
12. Singularities

It is the aim of this section to develop some of the theory and prac-
tice of the classification of singularities in algebraic geometry. If one
want to classify singularities, then this is clearly a local problem. Un-
fortunately the Zariski topology is very weak, and the property of being
local in the Zariski does not satisfactorily capture the correct notion
of classification. In general the correct approach is to work with the
formal completion. Since this is somewhat technical, we work instead
over C, and work locally analytically.

The most basic invariant of a singular point is the dimension of the
Zariski tangent space.

Definition 12.1. Let (X, p) be a germ of a singularity. The embed-
ding dimension is the dimension of the Zariski tangent space of X
at p.

As the name might suggest, we have the following characterisation
of the embedding dimension.

Lemma 12.2. Let (X, p) be a germ of a singularity. The embedding
dimension is equal to the smallest dimension of any smooth germ
(M, q) such that X embeds in M .

Proof. Let k be the embedding dimension of X, and suppose that X ⊂
M , where M is smooth. As TpX ⊂ TpM , and the dimension of M is
equal to the dimension of TpM , it is clear that the dimension of M is
at least k.

Now consider embedding X into a smooth germ N and then project-
ing down to a smaller subspace M . Clearly we can always choose the
projection to be an embedding of the Zariski tangent space to X at
p, provided the dimension of M is at least k. Since the property that
df is an isomorphism of Zariski tangent spaces is a local condition, it
follows that possibly passing to a smaller open subset, we may assume
that projection down to M induces an isomorphism of Zariski tangent
spaces. But then the projection map is an isomorphism. �

Definition 12.3. We will say that X has a hypersurface singular-
ity if the embedding dimension is one more than the dimension of X;
we will say that a curve singularity is planar if it is a hypersurface
singularity.

Let (X, p) ⊂ (M, p) be a hypersurface singularity. Pick coordinates
x1, x2, . . . , xn on M and suppose that f defines X. Let m be the max-
imal ideal of M at p. The multiplicity of X at p is equal to the
smallest integer µ such that f ∈ mµ.
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Given X, let Y be the singularity given by x2 + f , where x is a new
variable, so that Y is a hypersurface singularity of dimension one more
than X. Any singularity obtained by successively replacing f by x2 + f
will be called a suspension of X.

We say that X has type An-singularities if X is defined by the
suspension of xn+1. We say that X has type Dn-singularities, for
n ≥ 4, if X is defined by the suspension of x2y + yn−1. We say that X
has a type E6-singularity, if X is defined by the suspension of x3+y4,
a type E7-singularity, if X is defined by the suspension of x3 + xy3,
and a type E8-singularity, if X is defined by the suspension of x3+y5.

Note that the multiplicity of X is independent of the choice of co-
ordinates and that a hypersurface is smooth iff the multiplicity is one.
Note that the multiplicity is upper semi-continuous in families.

There are a couple of basic results about power series that we will use
time and again. First some basic notation. We say that a monomial m
appears in f and write m ∈ f if the coefficient of m in f is non-zero.

Lemma 12.4. Let f ∈ C{x1, x2, . . . , xn} be the germ of an analytic
function.

(1) If f has non-zero constant term then f is invertible and we may
take nth roots.

(2) If we write f = axkn+ . . . , where dots indicate terms divisible by
xkn of higher degree and a 6= 0, then we may change coordinates
so that f = xkn.

(3) If f = uxkn + . . . , where . . . indicate terms other than xkn and u
is not in the maximal ideal, then we may change coordinates so
that f = xkn+fn−2x

k−2
n +· · ·+f0, where fi are analytic functions

in the first n− 1 variables.

Proof. (1) is well-known. Consider (2). By assumption we may write
f = axkn + xkng, where g is an analytic function lying in the maximal
ideal. In this case f = xkn(a + g) = xknu, where by (1) u is a unit. In
this case, also by (1), there is an analytic function v such that vk = u.
Replacing xn by vxn, f now has the correct form. This is (2).

