
MODEL ANSWERS TO HWK #7

2.1 By the universal property of the localisation there is a ring homo-
morphism

φ : A −→ Af .

Since we have an equivalence of categories between the category of
rings and affine schemes, this induces a morphism of schemes

(g, g#) : SpecAf −→ SpecA = (X,OX).

Given q / Af , a prime ideal of Af , g(q) = φ−1(q) is a prime ideal of A
which does not contain f . Thus we get an induced morphism

(g, g#) : SpecAf −→ (Uf ,OUf
= OX |Uf

),

and it suffices to prove that this morphism is an isomorphism.
We first show that g is a homeomorphism. Now a prime ideal of q /Af

gives rise to a surjective ring homomorphism Af −→ B, whereB = A/q
is an integral domain. Composing, we get a surjective ring homomor-
phism A −→ B, and the kernel is a prime ideal p = g(q) = q∩A, which
does not contain f . Conversely, a prime ideal of p / A not containing
f gives rise to a surjective ring homomorphism A −→ B, where B is
an integral domain and the image f ′ of f is not zero. Composing with
the localisation map B −→ Bf ′ we get a ring homomorphism with the
same kernel, and the image of f is invertible. This gives us a surjec-
tive ring homomorphism Af −→ Bf ′ by the universal property of the
localisation, and the kernel q = pAf is a prime ideal of Af . It follows
that g is a bijection.
On the other hand

p ∈ V (a)⇔ a ⊂ p

⇔ aAf ⊂ pAf

⇔ pAf ∈ V (aAf ).

Thus g is a homeomorphism.
To see that g# is an isomorphism, it suffices to check that it is an
isomorphism stalk by stalk. If p / A is any prime ideal and a /∈ p then
the image of a in (Af )q is a unit, where q = g−1(p). It follows that
there is a natural ring homomorphism

g#
p : OUf ,p = OX,p ' Ap −→ (Af )q ' OSpec Af ,q,
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To check that this ring homomorphism is an isomorphism, it suffices to
check that (Af )q satisfies the same universal property as Aq. Compos-
ing with φ, we get a ring homomorphism A −→ (Af )q. Every element
not in p is sent to a unit and it is strightforward to check that (Af )q

satisfies the universal property of the localisation.
2.2 The pair (U,OU = OX |U) is surely a locally ringed space, as the
stalks of OX and OU are the same. It suffices to prove that locally this
pair is isomorphic to an affine scheme. To this end, we may assume
that X = SpecA. Since open sets of the form Uf , f ∈ A form a base
for the topology, and these open sets are affine by (2.1), it suffices to
observe that

(Uf ,OX |Uf
) ' (Uf ,OU |Uf

),

for any open set Uf ⊂ U .
2.3 (a) Suppose that the stalk OX,p contains a non-zero element f =
(g, U) which is nilpotent. Since fn = 0, possibly making U smaller,
we may assume that gn = 0, but g 6= 0. But then OX(U) contains a
nilpotent element.
Conversely, if g ∈ OX(U) is nilpotent then pick a point p ∈ U such
that g 6= 0 ∈ OX,p. Then f = (g, U) ∈ OX,p is also nilpotent.
(b) Clearly the pair (X,OXred

) is a locally ringed space, and so it suffices
to prove that locally it is isomorphic to an affine scheme. To this
end, we may assume that X = SpecA is affine. Note that there is a
surjective ring homomorphism,

φ : A −→ B,

where B is the quotient of A by the intersection of all the prime ideals,
which is nothing but the set of all nilpotent elements of A. Since we
have an equivalence of categories, this induces a morphism

(h, h#) : SpecB −→ X = SpecA.

This induces a morphism of sheaves, between the structure sheaf of
SpecB and OXred

, which is an isomorphism, since it is an isomorphism
stalk by stalk.
(c) It suffices to prove this locally on X and Y . Thus we may assume
that X = SpecB and Y = SpecA are both affine schemes. There is an
induced ring homomorphism φ : A −→ B. By assumption B contains
no nilpotents, thus the kernel of φ contains the nilpotent elements
I / A, and there is a natural ring homomorphism C −→ B, where
C = A/I. By (b) Yred = SpecC and it is clear that the induced
morphism X −→ Yred has the given universal property.
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2.4 Let V = SpecA. We first check that α is injective. Since we can
check this locally, we may assume that X = SpecB is affine, in which
case we have already shown in lectures that α is bijective.
Now suppose that we are given a ring homomorphism φ : A −→ B =
Γ(X,OX). Let Ui = SpecBi be an open affine cover of X. Then
there are natural ring homomorphisms B −→ Bi, given by restriction
of sections. Composing we get ring homomorphisms A −→ Bi and so
get morphisms of schemes Ui −→ V . To show that we get a morphism
X −→ V it suffices to show that we get the same morphism on Uij. But
the two ways to get morphisms Uij −→ X both induce the same ring
homomorphism A −→ Bij, where Bij = Γ(Uij,OX

