
MODEL ANSWERS TO HWK #8

2.16. (a) Suppose that x ∈ U . As U is open,

OU,x ' OX,x,

and the rest is clear.
(b) As X is compact there is an open cover {U1, U2, . . . , Uk} of X by
finitely many affines. By our answer to part (a), Xf ∩ Ui = Ufi

, where
fi is the restriction of f to Ui. As a is zero on Xf , its restriction ai to
Ufi

is zero. As Ui = SpecAi is affine, it follows that Ufi
= Spec(Ai)fi

.
In particular fni

i ai = 0, for some ni ∈ N. As we have a finite cover,
we may assume that n = ni is independent of i. We may also assume
n > 0. Since the restriction of fna ∈ Γ(X,OX) to each set Ui of the
open cover {U1, U2, . . . , Uk} is zero, it follows that fna is zero.
(c) Let bi be the restriction of b to Ui and let fi be the restriction of
f to Ui. As Ui is affine and Xf ∩ Ui = Ufi

by part (a), we may lift
fni
i bi to ci on Ui. Now ci − cj restricts to zero on Uij ∩Xf . As we are

assuming that Uij is compact, it follows that ci − cj resricts to zero on
the whole of Uij, by our answer to part (b). But then there is a section
c on the whole of X which restricts to ci on Ui. The axioms for a sheaf
also imply that c is a lift of fnb.
(d) Note first that X is compact as it has a finite cover by open affines,
which are always compact.
Consider the natural restriction map

A = Γ(X,OX) −→ Γ(Xf ,OXf
).

As f is sent to a unit, there is a natural map

Af −→ Γ(Xf ,OXf
).

The answer to part (b) proves that this map is injective and the answer
to part (c) that it is surjective. Hence this map is an isomorphism.
2.17 (a) The map on topological spaces is surely a homeomorphism
under these circumstances. It suffices, then, to check that the map on
structure sheaves is an isomorphism. As this may be checked on stalks,
the result follows.
(b) If X is affine, just take r = f = 1.
Otherwise suppose that we have f1, f2, . . . , fr such that Ufi

is affine,
where f1, f2, . . . , fr generate the unit ideal. Let Y = SpecA. By (2.4)
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there is a morphism

f : X −→ Y,

induced by the identity map A −→ A. Let Vfi
be the open affine subset

of Y where fi is not zero. Then f−1(Vfi
) = Ufi

and both sets are affine.
By our answer to (2.16.d), they are both isomorphic to SpecAfi

and the
induced map on Afi

is the identity. So the morphism f is certainly an
isomorphism over the open subset Vfi

. But since f1, f2, . . . , fr generate
the unit ideal, these sets cover X and we are done by part (a).
Before we prove the next exercises, we recall a result that was proved
implicitly in the lectures. Suppose that X is a scheme and that U =
SpecA and V = SpecB are two affine schemes. Then U ∩V be covered
by finitely many affine schemes which are simultaneously isomorphic
to Ug and Vh, where g ∈ A and h ∈ B.
3.1 It suffices to prove that f−1(V ) is covered by open affines U =
SpecA such that A is a finitely generated B-algebra. By the obser-
vation above we may assume that Y = V = SpecB and that we can
cover Y by finitely many open affine subsets Vi = Ufi

, where f−1(Vi)
can be covered by open affines which are the spectra of finitely gener-
ated Bhi

-algebras. For each i, pick Ui = SpecAi lying over Vi where Ai
is a finitely generated Bi-algebra.
Let U be the union of U1, U2, . . . , Uk. As sets of this form cover f−1(Y )
it suffices to prove that U is an open affine which is the spectrum of a
finitely generated B-algebra. It is clear that U is open.
Let gi be the image of fi in A = Γ(U,OU). Then Ui is the locus where
gi is not equal to zero. g1, g2, . . . , gk generate the unit ideal of A, as
f1, f2, . . . , fk generate the unit ideal of B. It follows by (2.17), that U
is affine and it suffices to prove that A is a finitely generated B-algebra.
So now we are reduced to the following problem in algebra. Let B be an
A-algebra, and let f1, f2, . . . , fk generate the unit ideal. Suppose that
gi is the image of fi and suppose that Ai = Agi