Finally consider (3). Clearly we may expand f as

f =
∑
i

fix
i
n,

where fi are power series in the first n − 1 variables. By assumption
fk is a unit. As before, we may then assume that fk = 1. By (2) we
may assume that fi = 0 for i > k. Completing the nth power we may
assume that fk−1 = 0. Now f has the required form. �
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Definition-Lemma 12.5. Let X be a hypersurface singularity of mul-
tiplicity µ. Then we may choose coordinates x1, x2, . . . , xn such that X
is given by

xµn + fµ−2x
µ−2
n + · · ·+ f0,

where fi are analytic functions of the first n − 1 variables. Any such
polynomial is called a Weierstrass polynomial.

Proof. By assumption fµ is non-zero. Possibly changing coordinates,
we may assume that xµn ∈ f . The result is now an easy consequence of
(12.4). �

Lemma 12.6. A planar curve singularity has multiplicity two iff it is
of type An.

Proof. After putting f into Weierstrass form, the result becomes easy.
�

It is interesting to see what happens for small values of n. If n = 1, so
that f = y2+x2, then we have a node. This corresponds to two smooth
curves with distinct tangent directions. If n = 2, then f = y2+x3, then
we have a cusp. In the case n = 3, we have y2 + x4, this represents
two smooth curves which are tangent. We call this a tacnode. The
case n = 4 is called a ramphoid cusp, n = 5 an oscnode, and n = 6
a hyper-ramphoid cusp and so on.

Definition 12.7. Let C be a planar singularity of order µ. We say
that C is ordinary if when we write f = fµ + . . . , where dots indicate
higher order terms, then fµ factors into µ distinct linear factors.

It is not hard to show that that if C is ordinary, we may always
choose coordinates so that f = fµ.

Definition 12.8. Let X be a singular variety, a subset of An. The
tangent cone of X at a point p is the intersection of the strict trans-
form of X with the exceptional divisor.

If X is a hypersurface singularity, then the tangent cone is given by
fµ = 0 a subset of Pn−1 ' E.

Example 12.9. Consider ordinary planar curve singularities of multi-
plicity four. Then each linear factor defines an element of P1. But four
unordered points in P1 have moduli (the j-invariant). Thus there is a
one dimensional family of non-isomorphic planar curve singularities of
multiplicity four. Indeed, since one can always choose the first three
points to be 0, 1 and ∞, we can write

f = xy(x− y)(x− λy).
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Definition 12.10. Let (X, p) be the germ of a singularity. A defor-
mation of X is a triple (π, σ, i), where π : X −→ B is a morphism, σ
is a section of π (that is, π◦σ is the identity) such that for every t ∈ B
the pair (Xt, σ(t)) is a germ of a singularity and i is an isomorphism
of the pair (X, p) and (X0, σ(0)), the central fibre of π.

In practice, it is customary to drop σ and i and refer to a deformation
using only π. Note that since the multiplicity is upper semi-continuous
in families, it follows that the multiplicity can only go down under
deformation.

In other words, a deformation is to the germ of a singularity, as a
family is to a variety. As such one might hope that there exists universal
deformations, as there exists universal families. Equivalently, one might
hope to write down the obvious functor and hope that there is a space
which represents this functor. Unfortunately this is not so; the problem
is that the central fibre might have more automorphisms, than the
typical fibre (and this why we are careful to specify the isomorphism
of the central fibre with the space to be deformed). Instead, the best
we can hope for is

Definition 12.11. Let (X, p) be a germ of a singularity. We say that a
deformation π of X is versal if for every other deformation ψ there is
a morphism B′ −→ B such that ψ is pulled back from π in the obvious
way.

Note that we do not require uniqueness of the versal family, and
in fact we cannot, since if there is an automorphism of the central
fibre that does not lift to the whole deformation space, for example
if it does not lift to every fibre, then we get a different deformation,
simply by composing with this automorphism (that is, we change the
isomorphism i).

Fortunately, versal deformation spaces are easy to write down.

Definition 12.12. Let X be a hypersurface singularity, defined by the
equation f = 0. Let

T 1
f =

C[x1, x2, . . . , xn]

〈f, ∂f
∂x1
, ∂f
∂x2
, . . . ∂f

∂xn
〉
.

