HWK #6, DUE WEDNESDAY 3/31

- 1. Let X be a smooth variety of dimension n over an algebraically closed field k of characteristic zero. What is the dimension of the space of curvilinear schemes of length l? (Hint: You may assume the naive dimension count is correct.)
- 2. Let k be an algebraically closed field of characteristic zero. Fix integers p, q and n, and let $\mathfrak{m} \subset k[x_1, x_2, \ldots, x_n]$ be the maximal ideal of the origin in \mathbb{A}^n_k . Let $A = k[x_1, x_2, \ldots, x_n]/I$ where $I \triangleleft k[x_1, x_2, \ldots, x_n]$ is any ideal such that

$$\mathfrak{m}^{p+1} \subset I \subset \mathfrak{m}^p$$

and the quotient $W=I/\mathfrak{m}^{p+1}\subset\mathfrak{m}^p/\mathfrak{m}^{p+1}=V$ is a vector subspace of dimension q.

- (i) What is the length of $z = \operatorname{Spec} A$?
- (ii) Show that there is a correspondence between ideals I and subvector spaces $W \subset V$.
- (iii) What is the dimension of the space of all such zero dimensional subschemes $z \subset \mathbb{A}^n_k$ supported at the origin? (Hint: Use the Grassmannian. You may assume the naive dimension count is correct.)
- 3. Comparing your answers to (1) and (2) show that the space of zero dimensional schemes in \mathbb{A}^n is not the closure of the locus of curvilinear schemes (*Hint: It is for* n=2 (*don't prove this; it is hard!*) but it is not for n=3).
- 4. An affine bundle of dimension n is a morphism $\pi: X \longrightarrow Y$ of schemes such that there is a open cover $\{U_i\}$ of Y, isomorphisms

$$\phi_i \colon \pi^{-1}(U_i) \longrightarrow \mathbb{A}^n_{U_i},$$

for each U_i , where moreover the transition functions

$$g_{ij} = \phi_j \circ \phi_i^{-1} \colon \mathbb{A}^n_{U_{ij}} \longrightarrow \mathbb{A}^n_{U_{ij}},$$

are affine linear (same as linear automorphism, but where we also allow translation, $x \longrightarrow Ax + b$). If π has a section, so that the fibres are vector spaces and (we can arrange that) the transition functions are linear (that is they fix the section), then we say that π is a **vector bundle of rank** n.

(i) Let \mathcal{H}_0^l be the punctual Hilbert scheme of length l zero dimensional schemes in \mathbb{A}_k^n supported at the origin. Let \mathcal{C}_0^l be the locally closed subset (with the reduced induced structure) of curvilinear schemes. Show that \mathcal{C}_0^2 is a copy of \mathbb{P}_k^{n-1} .

(ii) Show that the natural morphism

$$\pi\colon \mathcal{C}_0^3 \longrightarrow \mathcal{C}_0^2$$

 $\pi\colon \mathcal{C}_0^3 \longrightarrow \mathcal{C}_0^2,$ realises \mathcal{C}_0^3 as an affine bundle of dimension n-1 over $\mathcal{C}_0^2 = \mathbb{P}^{n-1}$. (iii) Show that π has a section, and that with this section π becomes a vector bundle of rank n-1 over \mathbb{P}^{n-1} .