
MODEL ANSWERS TO HWK #9

Let X ⊂ Pn be a closed subset, which does not contain the hyperplane
H given by X0 = 0. Suppose that the polynomials Q1, Q2, . . . , Qk have
the following properties:

• they are all homogeneous of the same degree e,
• the polynomials qi = Qi/X

d
0 all have degree e,

• q1, q2, . . . , qk generate the ideal J of U0 ∩X ⊂ An.

Then the polynomials Q1, Q2, . . . , Qk generate the ideal I of X.
Indeed, pick F ∈ I of degree d. As H is not contained in X we may
suppose that F is not divible by X0. If f = F/Xd

0 then f ∈ J . By
assumption we may find f1, f2, . . . , fk such that f =

∑
fiqi. As qi all

have the same degree, we may assume that f1, f2, . . . , fk all have degree
d − e. Let Fi = Xd−e

0 fi, a homogeneous polynomial of degree d − e.
Then F = Xd

0f =
∑
FiQi.

1. Let I0 = (d, 0, 0, . . . , 0). Then the polynomials

qI,J,K,L =
QI,J,K,L

Z2
I0

=
ZIZJ − ZKZL

Z2
I0

,

all have degree 2 and so it suffices to prove that these generate the ideal
of X ∩ U0. But we have already seen that the polynomials

QI,J,K,L,

cut out X set-theoretically. Let zI = ZI/ZI0 . It suffices to check that
the ring

K[zI ]

〈qI,J,K,L〉
,

is an integral domain. But it is easy to check that the morphism given
in class sets an isomorphism of this ring with the coordinate ring of
An.
2. As the polynomials

qijkl =
Qijkl

Z2
00

=
ZijZkl − ZilZjk

Z2
00

,

all have degree 2, it suffices to prove that these generate the ideal of
X ∩ U0. But we have already seen that the polynomials

Qijkl,
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cut out X set-theoretically. Let zij = Zij/Z00. It suffices to check that
the ring

K[zij]

〈qijkl〉
,

is an integral domain. But it is easy to check that the morphism given
in class sets an isomorphism of this ring with the coordinate ring of
Am+n.
2.14. (a) We first show that the intersection of the homogeneous prime
ideals is the set of nilpotent elements of S. Indeed, the intersection
of the homogeneous prime ideals certainly contains all the nilpotent
elements. Suppose s ∈ S is not nilpotent. It remains to find a homoge-
neous prime ideal which does not contain s. As the ideal generated by
the nilpotent elements is homogeneous we may assume that s is homo-
geneous. Pick a maximal homogeneous ideal p which does not contain
s. Then p is a homogeneous prime ideal which does not contain s.
Now ProjS is empty if and only if every homogeneous prime ideal
contains S+. So ProjS is empty if and only if every element of S+ is
nilpotent.
(b) Let a be the homogeneous ideal generated by φ(S+). Then U =
ProjT − V (a) and so U is open. If g ∈ S is homogeneous then
φ : S −→ T induces a ring homomorphism φ(g) : S(g) −→ T(φ(g)). This
defines a morphism SpecT(φ(g)) −→ SpecS(g) whence, by composi-
tion, a morphism SpecT(φ(g)) −→ ProjS. On the other hand, the
sets ProjT − V (φ(g)) form an open cover of U . As these morphisms
are clearly compatible on overlaps, this induces a morphism

f : U −→ X = ProjS.

(c) Suppose that p is a homogeneous prime ideal which contains φ(S+).
Then p contains Td, for all d ≥ d0. Suppose that g ∈ Td, d ≥ 1. Then
gk ∈ Tkd and for k large enough gk ∈ p. But then g ∈ p and p ⊃ T+.
So U = ProjT .
Suppose that g ∈ S is homogeneous of degree d ≥ d0. Consider the
ring homorphism:

φ(g) : S(g) −→ T(φ(g)).

Let h = φ(g). Suppose that b/hk ∈ T(h). Then b ∈ Tdk. Pick a ∈ Sdk
such that φ(a) = b. Then φ(g)(a/g

k) = b/hk and so φ(g) is surjective.
Suppose that a/gk maps to zero, for some k > 0. Then hlφ(a) = 0,
in T(k+l)d and it follows that gla = 0 in S(k+l)d. Thus φ(g) is a ring
isomorphism.
Now suppose that g is any homogeneous element of S. Then gk is also
homogeneous and if k is sufficiently large then gk has degree at least
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d0, and V (g) = V (gk). Thus open sets of the form ProjS − V (g) and
ProjT − V (g) cover ProjS and ProjT , where g has degree at least d0.
It follows that f is an isomorphism.
It remains to find an example of this phenomena. Let S = k[X, Y ]/〈X2, XY, Y 2〉
and let T = k[X, Y ]/〈X, Y 〉. Then there is a natural ring homomor-
phism

φ : S −→ T.

