HWK #2, DUE WEDNESDAY 02/17

Hartshorne: Chapter II, 4.8, 4.9. **Challenge Problem** Chapter II, 4.10.

- 1. Let $X \subset \mathbb{P}_K^n$ be a quasi-projective toric variety. Suppose that the natural morphism $X \longrightarrow \mathbb{P}_K^n$ is a toric morphism (we give \mathbb{P}_K^n the standard structure of a toric variety). Prove that there are binomials F_1, F_2, \ldots, F_p and monomials G_1, G_2, \ldots, G_q , such that $x \in X$ if and only if $F_i(x) = 0$ for every $1 \le i \le p$ and $G_j(x) \ne 0$ for some $1 \le j \le q$. Now suppose that X is projective. Show that X contains the point $[1:1:1:\cdots:1]$ (that is, the identity of the torus) if and only if the corresponding equations can be put in the form monomial equals monomial.
- 2. Suppose that σ is a cone in $N_{\mathbb{R}} = \mathbb{R}^n$ and that u_1, u_2, \ldots, u_m are generators of the semigroup $S_{\sigma} \subset M$. Show that the affine toric variety $U_{\sigma} \subset \mathbb{A}_K^m$ is defined by monomial equations of the form

$$x_1^{a_1} x_2^{a_2} \dots x_m^{a_m} = x_1^{b_1} x_2^{b_2} \dots x_n^{b_n},$$

where

$$\sum a_i u_i = \sum b_i u_i,$$

in S_{σ} .

3. Prove the converse to (1). Suppose that there are binomials F_1, F_2, \ldots, F_p and monomials G_1, G_2, \ldots, G_q , such that $x \in X$ if and only if $F_i(x) = 0$ for every $1 \le i \le p$ and $G_j(x) \ne 0$ for some $1 \le j \le q$. Prove that X is a quasi-projective toric variety and that the natural inclusion is a toric morphism. Give an example to show we cannot drop the normal hypothesis.