
4. Coherent Sheaves

Definition 4.1. If (X,OX) is a locally ringed space, then we say that
an OX-module F is locally free if there is an open affine cover {Ui}
of X such that F|Ui

is isomorphic to a direct sum of copies of OUi
. If

the number of copies r is finite and constant, then F is called locally
free of rank r (aka a vector bundle).

If F is locally free of rank one then we way say that F is invertible
(aka a line bundle). The group of all invertible sheaves under tensor
product, denoted Pic(X), is called the Picard group of X.

A sheaf of ideals I is any OX-submodule of OX .

Definition 4.2. Let X = Spec A be an affine scheme and let M be an
A-module. M̃ is the sheaf which assigns to every open subset U ⊂ X,
the set of functions

s : U −→
∐
p∈U

Mp,

which can be locally represented at p as a/g, a ∈M , g ∈ R, p /∈ Ug ⊂ U .

Lemma 4.3. Let A be a ring and let M be an A-module. Let X =
Spec A.

(1) M̃ is a OX-module.
(2) If p ∈ X then M̃p is isomorphic to Mp.

(3) If f ∈ A then M̃(Uf ) is isomorphic to Mf .

Proof. (1) is clear and the rest is proved mutatis mutandis as for the
structure sheaf. �

Definition 4.4. An OX-module F on a scheme X is called quasi-
coherent if there is an open cover {Ui = Spec Ai} by affines and
isomorphisms F|Ui

' M̃i, where Mi is an Ai-module. If in addition Mi

is a finitely generated Ai-module then we say that F is coherent.

Proposition 4.5. Let X be a scheme. Then an OX-module F is quasi-
coherent if and only if for every open affine U = Spec A ⊂ X, F|U =
M̃ . If in addition X is Noetherian then F is coherent if and only if M
is a finitely generated A-module.

This is proved using almost the same techniques as the proof for the
structure sheaf; the key point is that if a collection of sections of OX

don’t vanish simultaneously then we can write 1 as a linear combination
of these sections.

Theorem 4.6. Let X = Spec A be an affine scheme.
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The assignment M −→ M̃ defines an equivalence of categories be-
tween the category of A-modules to the category of quasi-coherent sheaves
on X, which respects exact sequences, direct sum and tensor product,
and which is functorial with respect to morphisms of affine schemes,
f : X = Spec A −→ Y = Spec B. If in addition A is Noetherian, this
functor restricts to an equivalence of categories between the category of
finitely generated A-modules to the category of coherent sheaves on X.

Theorem 4.7. Let X be a scheme.
The kernel and cokernel of a morphism between two quasi-coherent

sheaves is quasi-coherent. An extension of quasi-coherent sheaves is
quasi-coherent, that is, if the two outer terms of a short exact sequence
of OX-modules

0 −→ F −→ G −→ H −→ 0,

are quasi-coherent then so is middle.
If X is Noetherian then one can replace quasi-coherent by coherent.

Proof. Since this result is local, we may assume that X = Spec A is
affine. The only non-trivial thing is to show that if F and H are quasi-
coherent then so is G. By (II.5.6) of Hartshorne, there is an exact
sequence on global sections,

0 −→ F −→ G −→ H −→ 0.

It follows that there is a commutative diagram,

0 - F̃ - G̃ - H̃ - 0

0 - F
?

- G
?

- H
?

- 0,

whose rows are exact. By assumption, the first and third vertical arrow
are isomorphisms, and the 5-lemma implies that the middle arrow is
an isomorphism. �

Lemma 4.8. Let f : X −→ Y be a scheme.

(1) If G is a quasi-coherent sheaf (respectively X and Y are Noe-
therian and G is coherent) on Y then f ∗G is quasi-coherent
(respectively coherent).

(2) If F is a quasi-coherent sheaf on X and either f is compact and
separated or X is Noetherian then f∗F is quasi-coherent.

Proof. (1) is local on both X and Y and so follows easily from the affine
case.

