8. NULLSTELLENSATZ

We will need the notion of localisation, which is a straightforward
generalisation of the notion of the field of fractions.

Definition 8.1. Let R be a ring. We say that a subset S of R 1is
multiplicatively closed if for every sy and sy in S, s150 € S, that is

S-Scés.

Definition-Lemma 8.2. Let R be a ring and let S be a multiplicatively
closed subset, which contains 1 but not zero. The localisation of R
at S, denoted Rg, is a ring Rs together with a ring homomorphism

¢: R — Rg,

with the property that for every s € S, ¢(s) is a unit in Rg, which is
universal amongst all such rings. That is given any morphism

v R— R,

with the property that 1 (s) is a unit, for every s € S, there is a unique
ring homomorphism

R_¢,T,
/4

¢ ///

Rs

Proof. This is almost identical to the construction of the field of frac-
tions, and so we will skip most of the details. Formally we define Rg
to be the set of all pairs (r,s), where r € R and s € S, modulo the
equivalence relation,

(r1,81) ~ (72, S2) iff s(rise — resy) for some s € S.

We denote an equivalence class by [r, s] (or more informally by r/s).
Addition and multiplication are defined in the obvious way. U

Note that R is an integral domain, then S = R — {0} is multiplica-
tively closed and the localisation is precisely the field of fractions. Note
also that as we are not assuming that R is an integral domain, we need
to throw in the extra factor of s, in the definition of the equivalence
relation and the natural map R — Rg is not necessarily injective.

Example 8.3. Suppose that p is a prime ideal in a ring R. Then
S = R —p 1s a multiplicatively closed subset of R. The localisation is

denoted Ry. It elements consist of all fractions r/f, where f ¢ p. On
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the other hand, suppose that f € R is not nilpotent. Then the set of
powers of f,
S={f"IneN}

15 a multiplicatively closed subset. The localisation consists of all ele-
ments of the form r/f".

For example, take R = Z and f = 2. Then Ry = Z[1/2] C Q consists
of all fractions whose denominator is a power of two.

Lemma 8.4. Let F be a field and let f € Fx] be a polynomial.
Then Flx]s is not a field.

Proof. Suppose not.
Clearly deg(f) > 0so that 14 f # 0. Therefore we may find g € F[x]
such that

49
(]'—I—f) _fn7

for some n. Multiplying out, we get that (1 + f) divides f.

So f™ is congruent to 0 modulo (1 4+ f). On the other hand, f is
congruent to —1 modulo (14 f). The only possibility is that 1+ f is
a unit, which is clearly impossible. 0

Definition 8.5. Let R C F be a subring of the field F'.
We say that ¢ € F is integral over S if and only if there is a monic
polynomial

m(z) = 2" + ap_ 12" + -+ arw +ag € S|,

such that m(c) = 0.

If R C S C F s an intermediary ring, we say that S is integral
over R if every element of S s integral over R.

The integral closure of R in F' is the set of all elements integral
over R.

Lemma 8.6. Let R C F be a subring of the field F'.
The following are equivalent:

(1) ¢ is integral over R,

(2) R[] is a finitely generated R-module,

(3) there is an intermediary ring R[c] C C' C S which is a finitely
generated R-module.

Proof. Suppose that c is integral over R. Pick m(z) € R[z] monic such
that m(c) = 0. If m(x) has degree d it is easy to see that 1, ¢, ¢?, ...,
¢! generate R[c|] as an R-module. Thus (1) implies (2).
(2) implies (3) is clear.
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Now suppose that C'is a finitely generated R-module. Multiplication
by ¢ defines an R-linear map

¢: C — C.

Pick generators cy,cs,...,c; for the R-module C'. Then we may find
A = (ai;) € My(R) such that

olei) = ) aie;.

Then m(z) = det(A—AI) € R[z] is a monic polynomial and m(¢) = 0,
by Cayley-Hamilton. But then m(c) = m(¢(1)) = 0. Hence (3) implies

(1). d
Lemma 8.7. Let R C F be a subring of the field F.
If S = R[ry,ra,...,1%] where each 11,79,...,7r% 1S integral over S

then S s integral over R.

