HWK #6, DUE WEDNESDAY 3/31

1. Let X be a smooth variety of dimension n over an algebraically closed field k of characteristic zero. What is the dimension of the space of curvilinear schemes of length l? (Hint: You may assume the naive dimension count is correct.)

2. Let k be an algebraically closed field of characteristic zero. Fix integers p, q, and n, and let $m \subset k[x_1, x_2, \ldots, x_n]$ be the maximal ideal of the origin in \mathbb{A}^n_k. Let $A = k[x_1, x_2, \ldots, x_n]/I$ where $I \triangleleft k[x_1, x_2, \ldots, x_n]$ is any ideal such that $m^{p+1} \subset I \subset m^p$, and the quotient $W = I/m^{p+1} \subset m^p/m^{p+1} = V$ is a vector subspace of dimension q.
 (i) What is the length of $z = \text{Spec } A$?
 (ii) Show that there is a correspondence between ideals I and subvector spaces $W \subset V$.
 (iii) What is the dimension of the space of all such zero dimensional subschemes $z \subset \mathbb{A}^n_k$ supported at the origin? (Hint: Use the Grassmannian. You may assume the naive dimension count is correct.)

3. Comparing your answers to (1) and (2) show that the space of zero dimensional schemes in \mathbb{A}^n_k is not the closure of the locus of curvilinear schemes (Hint: It is for $n = 2$ (don’t prove this; it is hard!) but it is not for $n = 3$).

4. An affine bundle of dimension n is a morphism $\pi: X \rightarrow Y$ of schemes such that there is a open cover $\{U_i\}$ of Y, isomorphisms
 \[\phi_i: \pi^{-1}(U_i) \rightarrow \mathbb{A}^n_{U_i}, \]
 for each U_i, where moreover the transition functions
 \[g_{ij} = \phi_j \circ \phi_i^{-1}: \mathbb{A}^n_{U_{ij}} \rightarrow \mathbb{A}^n_{U_{ij}}, \]
 are affine linear (same as linear automorphism, but where we also allow translation, $x \rightarrow Ax + b$). If π has a section, so that the fibres are vector spaces and (we can arrange that) the transition functions are linear (that is they fix the section), then we say that π is a vector bundle of rank n.
 (i) Let \mathcal{H}^l_0 be the punctual Hilbert scheme of length l zero dimensional schemes in \mathbb{A}^n_k supported at the origin. Let \mathcal{C}_0^0 be the locally closed subset (with the reduced induced structure) of curvilinear schemes. Show that \mathcal{C}_0^2 is a copy of \mathbb{P}^{n-1}_k.

(ii) Show that the natural morphism
\[\pi : C^3_0 \to C^2_0, \]
realises C^3_0 as an affine bundle of dimension $n - 1$ over $C^2_0 = \mathbb{P}^{n-1}$.
(iii) Show that π has a section, and that with this section π becomes a vector bundle of rank $n - 1$ over \mathbb{P}^{n-1}.