(2) is local on Y , so we may assume that Y is affine. By assumption
(either way) X is compact and so we may cover X by finitely many
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open affines {Ui}. If f is separated then Ui ∩Uj is affine. Otherwise X
is Noetherian and we can cover Ui ∩ Uj by finitely many open affines
Uijk. If V ⊂ Y is open then a section s of F on the open set f−1(V )
is the same as to give sections of F on the open cover {f−1(V ) ∩ Ui}
which agree on overlaps {f−1(V )∩Uijk} (this is simply a restatement of
the sheaf axiom). It follows that there is an exact sequence of sheaves

0 −→ f∗F −→
⊕

i

f∗(F|Ui
) −→

⊕
ijk

f∗(F|Uijk
).

The last two sheaves are quasi-coherent, since Ui and Uijk are coherent
and a direct sum of quasi-coherent sheaves is quasi-coherent. But then
the first term is quasi-coherent, by (4.7). �

Definition-Lemma 4.9. Let X be a scheme. If Y ⊂ X is a closed
subscheme, then the kernel of the morphism of sheaves

OX −→ OY ,

defines a quasi-coherent ideal sheaf IY , called the ideal sheaf of Y
in X, which is coherent if X is Noetherian.

Conversely if I ⊂ OX is a quasi-coherent sheaf of ideals then there
is a closed subscheme Y of X such that I is the ideal sheaf of Y in X.

Proof. If Y ⊂ X is a closed subscheme then IY is a quasi-coherent
sheaf, by (4.7), which is coherent if X is Noetherian.

Now suppose that I is quasi-coherent. Let Y be the support of the
quotient sheaf OX/I. Then Y is a closed subset. Uniqueness is clear.
We have to check that (Y,OX/F) is a closed subscheme. We may check
this locally so that we may assume that X = Spec A is affine. Then
I = Ĩ, where I = Γ(X, I) ⊂ A is an A-submodule, that is an ideal.
(Y,OX/I) is then the closed affine subscheme corresponding to I. �

Remark 4.10. Let i : Y −→ X be a closed subscheme. If F is a sheaf
on Y , then G = i∗F is a sheaf on X, whose support is contained in Y .
Conversely, given any sheaf G on X, whose support is contained in Y ,
then there is a unique sheaf F on Y such that i∗F = G.

For this reason, it is customary, as in (4.9), to abuse notation, and to
not distinguish between sheaves on Y and sheaves on X, whose support
is contained in Y .

Note also that (4.9) implies that the closed subschemes Y ⊂ X =
Spec A of an affine scheme are in bijection with the ideals I E A.

Definition 4.11. Let f : X −→ S be a morphism of schemes. We say
that f is affine if there is an open affine cover {Si} of S such that
f−1(Si) is an affine open subset of X.
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Remark 4.12. It is straightforward to show that f is affine if and
only if for every open affine subset V ⊂ S, f−1(V ) is affine. Note that
if f : X −→ S is affine then A = f∗OX is a quasi-coherent sheaf of
OS-algebras.

Let S be a scheme and letA be a quasi-coherent sheaf ofOS-algebras.
Take an open affine cover {Si = Spec Ri} of S. As A is quasi-coherent
A|Si

' Ãi, for some Ri-algebra Ai. This gives a morphism or affine
schemes fi : Xi = Spec Ai −→ Si. By composition this gives a mor-
phism Xi −→ S. It is straightforward to check that we can glue these
morphisms together to get a scheme X = SpecA and an affine mor-
phism f : X −→ S.

Theorem 4.13. Fix a scheme S. There is an equivalence of categories
between affine morphisms f : X −→ S and quasi-coherent sheaves of
A = OS-algebras.

Let Q be a locally free sheaf of rank r on a scheme S. We can con-
struct the symmetric algebra Sym Q̌. This is a quasi-coherent sheaf
of OS-algebras. Let X = Spec(Sym Q̌). The fibres of the affine mor-
phism f : X −→ S are affine spaces of dimension r. In fact, if Q is the
trivial sheaf of rank r then X = Ar

S, so that if {Si} is an open affine
cover of S such that Qi is the trivial sheaf of rank r then Xi = Ar

Si
.

Intuitively f is a fibre bundle, with fibres isomorphic to affine space.
In fact f comes with a distinguished section and in fact X is (what
is known as) a vector bundle of rank r over S. All of this discussion
motivates the following:

Definition 4.14. Let B a scheme. A family of k-planes over B
in an n-dimensional vector space is a morphism of locally free
sheaves

n⊕
i=1

OB −→ Q,

where Q has rank k.