This map is not an isomorphism but φd is a isomorphism of vector
spaces unless d = 1 (indeed it is the zero map between vector spaces
of dimension zero, as soon as d ≥ 2). In fact more generally take any
projective variety X ⊂ Pn, let J = I(X) be the homogeneous ideal of
X and let I be any ideal which cuts out X scheme theoretically. Let
R = k[X0, X1, . . . , Xn], S = R/J and T = R/I.
(d) Suppose that V ⊂ Pn. Then Vi = V ∩Ui forms an open affine cover
of V , where Ui is the standard affine open subset of Pn. Then t(Ui)
forms an open cover of V . We have already seen that t(Ui) = SpecAi,
where Ai is the coordinate ring of Vi. But Ai = S(Xi). It follows that
there is a natural isomorphism

f ′i : t(Ui) −→ Proj(S)− V (Xi),

and by composition we get a morphism,

fi : t(Ui) −→ Proj(S).

As these morphisms are compatible on overlaps, we get a morphism

f : t(V ) −→ Proj(S).

Clearly we may also define a morphism

g : Proj(S) −→ t(V ),

using the same argument. As f and g are inverse morphisms, f is an
isomorphism.
3.11 (a) We first check this in the special case whenX ′ −→ X is an open
immersion. In this case the image of Y ′ is clearly closed, the restricted
morphism is a homeomorphism and surjectivity of OX′ −→ f∗OY ′ is
clear. In particular, it is easy to deduce that f is a closed immersion
if and only if there is a cover by open immersion X ′ −→ X (meaning
simply that X is the union of the images) such that f ′ is a closed
immersion, for every open set of the cover.
So to check the general case, we may assume that X = SpecA is affine.
Let V ⊂ Y be an open affine subset of Y . We may find an open subset
U ⊂ X such that f−1(U) = V . Then we may find a regular function
f on X (or better f ∈ A) such that Uf ⊂ U . Then f−1(Uf ) is an
open affine subset of V . Since Uf cover U , we may assume that X and
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Y = SpecB are both affine. In this case B is a quotient of A. Finally
we may assume that X ′ = SpecA′ is affine. Since B′ = B ⊗

A
A′ is a

quotient of A′, f ′ is indeed a closed immersion.
(b) Pick an open affine cover {Yα} of Y . Then there is an open subset
Xα of X such that Yα = Y ∩Xα. We may find fi such that for every α
there is an index i such that Ufi

⊂ Xα. Then Ufi
∩ Y is an open affine

subset of Y , as it is equal to the locus where the regular function f |Yα
is not zero on the affine scheme Yα. By compactness we may assume
there are only finitely many f1, f2, . . . , fr. f1, f2, . . . , fr generate the
unit ideal as the sets Ufi

are an open affine cover of X. By (2.17.b) Y
is affine. Now apply (2.18.d).
(c) We want to give a morphism of schemes Y −→ Y ′. The map on
topological spaces is simply the identity. Pick an open affine cover of
X. By part (b) this induces an open affine cover of Y and Y ′. On this
affine cover if Y and Y ′ are given by ideals a and a′ in the ring A, then
a is the radical of a′. In particular there is a natural inclusion a ⊂ a′

and so a natural surjection A/a′ −→ A/a which factors A −→ A/a′

and A −→ A/a. This gives us a commutative diagram

Y - Y ′

X.
?

-

These maps automatically glue, by naturality.
(d) We first suppose that X = SpecA is affine. In this case there is a
homomorphism of rings,

A −→ H0(Z,OZ).

Let p be the kernel and let B be the quotient, so that there is a ring
commutative diagram,

A - B

H0(Z,OZ).
?-

Let Y = SpecB. Then, Y is a closed subscheme of X and there is a
commutative diagram

X � Y

Z.

6
�
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Now suppose that there is another commutative diagram,

X � Y ′

Z.

6
�

Then there is an induced map of rings,

A - H0(Y ′,OY ′).

H0(Z,OZ).
?-

By the universal property of the quotient, there is an induced ring
homomorphism,

H0(Y ′,OY ′) −→ B,

and this gives rise to a morhism of schemes Y −→ Y ′.
Now suppose that X is arbitrary. Pick an open affine cover {Ui} of X,
such that Uij is affine. Let Vi be the inverse image of Ui in Xi. Let
gi : Yi −→ X be the affine scheme constructed above. Let Yij = g−1

i (Uj)
be the inverse image of Uj. Then Yij and Yji satisfy the same universal
property and so there are induced isomorphisms φij which satisfy the
cocycle condition. Glueing together the Yi, this defines Y . Y is a closed
subscheme of X and it clearly satisfies the given universal property.
The last property is clear, since both Y and the reduced induced sub-
scheme enjoy the same universal property.
3.12. (a) φ(S+) = φ(T+), as φ is surjective, and so U = ProjT . Now
suppose that g ∈ T is homogeneous. If h = φ(g) ∈ S then