Proof. By it suffices to prove that S is a finitely generated R-
module. By induction on k we may assume that S’ = R[ry, 79, ..., 7%_1]
is finitely generated R-module. As S is a finitely generated S’-module
(r is integral over S” as it is integral over R) it follows that S is a
finitely generated R-module. U

We will need the following result later:

Lemma 8.8. Let R C F be a subring of the field F'.
The integral closure S or R in F' is a ring.

Proof. Let a and b be in S. It suffices to prove that a 4+ b and ab are
in S. But a £ b and ab belong to R[a,b] and this is finitely generated

over R by (8.7). O

Lemma 8.9. Let E be a field and let R be a subring.
If E is integral over R then R is a field.

Proof. Pick a € R and let b € E be the inverse. As F is integral over
R, we may find r1,79,...,r, € R such that

Vb e, = 0.
Multiply both sides by a®~! and solve for b to get
b=—ria—rea®—--—r,a" e A O

Lemma 8.10. Let E/F be a field extension.
If E is finitely generated as an F-algebra then E/F is algebraic.
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Proof. By assumption E = F[fi, fa, ..., fm]. We proceed by induction
on m.

Let f = fp. By induction E = F(f)[f1, f2,- .-, fm—1] is algebraic
over F(f). Let my(z) € F(f)[z] be the minimal polynomial of f;.
Clearing denominators, we may assume that m;(z) € F[f][z]. Let a;
be the leading coefficient of m;(x) and let a be the product of the
a;. Then (1/a;)m;(x) € F[f].[z] is a monic polynomial, so that f; is
integral over F[f],.

By F[f], is a field. But then f is algebraic over F by (8.4). O

Theorem 8.11 (Weak Nullstellensatz). Let K be an algebraically closed
field.

Then an ideal m Q R = Klxy, 29, ..., x,] is maximal if and only if
it has the form
m, = <CL’1 — ap, T2 _a27"‘7$n_an>7
for some point p = (ay,as,...,a,) € K.

Proof. Let m < R be an ideal and let L = R/m. Then m is maximal
if and only if L = R/m is a field and L = K if and only if m = m,, for
some point p.

So we may assume that L is a field and we want to prove that L = K.
But L is a finitely generated algebra over K (generated by the images of
x1,Za, ..., T,) so that by L/K is algebraic. As K is algebraically
closed, L = K. O

Corollary 8.12 (Weak Nullstellensatz). Let K be an algebraically
closed field.

If fi, foy- oy fmn € R = K[x1,29,...,1,] is a sequence of polynomials
then either

(1) fi1, fo,- .., fm have a common zero, or
(2) there are polynomials ¢1,g,...,9m € Klx1,29,...,2,] such
that

figr + fogo 4+ -+ frngm = 1.

Proof. Let I = (f1, fa, ..., fm) < R be the ideal generated by the poly-
nomials fi, fa, ..., fm. Note that (1) holds if and only if I is contained
in one of the ideals m, for some p = (ay,as,...,a,) € K™. Indeed, in
this case fi, fo,..., fn all vanish at p. On the other hand, note that (2)
holds if and only if = R.

So suppose that I # R. Pick a maximal ideal m containing I. By
(8.11) we may find p € K™ such that m = m,,. U

Theorem 8.13 (Strong Nullstellensatz). Let K be an algebraically

closed field.
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If fi,fos. s fm,9 € R = K[z, 29,...,2,] is a sequence of polyno-
mials then either

(1) f1, f2,-- -, fm have a common zero, at a point where the polyno-
mial g is not equal to zero, or

(2) there are polynomials ¢1,go,...,9m € Klx1,29,...,2,] such
that

Jig1 + fage + -+ fGm =g,
for some natural number r.
Proof. We use the trick of Rabinowitsch. Let
S = Rly| = Klz1,22,...,2Zn, Y],
where y is an indeterminate and consider the polynomials

fifor oo fmyyg — 1.
If (1) does not hold then these equations don’t have any solutions

at all. By the weak Nullstellensatz (8.12)) we may find polynomials
91,92, - - -, Gm, h € S such that

figi + faga + -+ fingm +h(yg — 1) = 1.
Let z = 1/y. Clearing denominators by multiplying through some large
power 2" of z, and relabelling, we get

figi + faga + -+ fingm + h(g — 2) = 2"

Now set z = g. O
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