
11. Sheaf Cohomology

Definition 11.1. Let X be a topological space. For every i ≥ 0 there
are functors H i from the category of sheaves of abelian groups on X to
the category of abelian groups such that

(1) H0(X,F) = Γ(X,F).
(2) Given a short exact sequence,

0 −→ F −→ G −→ H −→ 0,

there are boundary maps

H i(X,H) −→ H i+1(X,F).

which can be strung together to get a long exact sequence of
cohomology.

In short, sheaf cohomology was invented to fix the lack of exactness,
and in fact this property essentially fixes the definition.

Example 11.2. If X is a simplicial complex (or a CW-complex) then
H i(X,Z) agrees with the usual definition. The same goes for any other
coefficient ring (considered as a local free sheaf).

Like ordinary cohomology, sheaf cohomology inherits a cup product,

H i(X,F)⊗Hj(X,G) −→ H i+j(X,F ⊗ G),

where (X,OX) is a ringed space and F and G are OX-modules. In
particular if X is a projective scheme over A then

H i(X,F),

is an A-module, where F is an OX-module, since A = H0(X,OX). In
particular if A is a field, then

H i(X,F),

are vector spaces.
hi(X,F),

denotes their dimension.

We would like to have a definition of these groups which allows us to
compute. Let X be a topological space and let U = {Ui} be an open
cover, which is locally finite. The group of k-cochains is

Ck(U ,F) =
⊕

I

Γ(UI ,F),

where I runs over all (k + 1)-tuples of indices and

UI =
⋂
i∈I

Ui,
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denotes intersection. k-cochains are skew-commutative, so that if we
switch two indices we get a sign change.

Define a coboundary map

δk : Ck(U ,F) −→ Ck+1(U ,F).

Given σ = (σI), we have to construct τ = δ(σ) ∈ Ck+1(U ,F). We just
need to determine the components τJ of τ . Now J = {i0, i2, . . . , ik}. If
we drop an index, then we get a k-tuple. We define

τJ =

(
k∑

i=0

(−1)iσJ−{ii}

)∣∣∣∣∣
UJ

.

The key point is that δ2 = 0. So we can take cohomology

H i(U ,F) = Zi(U ,F)/Bi(U ,F).

Here Zi denotes the group of i-cocycles, those elements killed by δi and
Bi denotes the group of coboundaries, those cochains which are in the
image of δi−1. Note that δi(Bi) = δiδi−1(Ci−1) = 0, so that Bi ⊂ Zi.

The problem is that this is not enough. Perhaps our open cover is not
fine enough to capture all the interesting cohomology. A refinement
of the open cover U is an open cover V , together with a map h between
the indexing sets, such that if Vj is an open subset of the refinement,
then for the index i = h(j) such that Vj ⊂ Ui. It is straightforward to
check that there are maps,

H i(U ,F) −→ H i(V ,F),

on cohomology. Taking the (direct) limit, we get the Čech cohomology
groups,

Ȟ i(X,F).

For example, consider the case i = 0. Given a cover, a cochain is just
a collection of sections, (σi), σi ∈ Γ(Ui,F). This cochain is a cocycle
if (σi − σj)|Uij

= 0 for every i and j. By the sheaf axiom, this means
that there is a global section σ ∈ Γ(X,F), so that in fact

H0(U ,F) = Γ(X,F).

It is also sometimes possible to untwist the definition ofH1. A 1-cocycle
is precisely the data of a collection

(σij) ∈ Γ(U ,F),

such that

σij − σik + σjk = 0.
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In general of course, one does not want to compute these things using
limits. The question is how fine does the cover have to be to compute
the cohomology? As a first guess one might require that

H i(Uj,F) = 0,

for all j, and i > 0. In other words there is no cohomology on each
open subset. But this is not enough. One needs instead the slightly
stronger condition that

H i(UI ,F) = 0.

