∑
aiDi, a continuous

piecewise linear function

φD : |F | −→ R,

where |F | ⊂ NR is the support of the fan, which is specified by the rule
that φD(vi) = −ai.

We can also associate to D a rational polyhedron

PD = {u ∈MR | 〈u, vi〉 ≥ −ai ∀i }
= {u ∈MR |u ≥ φD }.
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Lemma 9.16. If X is a toric variety and D is T -Cartier then

H0(X,OX(D)) =
⊕

u∈PD∩M

k · χu.

Proof. Suppose that σ ∈ F is a cone. Then, we have already seen that

H0(Uσ,OUσ(D)) =
⊕

u∈PD(σ)∩M

k · χu,

where
PD(σ) = {u ∈MR | 〈u, vi〉 ≥ −ai ∀vi ∈ σ }.

These identifications are compatible on overlaps. Since

H0(X,OX(D)) = ∩σ∈FH0(Uσ,OUσ(D))

and

PD = ∩σ∈FPD(σ),

the result is clear. �

It is interesting to compute some examples. First, suppose we con-
sider P1. A T -Cartier divisor is a sum ap + bq (p and q fixed points).
The corresponding function is

φ(x) =

{
−ax x > 0

−bx x < 0.

The corresponding polytope is the interval

[−a, b] ⊂ R = NR.

There are a+ b+1 integral points, corresponding to the fact that there
are a + b + 1 monomials of degree a + b. For P2 and dD3, PD is the
convex hull of (0, 0), (d, 0) and (0, d). The number of integral points is

(d+ 1)2

2
+
d+ 1

2
=

(d+ 2)(d+ 1)

2
,

which is the usual formula.
Let D be a Cartier divisor on a toric variety X = X(F ) given by a

fan F . It is interesting to consider when the complete linear system
|D| is base point free. Since any Cartier divisor is linearly equivalent
to a T -Cartier divisor, we might as well suppose that D =

∑
aiDi is

T -Cartier. Note that the base locus of the complete linear system of
any Cartier divisor is invariant under the action of the torus. Since
there are only finitely many orbits, it suffices to show that for each
cone σ ∈ F the point xσ ∈ Uσ is not in the base locus. It is also clear
that if xσ is not in the base locus of |D| then in fact one can find a
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T -Cartier divisor D′ ∈ |D| which does not contain xσ. Equivalently we
can find u ∈M such that

〈u, vi〉 ≥ −ai,

with strict equality if vi ∈ σ. The interesting thing is that we can
reinterpret this condition using φD.

Definition 9.17. The function φ : V −→ R is upper convex if

φ(λv + (1− λ)w) ≥ λφ(v) + (1− λ)w ∀v, w ∈ V.

When we have a fan F and φ is linear on each cone σ, then φ is
called strictly upper convex if the linear functions u(σ) and u(σ′)
are different, for different maximal cones σ and σ′.

Theorem 9.18. Let X = X(F ) be the toric variety associated to a
T -Cartier divisor D.

Then

(1) |D| is base point free if and only if ψD is upper convex.
(2) D is very ample if and only if ψD is strictly upper convex and

the semigroup Sσ is generated by

{u− u(σ) |u ∈ PD ∩M }.

Proof. (1) follows from the remarks above. (2) is proved in Fulton’s
book. �

For example if X = P1 and

φ(x) =

{
−ax x > 0

−bx x < 0.

so that D = ap+ bq then φ is upper convex if and only if a+ b ≥ 0 in
which case D is base point free. D is very ample if and only if a+b > 0.
When φ is continuous and linear on each cone σ, we may restate the
upper convex as saying that the graph of φ lies under the graph of u(σ).
It is strictly upper convex if it lies strictly under the graph of u(σ), for
all n-dimensional cones σ.

Using this, it is altogether too easy to give an example of a smooth
proper toric variety which is not projective. Let F ⊂ NR = R3 given by
the edges v1 = −e1, v2 = −e2, v3 = −e3, v4 = e1 + e2 + e3, v5 = v3 +v4,
v6 = v1 + v4 and v7 = v2 + v4. Now connect v1 to v5, v3 to v7 and v2 to
v6 and v5 to v6, v6 to v7 and v7 to v5.

It is not hard to check thatX is smooth and proper (proper translates
to the statement that the support |F | of the fan is the whole of NR).
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Suppose that ψ is strictly upper convex. Let w be the midpoint of the
line connecting v1 and v5. Then

w =
v1 + v5

2
=
v3 + v6

2
.

Since v1 and v5 belong to the same maximal cone, ψ is linear on the
line connecting them. In particular

ψ(w) = ψ(
v1 + v5

2
) =

1

2
ψ(v1) +

1

2
ψ(v5).

Since v1, v5 and v3 belong to the same cone and v6 does not, by strict
convexity,

ψ(w) = ψ(
v3 + v6

2
) >

1

2
ψ(v3) +

1

2
ψ(v6).

Putting all of this together, we get

ψ(v1) + ψ(v5) > ψ(v2) + ψ(v6).

By symmetry

ψ(v1) + ψ(v5) > ψ(v3) + ψ(v6)

ψ(v2) + ψ(v6) > ψ(v1) + ψ(v7)

ψ(v3) + ψ(v7) > ψ(v2) + ψ(v5).

But adding up these three inequalities gives a contradiction.
Consider another application of the ideas behind this section. Con-

sider the problem of parametrising subvarieties or subschemes X of
projective space Prk. Any subscheme is determined by the homoge-
neous ideal I(X) of polynomials vanishing on X. As in the case of
zero dimensional schemes, we would like to reduce to the data of a vec-
tor subspace of fixed dimension in a fixed vector space. The obvious
thing to consider is polynomials of degree d and the vector subspace of
polynomials of polynomials of degree d vanishing on X. But how large
should we take d to be?

The first observation is that if I is the ideal sheaf of X in Prk then

Id = H0(Prk, I(d)),

where I(d) is the Serre twist. To say that Id determinesX, is essentially
equivalent to saying that I(d) is globally generated. Fixing some data
about X (in the case of zero dimensional schemes this would be the
length) we would then like a positive integer d0 such that if d ≥ d0 then
two things are true:

• I(d) is globally generated.
• h0(Prk, I(d)), the dimension of the space of global sections, is

independent of X.
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Now there is a short exact sequence

0 −→ I −→ OPrk −→ OX −→ 0.

Twisting by d, we get

0 −→ I(d) −→ OPrk(d) −→ OX(d) −→ 0.

Taking global sections gives another exact sequence.

0 −→ H0(Prk, I(d)) −→ H0(Prk,OPrk(d)) −→ H0(X,OX(d)).

Again, it would be really nice if this exact sequence were exact on the
right. Then global generation of I(d) would be reduced to global gener-
ation of OX(d) and one could read of h0(Prk, I(d)) from h0(X,OX(d)).
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