
8. Nullstellensatz

We will need the notion of localisation, which is a straightforward
generalisation of the notion of the field of fractions.

Definition 8.1. Let R be a ring. We say that a subset S of R is
multiplicatively closed if for every s1 and s2 in S, s1s2 ∈ S, that is

S · S ⊂ S.

Definition-Lemma 8.2. Let R be a ring and let S be a multiplicatively
closed subset, which contains 1 but not zero. The localisation of R
at S, denoted RS, is a ring RS together with a ring homomorphism

φ : R −→ RS,

with the property that for every s ∈ S, φ(s) is a unit in RS, which is
universal amongst all such rings. That is given any morphism

ψ : R −→ R′,

with the property that ψ(s) is a unit, for every s ∈ S, there is a unique
ring homomorphism

R
ψ- T.

RS

φ

?

-

Proof. This is almost identical to the construction of the field of frac-
tions, and so we will skip most of the details. Formally we define RS

to be the set of all pairs (r, s), where r ∈ R and s ∈ S, modulo the
equivalence relation,

(r1, s1) ∼ (r2, s2) iff s(r1s2 − r2s1) for some s ∈ S.

We denote an equivalence class by [r, s] (or more informally by r/s).
Addition and multiplication are defined in the obvious way. �

Note that R is an integral domain, then S = R − {0} is multiplica-
tively closed and the localisation is precisely the field of fractions. Note
also that as we are not assuming that R is an integral domain, we need
to throw in the extra factor of s, in the definition of the equivalence
relation and the natural map R −→ RS is not necessarily injective.

Example 8.3. Suppose that p is a prime ideal in a ring R. Then
S = R − p is a multiplicatively closed subset of R. The localisation is
denoted Rp. It elements consist of all fractions r/f , where f /∈ p. On
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the other hand, suppose that f ∈ R is not nilpotent. Then the set of
powers of f ,

S = { fn |n ∈ N },
is a multiplicatively closed subset. The localisation consists of all ele-
ments of the form r/fn.

For example, take R = Z and f = 2. Then Rf = Z[1/2] ⊂ Q consists
of all fractions whose denominator is a power of two.

Lemma 8.4. Let F be a field and let f ∈ F [x] be a polynomial.
Then F [x]f is not a field.

Proof. Suppose not.
Clearly deg(f) > 0 so that 1+f 6= 0. Therefore we may find g ∈ F [x]

such that

(1 + f)−1 =
g

fn
,

for some n. Multiplying out, we get that (1 + f) divides fn.
So fn is congruent to 0 modulo (1 + f). On the other hand, f is

congruent to −1 modulo (1 + f). The only possibility is that 1 + f is
a unit, which is clearly impossible. �

Definition 8.5. Let R ⊂ F be a subring of the field F .
We say that c ∈ F is integral over S if and only if there is a monic

polynomial

m(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ S[x],

such that m(c) = 0.
If R ⊂ S ⊂ F is an intermediary ring, we say that S is integral

over R if every element of S is integral over R.
The integral closure of R in F is the set of all elements integral

over R.

Lemma 8.6. Let R ⊂ F be a subring of the field F .
The following are equivalent:

(1) c is integral over R,
(2) R[c] is a finitely generated R-module,
(3) there is an intermediary ring R[c] ⊂ C ⊂ S which is a finitely

generated R-module.

Proof. Suppose that c is integral over R. Pick m(x) ∈ R[x] monic such
that m(c) = 0. If m(x) has degree d it is easy to see that 1, c, c2, . . . ,
cd−1 generate R[c] as an R-module. Thus (1) implies (2).

(2) implies (3) is clear.
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Now suppose that C is a finitely generated R-module. Multiplication
by c defines an R-linear map

φ : C −→ C.

Pick generators c1, c2, . . . , ck for the R-module C. Then we may find
A = (aij) ∈Mk(R) such that

φ(ci) =
∑

aijcj.

Then m(x) = det(A−λI) ∈ R[x] is a monic polynomial and m(φ) = 0,
by Cayley-Hamilton. But then m(c) = m(φ(1)) = 0. Hence (3) implies
(1). �

Lemma 8.7. Let R ⊂ F be a subring of the field F .
If S = R[r1, r2, . . . , rk] where each r1, r2, . . . , rk is integral over S

then S is integral over R.

Proof. By (8.6) it suffices to prove that S is a finitely generated R-
module. By induction on k we may assume that S ′ = R[r1, r2, . . . , rk−1]
is finitely generated R-module. As S is a finitely generated S ′-module
(rk is integral over S ′ as it is integral over R) it follows that S is a
finitely generated R-module. �

We will need the following result later:

Lemma 8.8. Let R ⊂ F be a subring of the field F .
The integral closure S or R in F is a ring.