Theorem 11.3 (Leray). If X is a topological space and F is a sheaf
of abelian groups and U is an open cover such that

H i(UI ,F) = 0,

for all i > 0 and indices I, then in fact the natural map

H i(U ,F) ' Ȟ i(X,F),

is an isomorphism.

It is in fact not too hard to prove:

Theorem 11.4 (Serre). Let X be a notherian scheme. TFAE

(1) X is affine,
(2) H i(X,F) = 0 for all i > 0 and all quasi-coherent sheaves,
(3) H1(X, I) = 0 for all coherent ideals I.

Finally, we need to construct the coboundary maps. Suppose that
we are given a short exact sequence

0 −→ F −→ G −→ H −→ 0.

We want to define

H i(X,H) −→ H i+1(X,F).

Cheating a little, we may assume that we have a commutative diagram
with exact rows,

0 - Ci(U ,F) - Ci(U ,G) - Ci(U ,H) - 0

0 - Ci+1(U ,F)
?

- Ci+1(U ,G)
?

- Ci+1(U ,H)
?

- 0.

Suppose we start with an element t ∈ H i(X,H). Then t is the image
of t′ ∈ H i(U ,H), for some open cover U . In turn t′ is represented by
τ ∈ Zi(U ,H). Now we may suppose our cover is sufficiently fine, so
that τI ∈ Γ(UI ,H) is the image of σI ∈ Γ(UI ,G) (and this fixes the
cheat). Applying the boundary map, we get δ(σ) ∈ Ci+1(U ,G). Now
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the image of δ(σ) in Ci+1(U ,H) is the same as δ(τ), which is zero,
as τ is a cocycle. But then by exactness of the bottom rows, we get
ρ ∈ Ci+1(U ,F). It is straightforward to check that ρ is a cocycle,
so that we get an element r′ ∈ H i+1(U ,F), whence an element r of
H i+1(X,F), and that r does not depend on the choice of σ.

Thus sheaf cohomology does exist (at least when X is paracompact,
which is not a problem for schemes). Let us calculate the cohomology
of projective space.

Theorem 11.5. Let A be a Noetherian ring. Let X = Pr
A.

(1) The natural map S −→ Γ∗(X,OX) is an isomorphism.
(2)

H i(X,OX(n)) = 0 for all 0 < i < r and n.

(3)
Hr(X,OX(−r − 1)) ' A.

(4) The natural map

H0(X,OX(n))×Hr(X,OX(−n− r−1)) −→ Hr(X,OX(−r−1)) ' A,

is a perfect pairing of finitely generated free A-modules.

Proof. Let

F =
⊕
n∈Z

OX(n).

Then F is a quasi-coherent sheaf. Let U be the standard open affine
cover. As every intersection is affine, it follows that we may compute
using this cover. Now

Γ(UI ,F) = SxI
,

where
xI =

∏
i∈I

xi.

Thus Čech cohomology is the cohomology of the complex
r∏

i=0

Sxi
−→

r∏
i<j

Sxixj
−→ . . . −→ Sx0x1,...xr .

The kernel of the first map is just H0(X,F), which we already know
is S. Now let us turn to Hr(X,F). It is the cokernel of the map∏

i

Sx0x1...x̂i...xr −→ Sx0x1...xr .

The last term is the free A-module with generators all monomials in
the Laurent ring (that is we allow both positive and negative powers).
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The image is the set of monomials where xi has non-negative expo-
nent. Thus the cokernel is naturally identified with the free A-module
generated by arbitrary products of reciprocals x−1

i ,

{xl0
0 x

l1
1 . . . x

lr
r | li < 0 }.

The grading is then given by

l =
r∑

i=0

li.

In particular

Hr(X,OX(−r − 1)),

is the free A-module with generator x−1
0 x−1

1 . . . x−1
r . Hence (3).

To define a pairing, we declare

xl0
0 x

l1
1 . . . x

lr
r ,

to be the dual of

xm0
0 xm1

1 . . . xmr
r = x−1−l0

0 x−1−l1
1 . . . x−1−lr

r .

As mi ≥ 0 if and only if li < 0 it is straightforward to check that this
gives a perfect pairing. Hence (4).

