
5. Dimension of schemes

Our aim in this section is give a formal definition of the dimension of
a variety, to compute the dimension in specific examples and to prove
some of the interesting properties of the dimension.

Definition 5.1. Let X be a topological space.
The dimension of X is equal to the supremum of the length n of

strictly increasing sequences of irreducible closed subsets of X,

∅ 6= Z0 ⊂ Z1 ⊂ · · · ⊂ Zn.

We will call a chain maximal if it cannot be extended a longer chain.

Note that if X is Noetherian then the dimension of X is, by defi-
nition, equal to the maximal dimension of an irreducible component.
Note that also that the dimension of X is equal to the dimension of
any dense open subset, and that the dimension of any subset is at most
the dimension of X.

In general this notion of dimension is a little unwieldy, even for Noe-
therian topological spaces (in fact, it is pretty clear that this definition
is useless for any topological space that is not Noetherian or at least
close to Noetherian).

For quasi-projective varieties it is much better behaved. For example,

Theorem 5.2. Let X be a quasi-projective variety.
Then the dimension of X is equal to the length of any maximal chain

of irreducible subvarieties.

Definition 5.3. Let f : X −→ I be a map from a topological space to
an ordered set I. We say that f is upper semi-continuous, if for
every a ∈ I, the set

{x ∈ X | f(x) ≥ a },
is closed in X.

The key result is:

Theorem 5.4. Let π : X −→ Y be a dominant morphism of quasi-
projective varieties. Then the function

µ : X −→ N,
is upper semi-continuous, where µ(p) is the local dimension of the fibre
Xp = π−1(π(p)) at p. Moreover if X0 is any irreducible component of
X, Y0 the closure of the image, we have

dim(X0) = dim(Y0) + µ0,

where µ0 is the minimum value of µ on X0.
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Note that semi-continuity of µ is equivalent to saying that the di-
mension can jump up on closed subsets, but not down. For example,
consider what happens for the blow up of a point. In this case, µ is
equal to zero outside of the exceptional divisor and it jumps up to one
on the exceptional divisor.

We will prove these two results in tandem. Let d = dimX. We will
need an intermediary result, which is of independent interest:

Lemma 5.5. Assume (5.2)d.
If X ⊂ Pn is a closed subset of dimension d and H ⊂ Pn is a

hypersurface then

dim(X ∩H) ≥ dim(X)− 1,

with equality if and only if H ∩X does not contain a component of X
of maximal dimension.

Proof. We might as well assume that X is irreducible and that H does
not contain a component of X of maximal dimension. Pick a maximal
chain of irreducible subvarieties of X which contains a component Y
of X ∩H,

∅ 6= Z0 ⊂ Z1 ⊂ · · · ⊂ Ze.

Then X = Ze and Y = Zi, some i. As we are assuming (5.2)d, d = e
and dimY = i.

Suppose Z 6= X is irreducible and

Y ⊂ Z ⊂ X.

I claim that Z = Y . To see this, if we pass to an open affine subset then
Z and Y are defined by ideals J ⊂ I ⊂ A, where A is the coordinate
ring, I = 〈f〉 is principal and J is a prime ideal. Pick g ∈ J , g 6= 0.
Write g = g1g2 . . . gk as a product of irreducibles. As J is a prime ideal,
gi ∈ J for some i. As gi ∈ I, gi = uf , and u must be a unit as gi is
irreducible. But then I = J and Z = Y .

It follows that i = d− 1 and so dimY = d− 1. �

Lemma 5.6. (5.2)d−1 implies (5.4)d.