Proof. Let a and b be in S. It suffices to prove that a ± b and ab are
in S. But a ± b and ab belong to R[a, b] and this is finitely generated
over R by (8.7). �

Lemma 8.9. Let E be a field and let R be a subring.
If E is integral over R then R is a field.

Proof. Pick a ∈ R and let b ∈ E be the inverse. As E is integral over
R, we may find r1, r2, . . . , rn ∈ R such that

bn + r1b
n−1 + · · ·+ rn = 0.

Multiply both sides by an−1 and solve for b to get

b = −r1a− r2a2 − · · · − rnan−1 ∈ A. �

Lemma 8.10. Let E/F be a field extension.
If E is finitely generated as an F -algebra then E/F is algebraic.
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Proof. By assumption E = F [f1, f2, . . . , fm]. We proceed by induction
on m.

Let f = fm. By induction E = F (f)[f1, f2, . . . , fm−1] is algebraic
over F (f). Let mi(x) ∈ F (f)[x] be the minimal polynomial of fi.
Clearing denominators, we may assume that mi(x) ∈ F [f ][x]. Let ai
be the leading coefficient of mi(x) and let a be the product of the
ai. Then (1/ai)mi(x) ∈ F [f ]a[x] is a monic polynomial, so that fi is
integral over F [f ]a.

By (8.9) F [f ]a is a field. But then f is algebraic over F by (8.4). �

Theorem 8.11 (Weak Nullstellensatz). Let K be an algebraically closed
field.

Then an ideal m E R = K[x1, x2, . . . , xn] is maximal if and only if
it has the form

mp = 〈x1 − a1, x2 − a2, . . . , xn − an〉,
for some point p = (a1, a2, . . . , an) ∈ Kn.

Proof. Let m E R be an ideal and let L = R/m. Then m is maximal
if and only if L = R/m is a field and L = K if and only if m = mp for
some point p.

So we may assume that L is a field and we want to prove that L = K.
But L is a finitely generated algebra over K (generated by the images of
x1, x2, . . . , xn) so that by (8.10) L/K is algebraic. As K is algebraically
closed, L = K. �

Corollary 8.12 (Weak Nullstellensatz). Let K be an algebraically
closed field.

If f1, f2, . . . , fm ∈ R = K[x1, x2, . . . , xn] is a sequence of polynomials
then either

(1) f1, f2, . . . , fm have a common zero, or
(2) there are polynomials g1, g2, . . . , gm ∈ K[x1, x2, . . . , xn] such

that
f1g1 + f2g2 + · · ·+ fmgm = 1.

Proof. Let I = 〈f1, f2, . . . , fm〉 E R be the ideal generated by the poly-
nomials f1, f2, . . . , fm. Note that (1) holds if and only if I is contained
in one of the ideals mp for some p = (a1, a2, . . . , an) ∈ Kn. Indeed, in
this case f1, f2, . . . , fn all vanish at p. On the other hand, note that (2)
holds if and only if I = R.

So suppose that I 6= R. Pick a maximal ideal m containing I. By
(8.11) we may find p ∈ Kn such that m = mp. �

Theorem 8.13 (Strong Nullstellensatz). Let K be an algebraically
closed field.
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If f1, f2, . . . , fm, g ∈ R = K[x1, x2, . . . , xn] is a sequence of polyno-
mials then either

(1) f1, f2, . . . , fm have a common zero, at a point where the polyno-
mial g is not equal to zero, or

(2) there are polynomials g1, g2, . . . , gm ∈ K[x1, x2, . . . , xn] such
that

f1g1 + f2g2 + · · ·+ fmgm = gr,

for some natural number r.

Proof. We use the trick of Rabinowitsch. Let

S = R[y] = K[x1, x2, . . . , xn, y],

where y is an indeterminate and consider the polynomials

f1, f2, . . . , fm, yg − 1.

If (1) does not hold then these equations don’t have any solutions
at all. By the weak Nullstellensatz (8.12) we may find polynomials
g1, g2, . . . , gm, h ∈ S such that

f1g1 + f2g2 + · · ·+ fmgm + h(yg − 1) = 1.

Let z = 1/y. Clearing denominators by multiplying through some large
power zr of z, and relabelling, we get

f1g1 + f2g2 + · · ·+ fmgm + h(g − z) = zr.

Now set z = g. �
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