It remains to prove (2). If we localise the complex above with respect
to xr, we get a complex which computes F|Ur , which is zero in positive
degree, as Ur is affine. Thus

H i(X,F)xr = 0,

for i > 0 so that every element of H i(X,F) is annihilated by some
power of xr.

To finish the proof, we will show that multiplication by xr induces an
inclusion of cohomology. We proceed by induction on the dimension.
Suppose that r > 1 and let Y ' Pr−1

A be the hyperplane xr = 0. Then

IY = OX(−Y ) = OX(−1).

Thus there are short exact sequences

0 −→ OX(n− 1) −→ OX(n) −→ OY (n) −→ 0.

Now H i(Y,OY (n)) = 0 for 0 < i < r − 1 and the natural restriction
map

H0(X,OX(n)) −→ H0(Y,OY (n)),

is surjective (every polynomial of degree n on Y is the restriction of a
polynomial of degree n on X). Thus

H i(X,OX(n− 1)) ' H i(X,OX(n)),
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for 0 < i < r − 1, and even if i = r − 1, then we get an injective map.
But this map is the one induced by multiplication by xr. �

Theorem 11.6 (Serre vanishing). Let X be a projective variety over a
Noetherian ring and let OX(1) be a very ample line bundle on X. Let
F be a coherent sheaf.

(1) H i(X,F) are finitely generated A-modules.
(2) There is an integer n0 such that H i(X,F(n)) = 0 for all n ≥ n0

and i > 0.

Proof. By assumption there is an immersion i : X −→ Pr
A such that

OX(1) = i∗OPr
A

(1). As X is projective, it is proper and so i is a closed
immersion. If G = i∗F then

H i(Pr
A,G) ' H i(X,F).

Replacing X by Pr
A and F by G we may assume that X = Pr

A.
If F = OX(q) then the result is given by (11.5). Thus the result

also holds is F is a direct sum of invertible sheaves. The general case
proceeds by descending induction on i. Now

H i(X,F) = 0,

if i > r (clear, if we use Čech cohomology). On the other hand, F is a
quotient of a direct sum E of invertible sheaves. Thus there is an exact
sequence

0 −→ R −→ E −→ F −→ 0,

where R is coherent. Twisting by OX(n) we get

0 −→ R(n) −→ E(n) −→ F(n) −→ 0.

Taking the long exact sequence of cohomology, we get isomorphisms

H i(X,F(n)) ' H i+1(X,R(n)),

for n large enough, and we are done by descending induction on i. �

Theorem 11.7. Let A be a Noetherian ring and let X be a proper
scheme over A. Let L be an invertible sheaf on X. TFAE

(1) L is ample.
(2) For every coherent sheaf F on X there is an integer n0 such

that

H i(X,F ⊗ Ln) = 0,

for n > n0.
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Proof. (1) implies (2) is proved using the division algorithm, as in the
proof of (9.7).

Now suppose that (2) holds. Let F be a coherent sheaf. Let p ∈ X
be a closed point. Consider the short exact sequence

0 −→ IpF −→ F −→ F ⊗Op −→ 0,

where Ip is the ideal sheaf of p. If we tensor this exact sequence with
Ln we get an exact sequence

0 −→ IpF ⊗ Ln −→ F ⊗Ln −→ F ⊗Ln ⊗Op −→ 0.

By hypotheses we can find n0 such that

H1(X, IpF ⊗ Ln) = 0,

for all n ≥ n0. It follows that the natural map

H0(X,F ⊗ Ln) −→ H0(X,F ⊗ Ln ⊗Op),

is surjective, for all n ≥ n0. It follows by Nakayama’s lemma applied to
the local ring OX,p that that the stalk of F ⊗Ln is generated by global
sections. As F is a coherent sheaf, for each integer n 6= n0 there is an
open subset U , depending on n, such that sections of H0(X,F ⊗ L)
generate the sheaf at every point of U .