Theorem 12.13. Let X be an isolated hypersurface singularity. Pick
holomorphic functions g1, g2, . . . , gk such that their images in T 1

f form
a basis. Then the deformation given by

ft = f +
∑
i

tigi,

where ti are coordinates on the germ (Ck, 0) is a versal deformation.
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Another way to state (12.13), is that T 1
f is the Zariski tangent space

to the versal deformation space. We will also need the following basic
fact.

Lemma 12.14. Let π : X −→ B be a versal deformation space, and
let B′ be a general subvariety of B. Then the restriction of π to B′

defines a versal deformation space of the general point of B′.

It is interesting to see what happens in a series of examples. Suppose
we start with planar singularities. The simplest is an A1-singularity.
In this case

f = x2 + y2 so that
∂f

∂x
= 2x and

∂f

∂y
= 2y.

Thus

T 1
f =

C[x, y]

〈x, y〉
and for g1 we take 1. Thus the versal deformation space of a node is
given as

f = x2 + y2 + t.

In other words, the only thing that we can do with a node is smooth
it. Now consider what happens in the case of an An-singularity. In this
case the derivatives are (n+1)xn and 2y, so that we make take gi = xi,
i = 0 . . . n − 1. Thus the versal deformation space has dimension n,
and it is given by

y2 + xn + t0 + t1x+ t2x
2 + · · ·+ tn−1x

n−1.

For example consider the case of a cusp. In this case the versal
deformation space has dimension two, and it is given by

y2 + x3 + ax+ b.

where a and b are coordinates on the base. The point is that now we
have two completely different one dimensional families. Either we can
smooth the cusp, or we can partially smooth it to a node. In fact the
locus of nodes forms a curve in the base.

Note that y2 = x3+ax+b is singular iff the polynomial x3+ax+b has
a double root. But then the singular locus is given by the discriminant,
that is 4b3 + 27a2, so that this locus is not smooth.

Similarly, it is not hard to see that the locus of An-singularities
contains loci corresponding to the Ak-singularities, for k ≤ n. In fact
this locus will have codimension n− k.

In fact the converse is true, that is, one can only deform an An-
singularity to an Ak singularity, for k ≤ n. Compare this with the case
of an ordinary four-fold point. Suppose that we start with x4 + y4.
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Then the derivatives are 4x3 and 4y3 and so we can take for gi, 1, x,
y, x2, xy, y2, x2y, xy2, x2y2. In this case, there is a one dimensional
locus corresponding to all other (nearby) ordinary four-fold singulari-
ties, given by x4 + y4 + tx2y2. In other words, there are infinitely many
non-isomorphic germs in the versal deformation space.

It is interesting to look at some of these ideas from the point of view
of blowing up and resolution of singularities.

Definition 12.15. Let X be a variety and let D =
∑
Di be a divisor,

the sum of distinct prime divisors. We say that the pair (X,D) has
normal crossings if X is smooth and locally about every point, the pair
(X,D) is equivalent to Cn union some of the coordinate hyperplanes.

A resolution of singularities for X is a birational map π : Y −→
X with the following properties.

(1) π is an isomorphism over the smooth locus of X,
(2) Y is smooth,
(3) the exceptional locus is a divisor with normal crossings.

To date there is only one known way to resolve singularities (at this
level of generality) and that is to embed X into a smooth variety M
and then carefully choose an appropriate sequence of blow ups, at each
stage blowing up M and replacing X by its strict transform. In this
case we want the exceptional locus of ψ : N −→ M to intersect the
strict transform Y of X as transversally as possible. For example if X
has a hypersurface singularity, then we want Y + E, where E is the
exceptional locus, to have normal crossings.

We have already seen some examples of this. Perhaps the easiest
example is the case of a nodal curve. In this case C sits inside a
smooth surface M , and we simply blow up the singular point of C. At
this point C is smooth and meets the exceptional locus smoothly in
two points, so that the pair C + E does have normal crossings.

Now suppose that we take a curve with a cusp. Pick local coordinates
so that we have y2 + x3. Blowing up once, we have already seen that
C becomes smooth. However C is tangent to the exceptional locus. If
we blow up, then the strict transform of C intersects the points where
the two exceptional divisors intersect. Thus it is necessary to blow up
once more to achieve normal crossings.