Proof. The result is local on X, so we might as well assume that X
and Y are irreducible and affine. We first show that

µ(p) ≥ dim(X)− dim(Y ),

for every point of p ∈ X. If e = dim(Y ) = dim(X) = d there is nothing
to prove. So we may assume that e = dim(Y ) < d = dim(X). Let
q = π(p). By (5.5) we may embed Y ⊂ An and pick a hyperplane q ∈
H ⊂ Y such that dim(H ∩Y ) = dim(Y )− 1. By an obvious induction,
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we may pick dim(Y ) hyperplanes H1, H2, . . . , He, whose intersection
is a finite set containing q. Working locally about q, we may assume
that q is the only point in the intersection. Let f1, f2, . . . , fe be the
corresponding polynomials. Then the fibre Xp is is defined by the
polynomials g1, g2, . . . , ge, where gi = π∗fi. So

dim(Xp) ≥ dim(X)− dim(Y ),

as required.
To finish the proof, by Noetherian induction applied to X, it suffices

to prove that there is an open subset U of X such that

µ(p) ≤ dim(X)− dim(Y ),

for every p ∈ U . As usual, we may assume that X ⊂ Y ×An and that
π is projection onto the second factor. Factoring π into the product of
n projections, we may assume that n = 1, by induction on n. We may
assume that X ⊂ Y ×A1 is closed. If X = Y ×A1 then µ0 = 1 and it is
clear that dimX ≥ dimY + 1. As we have already proved the reverse
inequality, dimX = dimY + 1.

Otherwise there is a fibre of dimension zero. As X is a proper subset
of Y , dimX = dimY and µ0 = 0. Working locally, we may assume
that X is defined by polynomials of the form F ∈ A(Y )[S, T ]. Further
there is a polynomial F ∈ A(Y )[S, T ] vanishing on X, such that Fy is
not the zero polynomial, for at least one y ∈ Y . In this case, the set
of points where Fy is not the zero polynomial, is an open subset of Y ,
and for any point in this open subset, the fibre has dimension zero. �

Lemma 5.7. (5.4)d implies (5.2)d.

Proof. We may assume that X is affine. Pick a finite projection down
to An. As we are assuming (5.4)d, n = d. It clearly suffices to prove
the result for X = Ad. Consider projection down to Ad−1. Given a
maximal chain of irreducible subsets

∅ 6= Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Ad,

let

∅ 6= Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = Ad−1,

be the image in Ad−1. Then there is an index i such that Zi contains the
general fibre and Zi−1 does not contain the general fibre. Other than
that, Yj determines Zj and the result follows by induction on d. �

Proof of (5.2) and (5.4). Immediate from (5.6) and (5.7). �
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Corollary 5.8. Let π : X −→ Y be a surjective and projective mor-
phism of quasi-projective varieties. Then the function

λ : Y −→ N,
is upper semi-continuous, where λ(p) is the dimension of the fibre Xp =
π−1(X) at p. Moreover if X0 is any irreducible component of X, with
image Y0, then we have

dim(X0) = dim(Y0) + λ0,

where λ0 is the minimum value of λ on Y0.

Proof. π is proper as it is projective. Therefore the set

{ y ∈ Y |λ(y) ≥ k },
is closed as it is the image of the set

{x ∈ X |µ(x) ≥ k },
which is closed by (5.4). �

Note that we cannot discard the hypothesis that π is projective in
(5.8). For example, let X be the disjoint union of A2 minus the y-axis
and a single point p. Define a morphism π : X −→ Y = A1 by send-
ing the extra point to the origin and otherwise taking the projection
onto the x-axis. Then the fibre dimension is one at every point of Y ,
other than at the origin, where it is zero. In particular λ is not up-
per semi-continuous in this example. On the other hand, µ is upper
semi-continuous, by virtue of the fact that the extra point is isolated
in X.

One rather beautiful consequence of (5.4) is the following:

Corollary 5.9. Let π : X −→ Y be a morphism of projective varieties.
If Y is irreducible and every fibre of π is irreducible and of the same

dimension, then X is irreducible.

