
9. Ideals and the Zariski Topology

Definition 9.1. Let X ⊂ An be a subset.
The ideal of X, denoted I(X), is simply the set of all polynomials

which vanish on X.
Let S ⊂ K[x1, x2, . . . , xn]. Then the vanishing locus of S, denoted

V (S), is
{ p ∈ An | f(x) = 0, ∀f ∈ S }.

Lemma 9.2. Let X, Y ⊂ An and I, J ⊂ K[x] be any subsets.

(1) X ⊂ V (I(X)).
(2) I ⊂ I(V (I)).
(3) If X ⊂ Y then I(Y ) ⊂ I(X).
(4) If I ⊂ J then V (J) ⊂ V (I).
(5) If X is a closed subset then V (I(X)) = X.

Proof. Easy exercise. �

Note that a similar version of (5), with ideals replacing closed subsets,
does not hold. For example take the ideal I ⊂ K[x], given as 〈x2〉. Then
V (I) = {0}, and the ideal of functions vanishing at the origin is 〈x〉.

It is natural then to ask what is the relation between I and I(V (I)).
Clearly if fn ∈ I then f ∈ I(V (I)).

Definition 9.3. Let I be an ideal in a ring R. The radical of I,
denoted

√
I, is

{ r ∈ R | rn ∈ I, some n }.
It is not hard to check that the radical is an ideal.

Theorem 9.4 (Hilbert’s Nullstellensatz). Let K be an algebraically
closed field and let I be an ideal.

Then I(V (I)) =
√
I.

Proof. One inclusion is clear, I(V (I)) ⊃
√
I.

Now suppose that g ∈ I(V (I)). Pick a basis f1, f2, . . . , fk for I.
Suppose that fi(x) = 0, for 1 ≤ i ≤ k. Then f(x) = 0 for all f ∈ I
so that x ∈ V (I). But then g(x) = 0. So we may apply the strong
Nullstellensatz to f1, f2, . . . , fn, g to conclude that gr ∈ I, some r > 0,
that is g ∈

√
I. �

Given any ring, a natural question is to identify the prime and maxi-
mal ideals. Now in the ring K[x], there is an obvious source of maximal
ideals, the ideals of the form

〈x1 − a1, x2 − a2, . . . xn − an〉,
where (a1, a2, . . . , an) ∈ An. Recall we proved:
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Corollary 9.5. Let K be an algebraically closed field.
Then every maximal ideal of K[x] is of the form ma = 〈x1−a1, x2−

a2, . . . xn − an〉, where a1, a2, . . . , an are elements of K.

Note that with this formulation it is clear why we need K to be
algebraically closed. Indeed I = 〈x2 + 1〉 over R is in fact maximal and
the vanishing locus is empty.

Another way to restate the Nullstellensatz is to observe that it estab-
lishes an inclusion reversing correspondence between ideals and closed
subsets of An. However this is just the tip of the iceberg.

Definition 9.6. Let X ⊂ An be a closed subset.
The coordinate ring of X, denoted A(X), is the quotient

K[X]/I(X).

Corollary 9.7. Let X ⊂ An be a closed subset over an algebraically
closed field.

There is a correspondence between the points of X and the maximal
ideals of the coordinate ring A(X).

Proof. One direction is clear. Given a point x ∈ X, the ideal mx E
A(X), the image of mx E K[x], is clearly maximal. To prove the
converse, suppose that M ⊂ A(X) is maximal. Let M ′ be the inverse
image of M in K[x]. By (9.5) M ′ is contained in a maximal ideal of
the form ma. As

I(X) ⊂M ′ ⊂ ma,

it follows that a ∈ X so that M ⊂ ma E A(X). But then M = ma, by
maximality. �

In fact this correspondence is natural. To prove this, we have to
reinterpret the coordinate ring. It is also necessary to investigate the
Zariski topology.

Definition 9.8. Let X be a topological space. We say that X is Noe-
therian if the set of closed subsets satisfies DCC (the descending chain
condition). That is any sequence of descending closed subsets eventu-
ally stablises

· · · ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X1 ⊂ X0.

Proposition 9.9. Any quasi-projective variety is Noetherian.

Proof. We prove this only for an affine variety; as we will see later the
general case is practically identical in execution.

Let X ⊂ An be a closed subset. We may as well suppose that
X = An. Now, by (9.2) a descending chain of closed subsets of An is
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the same as an ascending chain of ideals. Now apply Hilbert’s basis
Theorem. �

In other words DCC for closed subsets is the same as ACC for ideals,
which is the content of Hilbert’s basis Theorem.