is a finitely generated
Bi = Bfi

-algebra. Then A is a finitely generated B-algebra.
We now prove this result in commutative algebra. To this end, pick
generators ci1, ci2, . . . , cili of Ai over Bi. Then each cij has the form
aij/g

n
i , where we may assume that n is constant, as we have only finitely

many indices. I claim that aij, for every i and j, generates A over B.
Pick a ∈ A. Then if φi : A −→ Ai is the natural map, we have

φi(a) = p(cij),

for some for some polynomial p, with coefficients in Bi. Clearing de-
nominators, we then have

gNi a = q(aij),
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for some polynomial q, with coefficients in Ai. We may write∑
hig

N
i = 1,

for some hi. But then

a =
∑

hig
N
i a,

=
∑

hi

(∑
j

q(aij)

)
,

as required.
3.2 The key observation is that a scheme is compact iff it is the finite
union of affine subschemes. Indeed, if X is a scheme, then it is union
of open affine subschemes, and if X is compact, then finitely many
cover. Conversely, any affine scheme is compact, and the finite union
of compact sets is always compact.
So now suppose that f : X −→ Y is a compact morphism, and let V be
an affine subset. Using the argument just before (3.1) we may assume
that Y = V . Let Vi be an open affine cover of Y such that f−1(Vi) is
compact. As Y is affine we may assume that this cover is finite. But
then f−1(Y ) is compact, as it is a finite union of compact subsets.
3.3 (a) Clear, from the first paragraph of 3.2.
(b) Simply apply 3.1 and 3.2.
(c) By now standard tricks, we can reduce this problem to showing
that if a B-algebra A contains elements f1, f2, . . . , fk which generate
the unit ideal and Afi

is a finitely generated B-algebra, then so is A.
But this is easily implied by part of the proof of 3.1.
3.4 Follows almost exactly the same proof as 3.1, and 3.3 (c). We
are reduced to proving that if A is a B-algebra and f1, f2, . . . , fk are
elements of B which generate the unit ideal, such that Ai = Agi

is a
finitely generated Bi = Bfi

-module, where gi is the image of fi, then
A is a finitely generated B-module.
Repeating the argument given in (3.1), we are given aij ∈ A whose
images cij under φi generate Ai as a Bi-module. As before this implies
that

gNi a =
∑
j

bijaij,

for some bij ∈ B. It is then easy to see that we may write a as a linear
combination of aij, so that the aij generate A as a B-module.
3.6 Let U = SpecA be any open affine subscheme. Then ξ ∈ U and so
ξ corresponds to a prime ideal of A, which is the the zero ideal. But
then

OX,ξ ' A〈0〉 = K,
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where K is the field of fractions of A.
3.8 We have to check the patching condition. Suppose that U = SpecA
and V = SpecB are two affine open subschemes of X. Let Ũ = Spec Ã
and Ṽ = Spec B̃. We have to exhibit a canonical isomorphism

φ : U ′ −→ V ′,

where U ′ is the inverse image of U ∩V in Ũ and V ′ is the inverse image
of U ∩ V in Ṽ .
Since it suffices to construct a canonical morphism on an open cover,
we may assume that U and V are open affines of a common affine
scheme W = SpecC and that A = Cf and B = Cg, where f and g

belong to C. It suffices to check that if Ã is the integral closure of A,
then Ãf is the integral closure of Af . It is clear that any element of

Ãf is integral over Af . Indeed if a/fk ∈ Ãf , where a ∈ Ã satisfies the
monic polynomial

xn + an−1x
n + · · ·+ a0 ∈ A[x],

then a/fk satisfies the monic polynomial

xn + bn−1x
n−1 + · · ·+ b0 ∈ B[x],

where bi = ai/f
k(n−i). On the other hand if u belong to the integral

closure of Af , then u is a root of a monic polynomial

xn + bn−1x
n−1 + · · ·+ b0,

where each bi ∈ Af . Clearing denominators, it follows that a = f lu ∈
Ã, for an appropriate power of f . Hence Ãf is the integral closure of
Af .