), since both homo-
morphisms are the composition of φ and the homomorphism B −→ Bij

given by restriction. It follows that the two morphisms are the same,
by what we already proved. Hence α is surjective.
2.5 The points of Spec Z are the ideals generated by the prime numbers,
which are closed points, together with the zero ideal, which is the
generic point. The proper closed sets correspond to finite unions of
prime numbers.
Since Z is an initial object in the category of rings Spec Z is a terminal
object in the category of affine schemes. Since every scheme is locally
an affine scheme, it follows that Spec Z is a terminal object in the
category of schemes.
2.7 Since K is a field, it has a unique prime ideal, and so SpecK
certainly has only one point, and the structure sheaf is represented by
K itself. To give a morphism of SpecK to X, we certainly have to pick
out a point x ∈ X. But then, by definition of a scheme, there is an
induced morphism of local rings,

OX,x −→ K.

But this is equivalent to a ring homomorphism, which sends the maxi-
mal ideal mx to zero, which in turn is equivalent to giving an inclusion
of the residue field of x into K.
2.9 Let Z be an irreducible closed subset. Pick an affine open subset U
of X which intersects Z. Then V = U ∩Z is a dense open affine subset
of Z. Now V = SpecB, for some ring B. The nilpotent elements of B
form a prime ideal. Let ξ ∈ V be the corresponding point. Then {ξ}
is dense in V so that it is dense in Z.
Now suppose that both ξ′ is dense in Z. Then ξ′ ∈ U and so ξ′ = ξ,
the ideal of all nilpotent elements.
2.11 The maximal ideals in Fp[x] are of the form 〈f〉, where f is ir-
reducible. The only other ideal is the zero ideal. The proper closed
subsets are finite unions of ideals of the first kind. The residue field is
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a finite extension of Fp in the first case and otherwise it is Fp(x). There
is one point with this residue field. If q = pr then the number of points
with this residue field is the number of monic irreducible polynomi-
als of degree r. Now the elements of Fq are the roots of the equation
Xq−X. The primitive q−1th roots of unity are precisely the elements
which generate Fq and their minimal polynomial must be monic and
irreducible of degree r. The number of primitive q−1th roots is φ(q−1)
and so the number of points with residue field isomorphic to Fq is

φ(q − 1)

r
.

2.13 (a) Suppose that X is Noetherian and let U be an open subset.
Then U is Noetherian. But every Noetherian topological space is com-
pact. Indeed if {Ui} is an open cover of U , then consider all finite
unions of elements UI . If none of these is Lall of U then we can find
an infinite increasing sequence of these, that is we can find an infinite
decreasing sequence of closed sets.
Now suppose that every open subset is compact. Let

F1 ⊃ F2 ⊃ F2, . . . ,

be a decresing sequence of closed subsets. Let F be their intersection
and let U be the complement of X. Then Ui = U −Fi is an increasing
sequence of open subsets of U , whose union is the whole of U . As U
is compact, there is an index i such that U = Ui and so the sequence
stabilises at Fi.
(b) Suppose that X = SpecA. Let {Ui} be an open cover of X. Since
open sets of the form Uf are a base for the topology, we may assume
that Ui = Ufi

, for some fi ∈ A. It is proved in the lectures that then a
finite set of the Ui cover X.
(c) Suppose that X = SpecA. A decreasing sequence of closed subsets
corresponds to an increasing sequence of ideals in A. By assumption
the set of ideals satisfies ACC so that the set of closed subsets satisfies
DCC.
(d) The difference between R being Noetherian and SpecR being Noe-
therian is that the first says that the set of ideals satisfies ACC and
the second says that the set of radical ideals satisfies ACC. So we want
a ring with lots of ideals but not many radical ideals.
Let I be the ideal generated by x1−x2

2, x2−x2
3, . . . , inside the polyno-

mial ring k[x1, x2, . . .] localised at the ideal generated by x1, x2, . . . and
let R be the quotient ring. Then every element of R is equivalent to a
polynomial in xn, for some n and so every element of R is equivalent
to a unit multiplied by a power of xn. So the only non-trivial radical
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ideal is the ideal containing x1, x2, . . .. But the sequence of ideals

〈x1〉 ⊂ 〈x2〉 . . . ,
is an increasing sequence of ideals.
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