It is interesting to see what happens for an ordinary singularity. In
this case we have seen that we may choose coordinates so that f is
homogeneous. Thus f factors into µ distinct linear factors. Now each
of those factors corresponds to a point of the exceptional locus and
in fact when we blow up then C is smooth and meets the exceptional
divisor at µ points. At this point C + E has normal crossings.
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For example, if the multiplicity is four, then C meets E in four points,
and we get our j-invariant directly.

Theorem 12.16. Let C be a planar curve singularity.
Then the versal deformation space of C contains only finitely many

isomorphism types iff C is one of An, Dn, E6, E7 or E8.

Proof. Let f be a defining equation for C. Let us show that if there
are only finitely many isomorphism types in the versal deformation
space, then C must be one of the ADE-singularities. Suppose that the
multiplicity of f is at least four. Then we may deform f to an ordinary
multiplicity four singularity. But then there are infinitely many non-
isomorphic singularities in the versal deformation space. On the other
hand, if the multiplicity is two, then by (12.6) C must have type An.

Thus we may suppose that f has multiplicity three. Consider f3.
This factors into three linear factors. There are three cases; the three
factors are distinct; there are two distinct factors, there is one.

Suppose that there are at least two distinct factors. Then there is
a factor which occurs only once. We may assume that this factor is y.
Since the multiplicity is three, in fact y must divide f , so that we may
write

f = h · y,
where h only depends on x and y. Now h has multiplicity two and its
rank two part is not divisible by y. It follows that there is a change of
variable, so that h = x2 + yn, where n ≥ 2, which change of variable
does not change y. But then f = x2y+ yn+1 and we have a singularity
of type D (more precisely, a Dn+3-singularity).

This final case is when f3 = y3, so that f = y3+g and the multiplicity
of g is at least four. Putting f into Weierstrass form, once again, we
may assume that f = y3 + yg + h, where g and h only involve x.
Thus f can be put in the form y3 + ayxk + xl + . . . , where the dots
indicate higher powers of x, a is either zero or one and k < l. If l = 4,
it follows that k = 3 so that completing the square we may assume
that a = 0. In this case, it is not hard to show that we can choose
coordinates so that f = y3 + x4 and we have an E6-singularity. If
x3y ∈ f and l > 4 then with some manipulation we can put f into the
form y3 + x3y, so that we have an E7-singularity; similarly if y5 ∈ f
but we have no lower terms, then we have an E8-singularity. Otherwise
we may assume that l > 5 and that k > 3. In this case, we may as
well assume that f = y3 + λyx4 = y(y2 + λx4), which represents three
smooth curves which are tangent. Suppose we blow up once; we get
four curves passing through one point, the strict transform of the three
tangent curves and the exceptional divisor. If we blow up the point, we
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get four curves intersecting the new exceptional divisor and the four
points of intersection with the new exceptional gives one dimension of
moduli (the j-invariant, which varies as we vary λ).

Now let us consider the converse problem, to show that there are
only finitely many isomorphism types in the versal deformation space.
Clearly it suffices to prove that we can only deform an ADE-singularity,
to an ADE-singularity. This is clear for An-singularities, since under
deformation the multiplicity can only go down.

Now consider the case of a Dn-singularity. We only need to consider
deformations that preserve the multiplicity. In this case, the defor-
mations of f3 can only increase the number of distinct linear factors,
and we cannot lose a term of the form yk. Thus the deformation of
an Dn-singularity is either a Dk-singularity, for some k ≤ n or an
An-singularity.

Finally consider the three exceptional cases. Suppose we start with
x3+y4. Then the only possible deformation which fixes the multiplicity,
deforms to a singularity of type Dn, n ≤ 5. Now suppose we start with
y3 + x3y. Again we can only pick up a term of the form x4 or increase
the number of linear factors. Similarly for an E8-singularity. �

Here is a way to restate (12.16):

Proposition 12.17. The ADE-singularities are the only singularities,
which have multiplicity two and three, and such that after blowing up,
the multiplicity of the total transform has multiplicity two or three.