Note that if we take global spec then we get a map of vector bundles,
from the trivial vector bundle of rank n to a vector bundle of rank k.
Note also that we need to work with quotient sheaves. The problem is
that if we take the vector bundles associated to an inclusion of locally
free sheaves this need not gives a map of vector bundles (recall that
V ⊂ E is a sub-vector bundle if the quotient vector bundle exists).

Definition 4.15. Fix a scheme S. Let F be the functor from the
category of schemes over S to (Sets) which assigns to every scheme B
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over S the set of all isomorphism classes of families of k-planes over
B in an n-dimensional space.

Theorem 4.16. There is a integral projective scheme GS(k, n) which
represents the functor F .

Note that the Grassmanian comes equipped with a locally free sheaf
Q of rank k, which is a quotient of the trivial locally free sheaf of rank
n. This sheaf is called the universal quotient sheaf.

Note also that the definition of the Grassmanian is inconsistent with
the classical definition of projective space over an algebraically closed
field K. If one follows the definition given above, the closed points of Pn

K

with residue field K are surely the one dimensional quotients of Kn+1

and not the one dimensional subspaces. If one adopts the functorial
approach of schemes we have no choice but to define everything in
terms of quotient spaces. For example, suppose we consider P1

Z. Then
we want to look at one dimensional objects attached to Z2. If we try
to work with subgroups of rank one then we run into trouble,

0 −→ Z −→ Z2 −→ Q −→ 0.

If the inclusion map is given by 1 −→ (1, 0) then Q ' Z as expected.
But if we consider something like 1 −→ (2, 0) then Q ' Z2 ⊕ Z, which
is not correct. However if we consider sequences of the form

0 −→ K −→ Z2 −→ Z −→ 0,

then K is always isomorphic to Z. On the other hand, it would seem
impractical to change the classical definition of projective space in an-
ticipation of this problem.

Most of what we have done with algebras and modules, makes sense
for graded algebras and graded modules, in which case we get sheaves
on proj of the graded ring.

Definition 4.17. Let S be a graded ring and let M be a graded S-
module. If p / S is a homogeneous ideal, then M(p) denotes those ele-
ments of the localisation Mp of degree zero.

M̃ is the sheaf on Proj S, which given an open subset U ⊂ Proj S,
assigns the set M̃(U) of those functions

s : U −→
∐
p∈U

M(p),

which are locally fractions of degree zero.

Proposition 4.18. Let S be a graded ring, let M be a graded S-module
and let X = Proj S.
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(1) For any p ∈ X, (M̃)p 'M(p).
(2) If f ∈ S is homogeneous,

(M̃)Uf
' M̃(f).

(3) M̃ is a quasi-coherent sheaf. If S is Noetherian and M is finitely
generated then M̃ is a coherent sheaf.

Definition 4.19. Let X = Proj S, where S is a graded ring. If n is
any integer, then set

OX(n) = S(n)̃.

If F is any sheaf of OX-modules,

F(n) = F ⊗
OX

OX(n).

Let

Γ∗(X,F) =
⊕
m∈N

Γ(X,F(n)).

Lemma 4.20. Let S be a graded ring, X = Proj S and let M be a
graded S-module.

(1) OX(n) is an invertible sheaf.
(2) M̃(n) 'M(n)̃. In particular OX(m)⊗OX(n) ' OX(m + n).
(3) Formation of the twisting sheaf OX(1) is functorial with respect

to morphisms of graded rings.

Proposition 4.21. Let A be a ring, let S = A[x0, x1, . . . , xr] and let
X = Pr

A = Proj A[x0, x1, . . . , xr].
Then

Γ∗(X,OX) ' S.

Lemma 4.22. Let S be a graded ring, generated as an S0-algebra by
S1.

If X = Proj S and F is a quasi-coherent sheaf on X, then

Γ∗(X,F )̃ = F .

Theorem 4.23. Let A be a ring.

(1) If Y ⊂ Pn
A is a closed subscheme then Y = Proj S/I, for some

homogeneous ideal I ⊂ S = A[x1, x2, . . . , xn].
(2) Y is projective over Spec A if and only if it is isomorphic to

Proj T for some graded ring T , for which there are finitely many
elements of T1 which generate T as a T0 = A-algebra.
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Proof. Let IY the ideal sheaf of Y in X. Then there is an exact se-
quence,

0 −→ IY −→ OX −→ OY −→ 0.

