
MODEL ANSWERS TO HWK #2

1. Note that it suffices to prove that there is exactly one orbit of
PGL(n + 1) on the set of n + 2 points in linear general position, and
that the stabiliser of any point is trivial. In other words, we can fix the
set of points q1, q2, . . . , qn+2 and show that we can bring any other set
of points p1, p2, . . . , pn+2 to these points.
Now n+ 2 points in Pn correspond to n+ 2 vectors in the vector space
Kn+1. Now any set of n+1 points in linear general position corresponds
to a set of n+ 1 vectors which are linearly independent. Thus the first
n + 1 vectors are a basis of Kn+1. It follows that there is always an
element of φ ∈ PGL(n + 1, K) carrying the first n + 1 points to the
standard set of n+ 1 points, given by the standard basis.
In other words we choose

q0 = [1 : 0 : . . . 0], q1 = [0 : 1 : . . . 0], . . . qn = [0 : 0 : . . . 0 : 1].

With this choice, the condition that qn+1 is independent is equivalent
to the condition that none of its coordinates is zero. It is natural then
to choose qn+1 = [1 : 1 : · · · : 1]. By assumption pi = qi, i ≤ n and
by the same token as before, every coordinate of pn+1 is non-zero. Let
A be a diagonal matrix, with non-zero determinant. Note that A fixes
q0, q1, . . . , qn. On the other hand if we pick the (i, i) entry to be the
reciprocal of the ith entry of pn+1, then we bring the point pn+1 to the
point qn+1.
It remains to check that the stabiliser of the n+2 points q0, q1, . . . , qn+1

is trivial. Now the matrix A fixes the point p = [v] iff v is an eigenvalue
of A. But the only diagonal matrix which also fixes the last point is
clearly a scalar matrix, which is equivalent to the identity matrix.
2. Let A be the corresponding matrix. Then A is classified up to
conjugacy by its Jordan normal form. There are then three possibilities,

(1) A has two independent eigenvectors, with the same eigenvalue.
(2) A has two independent eigenvectors, with distinct eigenvalues.
(3) A has only one eigenvector.

In the first case, A is a scalar matrix. In this case φ is the identity
map. In the second case, A is a diagonal matrix. In this case, we may
always assume that the second eigenvector is one. It follows that φ
has the form φ(z) = az, where a is neither zero or one. Finally, in the
case where A has a repeated eigenvalue, we may assume that A has
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the form (
λ 1
0 λ

)
Rescaling, we get a matrix with ones on the diagonal. This is a matrix
with one eigenvector with eigenvalue one. In this case, it must be
conjugate to the matrix above, but now with λ = 1. In this case
φ(z) = z + 1.
3. This is not hard however you do it, but it is almost completely
trivial using the determinental description of the twisted cubic.
4. (a) Consider the matrix

M =

(
X Y Z
Y Z W

)
.

We know that the points of the twisted cubic are precisely the points
where this matrix has rank one. The minors correspond to the given
quadratic polynomials. Suppose that we pick two of the three 2 × 2
minors. Then one column will belong to both minors.
By symmetry we may suppose that it is the first column. Now if both
X and Y are non-zero, then Y is a non-zero multiple of X and by
vanishing of the two minors, Y and Z and Z and W stand in the same
relation. But then the first row is a multiple of the second and M is a
matrix of rank one.
If X = 0 then the only way the first 2 × 2 minor is zero, is if Y = 0
as well. Thus we may as well assume that Y = 0. If X 6= 0 then both
W and Z are zero, a point of the twisted cubic. Thus we may assume
that X = Y = 0. In this case, clearly both 2 × 2 minors that contain
the first column are zero, and the locus X = Y = 0 is a line. This line
meets the cubic in one point, a tangent line.
(b) Now consider the matrix

A =

λ0 −λ1 λ2

Z0 Z1 Z2

Z1 Z2 Z3

 .

Expanding the determinant of A about the top row, we get the given
linear combination of quadratic polynomials. Similarly for the matrix
B,

B =

µ0 −µ1 µ2

Z0 Z1 Z2

Z1 Z2 Z3

 .