Proof. It is not hard to check that this is all we have used in the proof
of (12.16) to characterise ADE-singularities. �

The are four other obvious ways of creating examples of singularities
other than writing down equations. The first is simply to take the cone
over a closed subset of Pn. Note that the cone is a degenerate example
of the join of two varieties, where one of the two varieties to be joined
is a point. Note also that if I is the ideal of X ⊂ Pn, then I is also the
ideal of the cone Y over X, where Y is the closure of the inverse image
of X inside Kn+1. In particular, the classification of singularities is at
least as hard as the classification of varieties. On the other hand, note
that the resolution problem for such singularities is in fact easy. If X
is smooth, then simply blowing up the vertex, we get a birational map
π : W −→ Y , whose exceptional locus E is a copy of X, where W is
smooth. In fact W is a P1-bundle over X, and E is simply a section of
this bundle.
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The next is to start with a configuration of divisors and contract
them. Unfortunately it is quite hard to characterise which configura-
tions are contractible. The third method is to take a quotient:

Definition 12.18. Let G be an algebraic group acting on a variety X.
We say that Y is a categorical quotient of X by G if there is a
morphism π : X −→ Y such that π(g ·x) = π(x) for every g ∈ G, which
is universal amongst all such morphisms:

If φ : X −→ Z is a morphism such that ψ(g · x) = ψ(x) then there is
a unique morphism ψ : Y −→ Z which makes the diagram commute,

X

Y

π

?
ψ- Z.

φ

-

It is common to denote the categorical quotient by X/G (if it exists
at all). Fortunately there is one quite general existence theorem:

Theorem 12.19. Let X = SpecA be an affine variety and let G be a
finite group acting on X.

Then the categorical quotient is the affine variety Y = SpecAG.

Proof. The key fact is that the ring of invariants

AG = { a ∈ A | g · a = a },
is a finitely generated k-algebra. �

Note that Y = X/G will in general be a singular variety. It is
however Q-factorial, that is, every Weil divisor is Q-Cartier, that is,
given by any Weil divisor D, some multiple is Cartier (indeed, r = |G|
will do).

The final method is to use toric geometry. We start with the canon-
ical example.

Let σ be the cone spanned by e2 and 2e1 − e2. The dual cone σ is
spanned by f1 and f1 + 2f2. Generators for the monoid are f1, f1 + f2

and f1 + 2f2, so that

X = Uσ = Spec C[x, xy, xy2] = Spec C[u, v, w]/〈v2 = uw〉.
Thus we have an A1-singularity.

It is interesting to see how to resolve this singularity. Suppose we
insert the vector e1; this corresponds to a blow up with exceptional
divisor isomorphic to P1. We get two cones σ1 and σ2, one spanned by
e1 and e2 and the other spanned by e1 and 2e1 − e2. It follows that
the blow up is smooth. Note that X is the cone over a conic; it follows
once again that X can be resolved in one step.
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Let’s make this example a little more complicated. Let’s start with
the cone spanned by e2, re1 − e2. The dual cone is the cone spanned
by f1 and f1 + rf2. Generators for the monoid are f1, f1 + f2, . . . ,
f1 + rf2. We get

Uσ = Spec C[x, xy, . . . , xyr] = Spec C[ur, ur−1v, . . . , vr],

where ur = x and v = y/x, which is the cone over a rational normal
curve of degree r. Note that the embedding dimension is r + 1. Note
that this is again resolved in one step by inserting the vector e1.

At the other extreme, consider the cone spanned by e2 and re1−(r−
1)e2. The dual cone is spanned by f1 and (r − 1)f1 + rf2. Generators
for the monoid are f1, (r − 1)f1 + rf2 and f1 + f2. We get

Uσ = Spec C[x, xy, xr−1yr] = Spec C[u, v, w]/〈vr = uw〉,
which is an Ar−1-singularity. If we insert the vector e1 then we the
resulting blow up has two affine pieces. One is smooth, corresponding
to the cone spanned by e1 and e2 and the other is the cone given by e1
and re1− (r− 1)e2. Switching the sign of e2 we get e1, re1 + (r− 1)e2.
Switching e1 and e2 we get e2 and (r − 1)e1 − re2. Replacing e1 by
e1 − 2e2 we get e2 and (r − 1)e1 − (r − 2)e2 which as we have already
seen is an Ar−2-singularity. Thus an Ar-singularity takes r-steps to
resolve. On the resolution we get a chain of r-copies of P1.