If we take L = OX it follows that there is an integer n1 such that
Ln1 is generated by global sections over an open neighbourhood V of
p. For each 0 ≤ r ≤ n1 − 1 we may find Ur such that F ⊗ Ln0+r is
generated by global sections over Ur. Now let

Up = V ∩ U0 ∩ U1 ∩ · · · ∩ Un1−1.

Then

F ⊗ Ln = (F ⊗ Ln0+r)⊗ (Ln1)m,

is generated by global sections over the whole of Up for all n 6= n0.
Now use compactness of X to conclude that we can cover X by

finitely many Up. �

Theorem 11.8 (Serre duality). Let X be a smooth projective variety
of dimension n over an algebraically closed field. Then there is an
invertible sheaf ωX such that

(1) hn(X,ωX) = 1.
(2) Given any other invertible sheaf L there is a perfect pairing

H i(X,L)×Hn−i(X,ωX ⊗ L∗) −→ Hn(X,ωX).

Example 11.9. Let X = Pr
k. Then ωX = OX(−r − 1) is a dualising

sheaf.
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In fact, on any smooth projective variety, the dualising sheaf is con-
structed as the determinant of the cotangent bundle, which is a locally
free sheaf. To construct the cotangent bundle, let i : X −→ X ×X be
the diagonal embedding. Let I be the ideal sheaf of the diagonal and
let

Ω1
X = i∗

I
I2
.

Ω1
X is the dual of the tangent bundle. Ω1

X is a locally free sheaf of rank
n, known as the sheaf of Kähler differentials. The determinant sheaf is
then the dualising sheaf,

ωX = ∧nΩ1
X .

This expresses a remarkable coincidence between the dualising sheaf,
which is something defined in terms of sheaf cohomology and the de-
terminant of the sheaf of Kähler differentials, which is something which
comes from calculus on the variety.

Theorem 11.10. Let X = X(F ) be a toric variety over C and let D
be a T -Cartier divisor. Given u ∈M let

Z(u) = { v ∈ |F | | 〈u, v〉 ≥ ψD(v) }.

Then

Hp(X,OX(D)) =
⊕
u∈M

Hp(X,OX(D))u where Hp(X,OX(D))u = Hp
Z(u)(|F |).

Some explanation is in order. Note that the cohomology groups of
X are naturally graded by M . (11.10) identifies the graded pieces.

Hp
Z(u)(|F |) = Hp(|F |, |F | − Z(u),C).

denotes local cohomology. This comes with a long exact sequence for
the pair. If X is an affine toric variety then both |F | and Z(u) are
convex and the local cohomology vanishes. More generally, if D is am-
ple, then then both |F | and Z(u) are convex and the local cohomology
vanishes. This gives a slightly stronger result than Serre vanishing in
the case of an arbitrary variety.

It is interesting to calculate the dualising sheaf in the case of a smooth
toric variety. First of all note that the dualising sheaf is a line bun-
dle, so that ωX = OX(KX), for some divisor KX , which is called the
canonical divisor. Note that the canonical divisor is only defined up
to linear equivalence.

To calculate the canonical divisor, we need to write down a ratio-
nal (or meromorphic in the case of C) differential form. Note that if
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z1, z2, . . . , zn are coordinates on the torus then

dz1

z1

∧ dz2

z2

∧ · · · ∧ dzn

zn

,

is invariant under the action of the torus, so that the assoiated divisor
is supported on the invariant divisor. With a little bit of work one can
show that this rational form has a simple pole along every invaraint
divisor, that is

KX +D ∼ 0,

where D is a sum of the invariant divisors. For example,

−KPn = H0 +H1 + · · ·+Hn ∼ (n+ 1)H,

as expected.
Even if X is not smooth, it is possible to define the canonical divisor.

Suppose that X is normal, so that the singular locus has codimension
at least two. Let U be the smooth locus and let KU be the canonical
divisor of U . Let KX be the divisor obtained by taking the closure of
the components of KU . Note that KX is only defined as a Weil divisor
in this case.
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