## HWK \#6, DUE WEDNESDAY 3/31

1. Let $X$ be a smooth variety of dimension $n$ over an algebraically closed field $k$ of characteristic zero. What is the dimension of the space of curvilinear schemes of length $l$ ? (Hint: You may assume the naive dimension count is correct.)
2. Let $k$ be an algebraically closed field of characteristic zero. Fix integers $p, q$ and $n$, and let $\mathfrak{m} \subset k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the maximal ideal of the origin in $\mathbb{A}_{k}^{n}$. Let $A=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$ where $I \triangleleft k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is any ideal such that

$$
\mathfrak{m}^{p+1} \subset I \subset \mathfrak{m}^{p}
$$

and the quotient $W=I / \mathfrak{m}^{p+1} \subset \mathfrak{m}^{p} / \mathfrak{m}^{p+1}=V$ is a vector subspace of dimension $q$.
(i) What is the length of $z=\operatorname{Spec} A$ ?
(ii) Show that there is a correspondence between ideals $I$ and subvector spaces $W \subset V$.
(iii) What is the dimension of the space of all such zero dimensional subschemes $z \subset \mathbb{A}_{k}^{n}$ supported at the origin? (Hint: Use the Grassmannian. You may assume the naive dimension count is correct.)
3. Comparing your answers to (1) and (2) show that the space of zero dimensional schemes in $\mathbb{A}^{n}$ is not the closure of the locus of curvilinear schemes (Hint: It is for $n=2$ (don't prove this; it is hard!) but it is not for $n=3$ ).
4. An affine bundle of dimension $n$ is a morphism $\pi: X \longrightarrow Y$ of schemes such that there is a open cover $\left\{U_{i}\right\}$ of $Y$, isomorphisms

$$
\phi_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow \mathbb{A}_{U_{i}}^{n}
$$

for each $U_{i}$, where moreover the transition functions

$$
g_{i j}=\phi_{j} \circ \phi_{i}^{-1}: \mathbb{A}_{U_{i j}}^{n} \longrightarrow \mathbb{A}_{U_{i j}}^{n}
$$

are affine linear (same as linear automorphism, but where we also allow translation, $x \longrightarrow A x+b$ ). If $\pi$ has a section, so that the fibres are vector spaces and (we can arrange that) the transition functions are linear (that is they fix the section), then we say that $\pi$ is a vector bundle of rank $n$.
(i) Let $\mathcal{H}_{0}^{l}$ be the punctual Hilbert scheme of length $l$ zero dimensional schemes in $\mathbb{A}_{k}^{n}$ supported at the origin. Let $\mathcal{C}_{0}^{l}$ be the locally closed subset (with the reduced induced structure) of curvilinear schemes. Show that $\mathcal{C}_{0}^{2}$ is a copy of $\mathbb{P}_{k}^{n-1}$.
(ii) Show that the natural morphism

$$
\pi: \mathcal{C}_{0}^{3} \longrightarrow \mathcal{C}_{0}^{2}
$$

realises $\mathcal{C}_{0}^{3}$ as an affine bundle of dimension $n-1$ over $\mathcal{C}_{0}^{2}=\mathbb{P}^{n-1}$. (iii) Show that $\pi$ has a section, and that with this section $\pi$ becomes a vector bundle of rank $n-1$ over $\mathbb{P}^{n-1}$.