Principle 9.10 (Noetherian Induction). Let P be a property of topo-
logical spaces. Suppose that for every topological space X such that for
every proper closed subset Y ⊂ X, P (Y ) holds, then P (X) holds.

Then every Noetherian topological space satisfies property P .

Proof. Suppose not. Let X be a Noetherian topological space, minimal
with the property that it does not satisfy property P .

Let Y ⊂ X be a proper closed subset. By minimality ofX, Y satisfies
property P . By the inductive hypothesis, X then satisfies property P ,
a contradiction. �

Definition 9.11. Let X be a topological space. We say that X is
irreducible if for every pair of closed subsets F1 and F2, such that
F1 ∪ F2 = X, we have either X = F1 or X = F2.

Compare this definition, with the definition of connected. Clearly
the definition of irreducible is stronger than connected; in practice most
connected topological spaces are rarely irreducible. For example if X
is irreducible (and has at least two points) then it is not Hausdorff.

Lemma 9.12. Let X be an irreducible variety.
Then every open subset is dense.

Proof. Let U and V be two non-empty subsets. Suppose that U ∩ V
is empty. Let F and G be their complements. Then F and G are two
proper closed subsets, whose union is X, a contradiction. �

Lemma 9.13. Let X be a Noetherian topological space.
Then X has a decomposition into closed irreducible factors

X = X1 ∪X2 ∪ · · · ∪Xn,

where Xi is not contained in Xj, unique up to re-ordering of the factors.

Proof. If X is irreducible there is nothing to prove. Otherwise we may
assume that X = A ∪ B, where A and B are proper closed subsets.
By the principle of Noetherian Induction, we may assume that A and
B are the finite union of closed irreducible factors. Taking the union,
and discarding any redundant factors (that is any subset contained in
another subset), we get existence of such a decomposition.

Now suppose that

X1 ∪X2 ∪ · · · ∪Xm = Y1 ∪ Y2 ∪ · · · ∪ Yn.
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Consider Xm = Xm ∩ Y 1∪Xm ∩ Y 2∪ · · · ∪Xm ∩ Y n. By irreducibility
of Xm, there is an index j such that Xm ⊂ Yj. Thus m ≤ n and for
every i there is a j such that Xi ⊂ Yj. By symmetry, for every j there
is a k such that Yj ⊂ Xk. In this case Xi ⊂ Xk and so i = k, by
assumption. Thus Xi = Yj. �

Proposition 9.14. If X ⊂ An is an affine variety then the ring of
regular functions is isomorphic to the coordinate ring.

Proof. Let π : K[X] −→ OX(X) be the map which sends a polynomial
f to the obvious regular function φ, φ(x) = f(x). It is clear that π is a
ring homomorphism, with kernel I(X). It suffices, then, to prove that
π is surjective.

Let φ be a regular function on X. By definition there is an open cover
Ui of X and rational functions fi/gi such that φ is locally given by fi/gi.
As X is Noetherian, we may assume that each Ui is irreducible. We
may assume that Ui = Uhi

for some regular function hi, as such subsets
form a base for the topology. Replacing fi by fihi and gi by gihi we
may assume that fi and gi vanish outside of Ui. There are two cases;
Ui ∩ Uj is non-empty or empty.

Suppose that Ui ∩ Uj is non-empty. As Ui is irreducible it follows
that Ui ∩Uj is a dense subset of Ui. Now fi/gi = fj/gj as functions on
Ui ∩ Uj and so figj = fjgi as functions on Ui ∩ Uj. As these functions
are continuous, figj = figj on Ui. Suppose that Ui∩Uj is empty. Then
the identity figj = fjgi holds on Ui as both sides are zero.

By assumption, the common zero locus of {gi} is empty. Thus, by
the Nullstellensatz, there are polynomials h1, h2, . . . , hn such that

1 =
∑

i

gihi.

Set f =
∑

i fihi. I claim that the function

x −→ f(x),
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is the regular function φ. It is enough to check this on Uj, for every j.
We have

fgj =

(∑
i

figj

)
hi

=
∑

i

(figj)hi

=
∑

i

(fjgi)hi

= fj

∑
i

gihi = fj. �

Note that this result implies that the working definition of a mor-
phism between affine varieties is correct. Indeed, simply projecting
onto the jth factor, it is clear that if the map is given as

(x1, x2, . . . , xm) −→ (f1(x), f2(x), . . . , fn(x)),

then each fj(x) is a regular function. By (9.14), it follows that fj(x) is
given by a polynomial.

Definition-Lemma 9.15. Let X be an affine variety and let p ∈ X.
Then the stalk of the structure sheaf of X at p, OX,p is equal to the

localisation of A(X) at the maximal ideal mp of p ∈ X.