Now the fact that the first determinant is zero implies that the row
space of the first matrix is at most two dimensional. Similarly for the
second matrix. Now suppose that we have a point of projective space
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that is common to the locus where A and B have rank at most two,
but not a point of C. In this case the rank of M is two, and so the row
rank of A and B is exactly two. It follows that the row spaces of A
and B are equal and so spanned by the first two rows of each. Indeed
both are in the row space, and they are independent by assumption.
It follows that the matrices

C =

λ0 −λ1 λ2

µ0 −µ1 µ2

Z0 Z1 Z2

 ,

and

D =

λ0 −λ1 λ2

µ0 −µ1 µ2

Z1 Z2 Z3

 ,

have rank two, so their determinants are zero. Expanding these de-
terminants gives two linear polynomials, in Z0, Z1, Z2 and Z3. Their
common zero locus determines a line, and this line is easily seen to be
either a secant line or a tangent line.
5. There are two ways to prove this. The first is geometric, the second
algebraic. First the geometric. We may as well assume that we have n+
1 points p1, p2, . . . , pn+1 and it suffices to prove that these points don’t
lie in a hyperplane. Suppose they did. Suppose that the hyperplane is
given as ∑

aiZi = 0.

Pulling back to the curve, we would get

∑
aiS

n−iT i,

a homogeneous polynomial of degree n. By assumption this polynomial
would have n + 1 zeroes. But in this case the polynomial would be
identically zero, a contradiction.
Now we turn to the algebraic proof. Lifting our n + 1 points in Pn to
n+ 1 vectors in Kn+1, we are given n+ 1 vectors, each of the form

(1, λ, λ2, . . . , λn),
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(the case where λ = ∞ can easily be reduced to this case). Taking
determinants, it suffices to prove that the following determinant is non-
zero, ∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
λ1 λ2 λ3 . . . λn

λ2
1 λ2

2 λ2
3 . . . λ2

n
...

...
...

. . .
...

λn−1
1 λn−1

2 λn−1
2 . . . λn−1

n

∣∣∣∣∣∣∣∣∣∣
.

In fact I claim that∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
λ1 λ2 λ3 . . . λn

λ2
1 λ2

2 λ2
3 . . . λ2

n
...

...
...

. . .
...

λn−1
1 λn−1

2 λn−1
2 . . . λn−1

n

∣∣∣∣∣∣∣∣∣∣
=
∏
i<j

(λi − λj),

whence the result.
This identity is well-known. Here is a quick sketch of the derivation
of this identity. Note that both sides are zero, if λi = λj (indeed the
matrix on the left has a repeated column in this case). Suppose that
we set λi = x. Since a polynomial is determined by its roots, up to
scalars, and a polynomial of degree n can have at most n roots, the
claim follows by induction, modulo checking the leading coefficient,
which we leave as an exercise for the reader.
6. Clearly the image of Pn lies in the zero locus of these polynomials.
This just says that

XIXJ = XI′
XJ ′

,

whenever I + J = I ′ + J ′.
Now suppose we are given a point of PN where each of these quadratic
polynomials is zero. At least one of the coordinates of this point is
non-zero. Define the length of an (n+1)-tuple I as the number of non-
zero entries. Pick I0 of minimal length such that ZI 6= 0 (for notational
convenience, I will temporarily drop the subscript from I0).
Suppose that the length I is greater than one. Then we may find I ′

and J ′ such that
2I = I ′ + J ′,

and where one of I ′ and J ′ has smaller length than I. As

Z2
I = ZI′ZJ ′ ,

this is a contradiction.
Possibly reordering, we may therefore assume that I0 = (d, 0, . . . 0) =
de0. Let Ii = (d − 1)e0 + ei, where e0, e1, . . . , en is the standard basis
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of Kn+1. Set Xi = ZIi
. I claim that [ZI ] is the image of the point

[X0 : X1 : · · · : Xn] ∈ Pn. Rescaling, we may assume that X0 = 1 = ZI0

and it suffices to prove that

ZI = XI .

We prove this by an induction on the first coordinate of I. By assump-
tion the result is true if i0 > d − 2. Suppose it holds for all i0 > k,
where k < d− 1 and let I be an index such that i0 = k. Then

ZIZI0 = ZI′ZJ ′ .

Here both I ′ and J ′ may be chosen with first coordinate greater than
the average of

k + d

2
≥ k + 1.

Thus, by induction,

ZI = X2
0X

I′
XJ ′

= XI′
XJ ′

= XI .
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