1. If G is a group, then let C be the category with one object \ast, such that $\text{Hom}(\ast, \ast) = G$, with composition of morphisms given by the group law in G. Then the identity in G plays the role of the identity morphism, the associative law in G gives associativity of composition, and the existence of inverses in G makes every morphism an isomorphism, and conversely.

2. Suppose that U maps to both W and Z over Y. Then U maps to both W and Z over X, as f is a monomorphism. But then there is a unique morphism to $W \times^X Z$ by the universal property of the fibre product. But then $W \times^X Z$ satisfies the universal property of the fibre product over Y and we are done by uniqueness of the fibre product.

3. (i) Clear.

(ii) The equaliser of f_1 and f_2: $X \rightarrow Y$ is the set
\[\{ x \in X \mid f_1(x) = f_2(x) \} \]
together with its natural inclusion into X.

(iii) Suppose that C admits equalisers. Let $f: X \rightarrow B$ and $g: Y \rightarrow B$ be two morphisms. Then there are two morphisms $p: X \times Y \rightarrow B$ (respectively q), the composition of projection down to X (respectively Y) and then f (respectively g) as appropriate. Let E be the equaliser of p and q. Then E maps to $X \times Y$, whence it maps to X and Y, via either projection, and these two morphisms become equal when composed with f and g. Now suppose that Z maps to both X and Y over B. Then it maps to $X \times Y$, and composing with projection down to X or Y and then f or g as appropriate. It follows that Z maps to E, by the universal property of the equaliser. But then E satisfies the universal property of the fibre product.

Now suppose that C admits fibre products. If f and $g: X \rightarrow Y$ are two morphisms, then we get a morphism $X \rightarrow Y \times Y$, by definition of the product. Note that there is also a morphism $\delta: Y \rightarrow Y \times Y$ induced by the identity on both factors. Let $E = X \times_{Y \times Y} X$. Then E maps to X and composing this map with either f or g is the same. Suppose that Z maps to X, such that the composition with f or g is the same. Then Z maps to X and its maps to Y over $Y \times Y$. So Z maps to E, by the universal property of the fibre product. But then E satisfies the universal property of the equaliser.
(iv) Let \mathcal{C} be the category with one object and two morphisms. Then nothing equalises the two morphisms, but fibre products do exist. Indeed if the two morphisms are f and $g: X \to X$, then given any half of square, one can always fill it in with X at the top, selecting f and g as appropriate to go on the two edges.

4. (i) Sketched in the lecture notes.

(ii) Let I be an object of \mathbb{I}. By definition of α, we are given a morphism $\alpha(I): F(I) \to G(I)$. Since $\lim_{\mathbb{I}} G$ is a prelimit, there are morphisms $\lim_{\mathbb{I}} G(I) \to \lim_{\mathbb{I}} G$. Composing, it follows that there are morphisms $\lim_{\mathbb{I}} F(I) \to \lim_{\mathbb{I}} G$. One can check easily that the construction of these morphisms is functorial with respect to morphisms $I \to J$ in \mathbb{I}.

By the universal property of the limit $\lim_{\mathbb{I}} F$, there is then a morphism $\lim_{\mathbb{I}} F \to \lim_{\mathbb{I}} G$.

The rest is tedious checking.

(iii) Suppose we are given morphisms from T to W and X over Z. By composition, we are then given morphisms from T to W and Y over Z. By the universal property of the fibre product, there is then a unique morphism $T \to Y \times_Z W$. So now we have morphisms from T to X and $Y \times W$ over Y. By the universal property of the fibre product, there is then a unique morphism $T \to X \times (Y \times W)$. So $X \times (Y \times W)$ satisfies the universal property of the fibre product. Alternatively one can proceed as follows. Let \mathbb{I} be the category defining the fibre product. Let F be the functor associated to W, Y and Z and let G be the functor associated to W, X and Z. Then there is a natural transformation $\alpha: G \to F$. It associates to the three objects of \mathbb{I} the obvious maps $W \to W$, $X \to Y$ and $Z \to Z$. The isomorphism we are looking for is then given by

$$\lim (\alpha): \lim_{\mathbb{I}} F \to \lim_{\mathbb{I}} G.$$

5. Suppose that we are given a natural transformation $u: h_Y \to h_{Y'}$. Then we get a function $u_Y: h_Y(Y) \to h_{Y'}(Y)$. Let $\phi = u_Y(i_Y) \in h_{Y'}(Y)$. Then $\phi: Y \to Y'$ is a morphism.

It suffices to show that $u = h(\phi)$. If X is an object of \mathcal{C} then we get a function $u_X: h_Y(X) \to h_{Y'}(X)$. Pick $f \in h_Y(X)$. Since u is a natural
transformation we get a commutative square

\[
\begin{array}{c}
Y \\ h_Y \downarrow \\
X \\ h_Y(X) \xrightarrow{u_X} h_Y'(X)
\end{array}
\]

Consider starting at the top left hand corner, with the morphism \(i_Y \). Going to the right and then down, we get \(f \circ \phi \). Going down and then to the right, we get \(u_X(f) \). Thus \(u_X(f) = f \circ \phi = h(\phi) \). Since \(f \) and \(X \) were arbitrary, the result follows.