More generally, we could consider the cone spanned by e2 and re1−
ae2, where 0 < a < r, is coprime to r. However the best way to proceed,
is to look at all of this a different way.

We start with an example. The cyclic group G = Zr acts on C2 via

(u, v) −→ (ωu, ωv),

where ω is a primitive rth root of unity. In this case the ring of invari-
ants is precisely

C[u, v]G = C[ur, ur−1v, . . . , vr].

To see this using the toric structure, let N ′ ⊂ N be the sublattice
spanned by e′2 = e2 and e′1 = re1 − e2. Then the cone σ′ spanned by
the same vectors e2 and re1 − e2 now corresponds to a smooth toric
variety. The dual lattice M ′ is an overlattice of M .

Thinking this way, we should make a basis for N ′ the standard vec-
tors e′1 and e′2. The overlattice N is spanned by N ′ and the vector e1
in the old coordinates. As

e1 = 1/r(re1 − e2) + 1/re2,

in the old coordinates, in the new coordinates we have that N ′ is
spanned by e′1, e

′
2 and 1/r(e′1 + e′2). If we insert this vector, we get
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a basis for the lattice. If the dual lattice M ′ is the overlattice spanned
by f ′1 and f ′2 then M is the sublattice spanned by all af ′1 + bf ′2 such
that a+ b is divisible by r.

In the other example, where we started with e2 and re1 − (r − 1)e2,
then

e1 = 1/r(re1 − (r − 1)e2) + (r − 1)/re2.

So N is the lattice spanned by e1, e2 and 1/re1 + (r − 1)/re2. This
suggests we should look at the action

(x, y) −→ (ωx, ωr−1y) = (ωx, ω−1y),

Indeed, the ring of invariants is u = xr, w = yr and v = xy and
vr = uw, as expected.

More generally still, for the action

(x, y) −→ (ωx, ωay),

we should look at the lattice N spaned by the standard lattice and the
vector 1/r(1, a). Inserting this vector, gives two cones, one spanned by
e1, 1/r(1, a) and the other spanned by 1/r(1, a) and e2. The second
one is smooth. For the first, let us make the two vectors 1/r(1, a) and
e1 the standard generators for the lattice. As

(0, 1) = r/a(1/r, a/r)− 1/a(0, 1),

we then have the overlattice generated by (−1/a, r/a). Now

r/a = k − b/a,

for some unique 0 ≤ b < a. So we get a singularity of type 1/a(1, b).
Note that resolving the singularity corresponds to computing a contin-
ued fraction. The significance of k is the self-intersection of exceptional
divisor (on the minimal resolution).

So the resolution graph of any cyclic surface singularity is a chain of
P1’s. Singularities of type Ar correspond to a chain of r such curves,
where each curve has self-intersection −2. In fact it is not hard to
prove:

Theorem 12.20. Let S = C2/G be a two dimensional quotient singu-
larity. Then G ⊂ GL(2,C) and there are three possibilities:

(1) G is cyclic and the dual graph of the (minimal) resolution cor-
responds to the Dynkin diagram An. The action is (x, y) −→
(ωx, ωay), where ω and ωa is both primtive roots of unity. S is
isomorphic to a toric surface.

(2) G is a dihedral group and the dual graph corresponds to the
Dynkin diagram for Dn, n ≥ 4.
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(3) G is one of three exceptional groups and the dual graph is the
Dynkin diagram for E6, E7 or E8.

If in addition G ⊂ SL(2,C) then S has an ADE-singularity and the
self-intersections of the exceptional curves are all −2.

More generally suppose that σ ⊂ N ' Zn is a simplicial cone. As
before let N ′ ⊂ N be the sublattice spanned by the primitive generators
of σ. Let M ⊂ M ′ be the corresponding overlattice. Then there is a
natural pairing

N/N ′ ×M ′/M −→ Q/Z
This makes M the invariant sublattice of M ′, under the action of the
finite abelian group G = N/N ′ and under this action it is not hard to
see that

Aσ = (Aσ′)G.