Proof. Let X = X1 ∪ X2 ∪ · · · ∪ Xk be the decomposition of X into
its irreducible components. Let πi = π|Xi

: Xi −→ Yi, where Yi is the
image of Xi and let λi : Xi −→ N be the function associated to πi, as
in (5.8). Let

Zi = { y ∈ Yi |λi(y) ≥ λ0 }.
(5.8) implies that the closed sets Z1, Z2, . . . , Zk cover Y . As Y is ir-
reducible it follows that there is an index i, say i = 1, such that
Z1 = Y1 = Y . But then the fibres of π1 and π are equal, as they
are of the same dimension and the fibres of π are irreducible. This is
only possible if X = X1. �
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Example 5.10. Pn has dimension n. More generally a toric variety
containing a torus Gn

m has dimension n. In particular the toric variety
corresponding to a fan F in N is equal to the rank of the free abelian
group N .

Consider G(k, n). Then this contains an open subset U isomorphic
to A(k+1)(n−k). So G(k, n) has dimension (k + 1)(n− k). For example,
G(1, 3) has dimension 2 · 2 = 4.

Suppose that X and Y are quasi-projective varieties. Then the di-
mension of X × Y is the sum of the dimensions.

We can use (5.4) to calculate the dimension using different methods.
One way is to project onto a linear subspace. If we repeatedly project
from a point (which is the same as projecting once from a linear space
of positive dimension) then the induced morphism X −→ Pk will even-
tually become dominant. At this point the morphism is finite over an
open subset and the dimension of X is then k. Note that if we go back
one step, then the closure of the image of X will be a hypersurface in
Pk+1.

Equivalently, if X ⊂ Pn and X has dimension d then a general linear
space of dimension n−d−1 is disjoint from X and a general linear space
of dimension n− d meets X in a finite set of points. Note that general
means that the linear space belongs to an open set of the corresponding
Grasmannian. If X is closed, we can do slightly better, since if X is
closed of dimension d, then every linear space of dimension n− d must
intersect X.

To calculate the dimension of an algebraic variety one can also use:

Definition 5.11. Let L/K be a field extension. The transcendence
degree of L/K is equal to the supremum of the length x1, x2, . . . , xk of
algebraically independent elements of L/K.

It is easy to prove:

Theorem 5.12. Let X be an irreducible quasi-projective variety.
Then the dimension of X is equal to the transcendence degree of

K(X)/K.

One trick to calculate dimensions is to use the generic point of a
variety. If we have a morphism π : X −→ Y of irreducible varieties then
µ0 is actually the dimension of the generic fibre Xη, over the residue
field of the generic point η of Y . Indeed the generic point ξ of X maps
to the generic point of Y and so ξ is also the generic point of the generic
fibre. The dimension of the generic fibre is the transcendence degree
of the residue field of ξ over the residue field of η. The dimension of X
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is the transcendence degree of the residue field of ξ over K. But the
transcendence degree is additive on extensions.

Perhaps an easy example will make all of this clear. Consider A2
K .

Suppose the generic point is ξ, with residue fieldK(x, y). This has tran-
scendence degree two over K. If we take a projection down to A1

K , with
generic point η and residue field K(y) then the transcendence degree of
K(x, y)/K(y) is one, the dimension of the generic fibre. K(y)/K also
has transcendence degree one and A1

K has dimension one, as expected.
Now let’s turn to calculating the dimension of some more examples,

using these new techniques. Let us first calculate the dimension of the
universal family over the Grassmannian.

Σ
q- Pn

G(k, n).

p

?

Note that there are two ways to proceed; we can either use the mor-
phism p or q.

First we use the morphism p. If we fix an element [Λ] ∈ G(k, n) then
the fibre of p will be a copy of the k-plane Λ. Thus every fibre of p is
isomorphic to Pk. It follows that Σ has dimension k + (k + 1)(n− k).

Now let us use the morphism q. If we fix point x ∈ Pn, then the
fibre of q is equal to the set of k-planes in Pn, containing x. This is
isomorphic to a Grassmannian G(k − 1, n − 1). Thus the dimension
of Σ is equal to n + k(n − k), which is easily seen to be equal to the
previous expression.

Note that also we can prove that Σ is irreducible. Either way, it fibres
over an irreducible base, with irreducible fibres of the same dimension.