φ(g) : S(h) −→ T(g),

is surjective. Therefore

f(g) : ProjT − V (h) = SpecT(h) −→ ProjS − V (g) = SpecS(g),

is a closed immersion. As open sets of the form ProjS − V (g) cover
ProjS it follows that f is a closed immersion.
(b) We have surjective ring homomorphisms S −→ S/I ′, S −→ S/I
and S/I ′ −→ S/I. This gives rise to closed immersions i : ProjS/I ′ −→
ProjS, j : ProjS/I −→ ProjS and k : ProjS/I −→ ProjS/I ′, such
that j = i ◦ k. k is an isomorphism by (2.14.c) and so i and j are
equivalent closed immersions. By (2.14.d) there are plenty of examples
of this phenomena.
3.13 (a) Let f : X −→ Y be a closed immersion. Suppose that i : U −→
Y is an open immersion, where U is affine. By (3.11.a) the map
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g : V −→ U obtained by pulling back the morphism f along the mor-
phism i is a closed immersion. As U is affine, (3.11.b) implies that V
is affine as well, and the map i is induced by a quotient ring homomor-
phism,

A −→ B = A/a.

B is clearly a finitely generated A-algebra and so f is of finite type.
(b) Let f : X −→ Y be an open immersion. Let U ⊂ X be an affine
open subset of X. Then f(U) is an open affine subset of Y which is
isomorphic to U . It follows that f is locally of finite type and as f is
quasi-compact, it is of finite type.
(c) Let f : X −→ Y and g : Y −→ Z be two morphisms of finite type
and let h : X −→ Z be the composition. Pick an open affine subset
W = SpecC of Z. By (3.3.b) we may find a finite open affine cover
Vi = SpecBi of g−1(W ) such that Bi is a finitely generated C-algebra.
For each Vi, we may find a finite open affine cover Uij = SpecAij of
f−1(Vi), such that Cij is a finitely generated Bi-algebra.
But then Uij = SpecAij is a finite open affine cover of h−1(W ) where
Aij is a finitely generated C-algebra. Therefore h is of finite type.
(d) Let f : X −→ Y be a morphism of finite type and let Y ′ −→ Y be
a morphism. Let f ′ : X ′ −→ Y ′ be the induced morphism, where X ′ is
the fibre product of X and Y ′ over Y . We want to prove that f ′ is of
finite type. Let V = SpecB be an open subset of Y . Then there is a
finite open affine cover Ui = SpecAi of f−1(V ), where Ai is a finitely
generated B-algebra.
(e) By part (d) X ×

S
Y −→ Y is of finite type. But then the morphism

X ×
S
Y −→ S is of finite type, as it is a composition of morphisms of

finite type.
(f) Let W = SpecC be an affine open subset of Z. By assumption
(g ◦ f)−1(W ) can be covered by affine open subsets U = SpecA of X,
where A is a finitely generated C-algebra. Pick an affine open subset
V = SpecB of g−1(W ). Then we can cover f−1(V )∩U with affine open
subsets of the form SpecAh, where h is a regular function on U . As
Ah is a finitely generated C-algebra it is a finitely generated B-algebra.
But then f is locally of finite type and as f is compact, it is of finite
type.
(g) Let V = SpecB be an affine subset of Y . Then f−1(V ) is a finite
union of affine sets of the form U = SpecA, where A is a finitely
generated B-algebra. As B is Noetherian, A is Noetherian and so X
is Noetherian.
3.15 We first make some general observations that apply to both parts
(a) and (b).
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Suppose that X is of finite type over a field k. Then X has a finite
cover Ui = SpecAi by open affines, where Ai is a finitely generated
k-algebra. If Ui and Uj don’t intersect then Ui ∪ Uj = SpecAi ⊕ Aj is
affine. So we may assume that Ui ∩ Uj is non-empty. But then X is
irreducible or reduced if and only if Ui is irreducible or reduced, for all
i.
If K/k is any field extension, then Y = X ×

Spec k
SpecK is covered by

open affines of the form Vi = SpecBi = SpecAi ⊗
k
K. As Ui ∩ Uj is

non-empty, so is Vi ∩ Vj. Thus Y is irreducible or reduced if and only
if Vi is irreducible or reduced for all i.
So we might as well assume that X = SpecA is affine. If X is non-
reduced or reducible then so is Y = SpecB. So we may assume that X
is integral and Y is not integral, and we may assume that K contains
the algebraic closure of k. As A is a finitely generated k-algebra, it is
a quotient of a polynomial ring k[x1, x2, . . . , xn] by an ideal p, which
is prime, as A is an integral domain. By assumption there are f(x)
and g(x) in K[x1, x2, . . . , xn], neither of which belong to q, the ideal
generated by p, whose product does belong to q. Suppose that f has
degree d and g has degree e.
Now suppose that W ⊂ Am