Thus one can glue the schemes Ũ together to get a scheme X̃. The
inclusion A −→ Ã induces a morphism of schemes Ũ −→ U , whence a
morphism of schemes Ũ −→ X. Arguing as before, these morphisms
agree on overlaps. It follows that there is an induced morphism X̃ −→
X.
Now suppose that there is a dominant morphism of schemes Z −→ X,
where Z is normal. This induces a dominant morphism ZU −→ U ,
where U is an open affine subscheme and ZU is the inverse image of U
Thus it suffices to prove the universal property of X in the case when
X is affine. Covering Z by open affines, it suffices to prove this result
when Z is affine. Using the equivalence of categories, we are reduced to
proving that if A −→ Ã is the inclusion of A inside its integral closure,
and A −→ B is a ring homomorphism, where B is integrally closed,
then there is a ring homomorphism Ã −→ B. Clearly there is such a
morphism into the field of fractions L of B. On the other hand, any
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element of the image is obviously integral over the image of A, and so
integral over B. But then the image of Ã lies in B, as B is integrally
closed.
Suppose that X is of finite type. Clearly we may assume that X =
SpecA is affine. We are reducing to showing that the integral closure
Ã of a finitely generated k-algebra A, is a finitely generated A-module.
But this was proved in the lectures.
3.9 (a)

A2
k = Spec k[x, y] = Spec(k[x]⊗

k
k[y]) = A1

k ×
k

A1
k.

The points of A1
k consist of the maximal ideals ma and the generic point

ξ. The points of the product of sets are then ordered pairs (ma,mb),
with closure {(ma,mb)}, (ma, ξ), with closure

{ (ma,mb) | b ∈ k } ∪ {(ma, ξ)},
(ξ,mb) with closure

{ (ma,mb) | a ∈ k } ∪ {(ξ,mb)},
and (ξ, ξ), whose closure is the whole space. Let η = (xy− 1). Then η
is a prime ideal, whose closure is the set

{ (ma,mb) | ab = 1 } ∪ {η}.
Thus η is not a point of the product of the two sets.
(b) We have

X = Spec k(s) ×
Spec k

Spec k(t) = Spec(k(s)⊗
k
k(t)).

Note however that
k(s)⊗

k
k(t) 6= k(s, t).

The LHS is the localisation of the polynomial ring k[s, t] at the multi-
plicative set S generated by the irreducible polynomials in s and the
irreducible polynomials in t. A typical element of the LHS is of the
form

f(s, t)

g(s)h(t)
,

where f(s, t) is a polynomial in s and t, g(s) is a polynomial in s and
h(t) is a polynomial in t.
Let us try to interpret this geometrically. For ease of notation and to
make it clearer what is going on, let’s suppose that k is algebraically
closed. This assumption makes no material difference to the answer.
Since we are working with a localisation of k[s, t] we expect to obtain
X from A2

k by throwing away some points. Let us first consider the
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maximal ideals. These are of the form 〈s − a, t − b〉. Since we invert
every polynomial in s and t, these ideals become the unit ideal in
k[s, t]S. Furthermore any ideal of the form 〈s − a〉 or 〈t − b〉 becomes
the unit ideal as well. So we obtain X from A2

k by throwing away all
of the maximal ideals, that is all the closed points, and all ideals of the
form 〈s − a〉 or 〈t − b〉, that is all horizontal and vertical lines. What
remains is the generic point and points corresponding to irreducible
curves in A2

k, other than horizontal or vertical lines. In fact X is in
some respects very much like a curve (one generic point and infinitely
many closed points).
Note one key point about this example. k(t) is not a finitely generated
k-algebra, so that Spec k(t) −→ Spec k is not a morphism of finite type.
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