Similarly the universal family of conics has dimension six (=five+one=two+four)
and this space is irreducible. It is perhaps more interesting to figure out
the dimension of the secant variety and the space of incident l-planes
to an irreducible projective variety X ⊂ Pn.

First the space Cl(X) of l-planes which meets a closed subset X of
Pn. In this case the universal family over Cl(X) has dimension equal
to

dimX + l(n− l),

where the second factor is equal to the dimension of the space of l-
planes which contains a point. Since we have already seen that this is
a variety isomorphic to G(l− 1, n), it follows that the universal family
is irreducible, provided X is irreducible.
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In particular suppose that X has dimension k, and suppose that
l ≤ n − k − 1. Then a typical l-plane which meets X, will only meet
X in one point. Thus the map from the universal family to G(l, n) is
in fact birational, and the dimension of Cl(X) is

k + l(n− 1).

In other words the codimension of Cl(X) is

n− l − k.
Thus if l = n− k − 1, Cl(X) is a hypersurface in G(l, n).

Question 5.13. Fix d. What is the smallest positive integer k such
that any polynomial f(x) of degree d over the field C is a sum of k dth
powers of linear forms?

One way to answer this problem is to use the secant variety to the
rational normal curve of degree d. Let V be a two dimensional complex
vector space. Then P1 = P(V ) and the rational normal curve is the set
of pure dth powers in the vector space Pd = P(Symd V ) A polynomial
f(x) of degree d corresponds to a point of Pd and it is a sum of k dth
powers if and only if belongs to the locus of k−1-planes which intersect
C in k points. We want to know when this locus is the whole of Pn. In
this case its dimension is n.

It turns out that even when look at the locus of secant lines that
this problem is very hard for a general variety X. In general, we have
a rational morphism

X ×X 99K G(1, n)

Now note that if l ⊂ G(1, n) is a point of the image, then this map is
not finite over l iff l is contained in X. Since the only subvariety with
the property that the line through every two points is contained in the
subvariety, is a linear space, we may assume that this map has finite
fibres over an open set of the image. Then the image has dimension
2k, where k is the dimension of X. Then the universal family over the
image, has dimension 2k+1 and the dimension of the image in Pn then
has dimension 2k + 1 as well, provided that through a general point
of the secant variety (the closure of the set of lines that meet X in at
least two points), there passes only finitely secant lines.

Thus the expected dimension of the secant variety is 2k+1, provided
this dimension is at most n. For example, the secant variety to a space
curve is expected to be the whole of P3 and the secant variety to a
surface in P5 is expected to be the whole of P5.

Definition 5.14. Let X be a closed irreducible non-degenerate (that
is X is not contained in a proper linear subspace) subvariety of Pn.
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The deficiency of X, denoted δ(X), is equal to the dimension of
the family of secant lines passing through a general point of the secant
variety.

We have already seen then that the dimension of the secant variety
is equal to 2k + 1− δ(X).

Let us calculate the secant variety to the d-uple embedding, at least
in characteristic zero. Recall the if X = P(V ) = Pk then X is embedded
in P(Symd(V )), as the space of rank one symmetric tensors (the pure
powers). The secant variety then consists of all rank at most two
symmetric tensors, that is anything which is a sum of two rank one
symmetric tensors.

In the case of the Veronese, we get the space of rank two quadratic
forms. As there are quadratic forms of rank three, it follows than the
secant variety to the Veronese is a proper subset of P5. In fact the
space of rank two symmetric tensors is a hypersurface in P5, given as
the vanishing of a determinant. Expanding it follows that the secant
variety is defined by a cubic polynomial. Note that the deficiency is
equal to 1 in this case.

It is interesting to look at the dimension of some more exotic schemes.
Spec Z has dimension. Consider A1

Z. This has dimension one over
Spec Z and absolute dimension two. Consider A2

Z. This has absolute
dimension two over Spec Z and so it has absolute dimension three.
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