Note that G is a product of at most n− 1 cyclic factors.
Let me end by talking a little about the problem of resolution of

singularities. At it most basic we are given a finitely generated field
extension K/k and we would like to find a smooth projective variety
X over k with function field K.

Theorem 12.21. Let X be a smooth projective variety and let OX(1)
be a very ample line bundle. Suppose that X ⊂ Pn has degree d.

Then

h0(X,OX(m)) =
dmn

n!
+ ...,

is a polynomial of degree n, for m large enough, with the given leading
term.

Proof. Let Y be a hyperplane section. The trick is to compute χ(X,OX(m))
by looking at the exact sequence

0 −→ OX(m− 1) −→ OX(m) −→ OY (m) −→ 0.

The Euler characteristic is additive so that

χ(X,OX(m))− χ(X,OX(m− 1)) = χ(Y,OY (m)).

By an easy induction, it follows that χ(X,OX(m)) is a polynomial of
degree n, with the given leading term. Now apply Serre vanishing. �

Definition 12.22. Let X ⊂ M be a subvariety of a smooth variety.
The multiplicity of X at p ∈M is the smallest µ such that Ip ⊂ mµ

where m is the maximal ideal of M at p in OM,p and I is ideal sheaf of
X in M .
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The method of Albanese is to start with X ⊂ Pn. Now re-embed
X by the very ample line bundle OX(m). The degree of the image is
dmn inside Pr, where r is roughly dmn/n!. Now suppose that there is a
point p of multiplicity µ. If we project from p then we drop r by 1 and
the degree by µ. So if we take m sufficiently large and always project
from a point of highest multiplicity then we can also reduce to the case
when the multiplicity is at most n!. Unfortunately it seems impossible
to improve this bound.

Another intriguing method was proposed by Nash:

Definition 12.23. Let X ⊂ PN be a quasi-projective variety of dimen-
sion n. The Gauss map is the rational map

X −→ G(n,N) given by x −→ TxX,

which sends a point to its (projective) tangent space.

Conjecture 12.24. We can always resolve any variety by successively
taking the Nash blow up and normalising.

Despite the very appealing nature of this conjecture (consider for
example the case of curves) we only know (12.24) in very special cases
(the result for toric varieties is about six months old).

If X is a toric variety there is a pretty simple method to resolve
singularities. First subdivide the cone until X is simplicial. It is not
too hard to argue that one can resolve any simplicial toric variety (one
keeps track of a simple invariant).

In general the only known method to find a strong resolution of
singularities (only touch the smooth locus) goes back to Hironaka. The
idea is embed X into a smooth variety M and choose a sequence of
smooth blow ups in M . The problem reduces to two (closely related)
parts. Determine the locus to blow up at every step and find some
invariant which goes down if we blow this locus up. Forty years after
Hironaka’s original proof, we know now the only invariant we need to
keep track of is the multiplicity.

Unfortunately it is also clear that we need to be quite careful how
to choose the locus to blow up. For example consider

z2 − x3y3.

The singular locus consists of the x and y axis. If we blow up either
axis it is clear that we are making progress (generically along the y-
axis we have z2−x3, which is resolved in three steps by blowing up the
origin). But we are not allowed to blow up an axis. The problem is that
this might only be the local analytic picture. We might globally have
the singular locus be a nodal cubic (for example). So our resolution
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process must respect all local isomorphisms. There is an obvious x-y
symmetry and so we cannot blow up only one axis. The only possible
locus we could blow up which is in the singular locus is the origin. On
the blow up we have coordinates (x, y, z)× [A : B : C], and equations
expressing the rule [x : y : z] = [A : B : C]. On the coordinate patch
A 6= 0 we have y = bx, z = cx so that

z2 − x3y3 = c2x2 − b3x6 = x2(c2 − b3x4).

Changing variables we have z2−x3y4 which is surely worse than before.
The key thing is that the singular locus is given by c = b = 0 and
c = x = 0. The first singular locus we created ourselves and so we
know that we are allowed to blow up c = b = 0 and now we can
desingularise.

So the blow up process must keep track of the sequence of blow ups.
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