Proof. There is an obvious ring homomorphism

A(X) −→ OX,p,

which just sends a polynomial f to the equivalence class (f,X). Sup-
pose that f /∈ m. Then p ∈ Uf ⊂ X and (1/f, Uf ) represents the
inverse of (f,X) in the ring OX,p. By the universal property of the
localisation there is a ring homomorphism

A(X)m −→ OX,p,

which is clearly injective. Now suppose that we have an element (σ, U)
of OX,p. Since sets of the form Uf form a basis for the topology, we
may assume that U = Ug. But then σ = f/gn ∈ A(X)g ⊂ A(X)m, for
some f and n. �

Lemma 9.16. There is a contravariant functor A from the category
of affine varieties over K to the category of commutative rings. Given
an affine variety X we associate the ring OX(X). Given a morphism
f : X −→ Y of affine varieties, A(f) : OY (Y ) −→ OX(X), which sends
a regular function φ to the regular function A(f)(φ) = φ ◦ f .
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It is interesting to describe the image of this functor. Clearly the
ring A(X) is an algebra over K (which is to say that it contains K,
so that we can multiply by elements of K). Further the ring A(X)
is a quotient of the polynomial ring, so that it is a finitely generated
algebra over K. Also since the ideal I(X) is radical, the ring A(X)
does not have any nilpotents.

Definition 9.17. Let R be a ring. A non-zero element r of R is said
to be nilpotent if there is a positive integer n such that rn = 0.

Clearly if a ring has a nilpotent element, then it is not an integral
domain.

Theorem 9.18. The functor A is an equivalence of categories between
the category of affine varieties over K and the category of finitely gen-
erated algebras over K, without nilpotents.

Proof. First we show that A is essentially surjective. Suppose we
are given a finitely generated algebra A over K. Pick generators
ξ1, ξ2, . . . , ξn of A. Define a ring homomorphism

π : K[x1, x2, . . . , xn] −→ A,

simply by sending xi to ξi. It is easy to check that π is an algebra
homomorphism. Let I be the kernel of π. Then I is radical, as A
has no nilpotents. Let X = V (I). Then the coordinate ring of X is
isomorphic to A, by construction. Thus A is essentially surjective.

To prove the rest, it suffices to prove that if X and Y are two affine
varieties then A defines a bijection between

Hom(X, Y ) and Hom(OY (Y ),OX(X)).

To prove this, we may as well fix embeddings X ⊂ Am and Y ⊂ An.
In this case A naturally defines a map between

Hom(X, Y ) and Hom(A(Y ), A(X)),

which we continue to refer to as A. It suffices to prove that there is a
map

B : Hom(A(Y ), A(X)) −→ Hom(X, Y ),

which is inverse to the map

A : Hom(X, Y ) −→ Hom(A(Y ), A(X)).

Suppose we are given a ring homomorphism α : A(Y ) −→ A(X). De-
fine a map

B(α) : X −→ Y,
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as follows. Let y1, y2, . . . , yn be coordinates on Y ⊂ An. Let f1, f2, . . . , fn

be polynomials on An, defined by α(yi) = fi. Then define B(α) by the
rule

(x1, x2, . . . , xm) −→ (f1, f2, . . . , fn).

Clearly this is a morphism. We check that the image lies in Y . Suppose
that p ∈ X. We check that q = (f1(p), f2(p), . . . , fn(p)) ∈ Y . Pick
g ∈ I(Y ). Then

g(q) = g(f1(p), f2(p), . . . fn(p))

= g(α(y1)(p), α(y2)(p), . . . , α(yn)(p))

= α(g)(p)

= 0.

Thus q ∈ Y and we have defined the map B.
We now check that B is the inverse of A. Suppose that we are

given a morphism f : X −→ Y . Let α = A(f). Suppose that f is
given by (f1, f2, . . . , fn). Then α(yi) = yi ◦ f = fi. It follows easily
that B(α) = f . Now suppose that α : A(Y ) −→ A(X) is an algebra
homomorphism. Then B(α) is given by (f1, f2, . . . , fn) where fiα(yi).
In this case A(f)(yi) = fi. As y1, y2, . . . , yn are generators of A(Y ), we
have α = A(B(α)). �

(9.18) raises an interesting question. Can we enlarge the category of
affine varieties so that we get every finitely generated algebra over K
and not just those without nilpotents. In fact why stop there? Can we
find a class of geometric objects, such that the space of functions on
these objects, gives us any ring whatsoever (not nec. finitely generated,
not nec. over K). Amazingly the answer is yes, but to do this we need
the theory of schemes.

7


	9. Ideals and the Zariski Topology