k is a quasi-projective scheme, defined by the
vanishing of F1, F2, . . . , Fr and the non-vansihing of G1, G2, . . . , Gs. We
now introduce some convenient notation (which happily is also quite
standard). Given a ring R/k, let W (R) denote the set of all maps
SpecR −→ W (any such is called an R-valued point of W ; Yoneda’s
Lemma pretty much says that we can recover W from the data of all
of these sets, for all such rings R). Note that W (K) is simply the
set of points (a1, a2, . . . , am) with coordinates in K which satisfy the
polynomials F1, F2, . . . , Fr but not the polynomials G1, G2, . . . , Gs.
Suppose that W (K) is non-empty, for some field extension K/k. I
claim that this implies that W (k̄) is non-empty. The proof proceeds by
induction on m. The case m = 1 is almost the definition of algebraically
closed. Pick a point p of Am

k (k). We may assume that p /∈ W (k) (else
there is nothing to prove). The image W ′ of W is a constructible
subset of Am−1. By induction on m, W ′(k̄) is non-empty. Pick a point
q ∈ W ′(k̄) and let l be the line connecting p to q. Then l is defined by
linear polynomials with coefficients in k̄. (l ∩W )(K) has a point and
so W (k̄) has a point (which lies on the line l).
Now suppose that W (k̄) is non-empty. Pick a point (a1, a2, . . . , am) ∈
W (k̄). Let k′ be the field generated by a1, a2, . . . , am. Then k′/k is a
finitely generated field extension which is finite as k′/k is algebraic.
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(a) Suppose that B = A⊗
k
K is not an integral domain even though it

does not have any nilpotents. It follows that there are polynomials f
and g ∈ K[x1, x2, . . . , xn] whose images in B are non-zero, but whose
product is zero. By assumption there are also points p and q ∈ X(K)
such that f does not vanish at x and g does not vanish at y. We may
assume that p and q belong to X(k̄). Suppose that the degree of f is
d and the degree of g is e.
The space of all polynomials of degree d with coefficients in k is natu-
rally identified with an affine space Pd ' Ak (of dimension a function
of d). Now multiplication of polynomials defines a function

Am
k = Pd × Pe −→ Pd+e,

for some appropriate m, which is easily seen to be a morphism. The
locus W of polynomials f and g which do not lie in the affine space
corresponding to p but whose product does lie in the third, such that
f does not vanish at x and g does not vanish at y, is defined by the
vanishing of some polynomials F1, F2, . . . , Fr and the non-vanishing of
G1, G2, . . . , Gs. By assumption W (K) is non-empty. But then W (k̄) is
non-empty.
In fact we know that W (k′) is non-empty, for some finite extension
k′/k and we may assume that x and y belong to X(k′). By induction
on the order of the extension, we may assume that k′ = k1(α), where
αp ∈ k1 and p is the characteristic of k. Pick a point (f, g) ∈ W (k′),
where f and g are polynomials with coefficients in k′. Then fp and
gp have coefficients in k1. Let x′ = (x′1, x

′
2, . . . , x

′
m) ∈ W (k1), where

x′i = xpi . Then

fp(x′) = (f(x))p 6= 0.

Define y′ similiarly. Then X1 = X ×
Spec k

Spec k1 is reducible and this

completes the induction.
(b) If B has nilpotents even though A is integral then we may find
f ∈ K[x1, x2, . . . , xn] such that f e = 0 in B. Suppose that f has
degree d. Consider the morphism

Pd −→ Pde,

induced by raising to the power e. Let W be the locus consistng of
polynomials f which don’t belong p but whose image does. W (K) is
non-empty by assumption. But then W (k̄) is non-empty.
As before, this implies that W (k′) is non-empty, for some finite exten-
sion k′/k. We may split this extension into two parts, k′/k1 and k1/k,
where k1 ⊂ kp is a purely inseparable extension of k, and k′/k1 is sepa-
rable. Passing to the normal closure of k′, we may assume that k′/k1 is
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Galois. Let f1 ∈ W (k′) and let f1, f2, . . . , fk be the Galois conjugates
of f1. Then their product f ∈ W (k1). By part (a), X1 = X ×

Spec k
Spec k1

is irreducible, so that f is non-zero. But then f is nilpotent.
(c) Consider Spec k(t)[x]/〈x6 − t〉, where k = F2. As x6 − t ∈ k(t)[x]
is irreducible, this scheme is integral. But if we replace t by t6 (equiv-
alently, we adjoin a root of x6 − t) then x3 − t3 is a non-zero global
section which squares to zero and x3 − t3 factors non-trivially, so that
Spec k(t)[x]/〈x6 − t6〉 is neither reduced nor irreducible.
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