Twisting by OX(n) is exact (in fact OX(n) is an invertible sheaf), so
we get an exact sequence

0 −→ IY (n) −→ OX(n) −→ OY (n) −→ 0.

Taking global sections is left exact, so we get an exact sequence

0 −→ IY (n) −→ OX(n) −→ OY (n).

Taking the direct sum, there is therefore an injective map

I = Γ∗(X, IY ) = Γ∗(X,OX) ' S.

It follows that I / S is a homogeneous ideal. Let Ĩ be the associated
sheaf. Since IY is quasi-coherent, (4.22) implies that Ĩ = IY . But then
the subscheme determined by I is equal to Y . Hence (1).

If Y is projective over Spec A then we may assume that Y ⊂ Pn
A.

By (1) Y ' Proj S/I, and if T = S/I, then T0 ' A and the images
of x0, x1, . . . , xn ∈ T1 generate T . Conversely, any such algebra is
the quotient of S. The kernel I is a homogeneous ideal and Y '
Proj S/I. �

Definition 4.24. Let Y be a scheme. OPr
Y

(1) = g∗OPr(1) is the sheaf
on Pr

Y , where g : Pr
Y −→ Pr

Spec Z is the natural morphism.
We say that a morphism i : X −→ Z is an immersion if i induces

an isomorphism of X with a locally closed subset of Y .
We say that an invertible sheaf L on a scheme X over Y is very

ample if there is an immersion i : X −→ Pr
Y over Y , such that L '

i∗OPr
Y

(1).

Lemma 4.25. Let X be a scheme over Y .
Then X is projective over Y if and only if X is proper over Y and

there is a very ample sheaf on X.

Proof. One direction is clear; if X is projective over Y , then it is proper
and we just pullback OPr

Y
(1).

If X is proper over Y then the image of X in Pr
Y is closed, and so X

is projective over Y . �

Definition 4.26. Let X be a scheme and let F be an OX-module. We
say that F is globally generated if there are elements si ∈ Γ(X,F),
i ∈ I such that for every point x ∈ X, the images of si in the stalk Fx,
generate the stalk as an OX,x-module.
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Lemma 4.27. Let X be a scheme and
TFAE

(1) F is globally generated.
(2) The natural map

H0(X,F)⊗OX −→ F ,

is surjective.
(3) F is a quotient of a free sheaf.

Proof. Clear. �

Lemma 4.28 (Push-pull). Let f : X −→ Y be a morphism of schemes.
Let F be an OX-module and let G be a locally free OY -module.

f∗(F ⊗
OX

f ∗G) = f∗F ⊗
OY

G.

Theorem 4.29 (Serre). Let X be a projective scheme over a Noether-
ian ring A, let OX(1) be a very ample invertible sheaf and let F be a
coherent OX-module.

Then there is a positive integer n0 ≥ 0 such that F(n) is globally
generated for all n ≥ n0.

Proof. By assumption there is a closed immersion i : X −→ Pr
A such

that OX(1) = i∗OPr
A

(1). Let G = i∗F . Then (4.28) implies that

G(n) = i∗F(n).

Then F(n) is globally generated if and only if G(n) is globally gen-
erated. As i is a closed immersion it is a proper morphism; as F is
coherent, i is proper, and X and Pr

A are Noetherian, G is coherent.
Replacing X by Pr

A and F by G, we may assume that X = Pr
A.

Consider the standard open affine cover Ui, 0 ≤ i ≤ r of Pr
A.

Since F is coherent, Fi = F|Ui
= F̃i, for some finitely generated

A[X0/Xi, X1/Xi, . . . , Xr/Xi]-module Fi. Pick generators sij of Fi. For
each j, we may lift X

nij

i sij to tij, for some nij (see (II.5.14)). By finite-
ness, we may assume that n = nij does not depend on i and j. Now
the natural map

Xn
i : F −→ F(n),

is an isomorphism over Ui. Thus tij generate the stalks of F . �

Corollary 4.30. Let X be a scheme projective over a Noetherian ring
A and let F be a coherent sheaf.

Then F is a quotient of a direct sum of line bundles of the form
OX(ni).
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Proof. Pick n > 0 such that F(n) is globally generated. Then

k⊕
i=1

OX −→ F(n),

is surjective. Now just tensor by OX(−n). �
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