
2. Conics in P2

One of the beautiful results of classical projective geometry is the
following:

Lemma 2.1. Let f ∈ R[x, y] be a polynomial of degree two. Suppose
that f = 0 contains more than one real point. Let F be the homogeni-
sation of f .

Then f = 0 is a circle iff F = 0 contains the points [1 : ±i : 0].

Proof. Suppose that f = 0 defines a circle. Then f(x, y) has the form

(x− a)2 + (y − b)2 = r2.

Thus F is equal to

(X − aZ)2 + (Y − bZ)2 = r2Z2.

Set Z = 0. Then X2 + Y 2 = 0, which has the solution [1 : ±i : 0].
Conversely suppose that F = 0 contains the points [1 : ±i : 0]. Then

F (X, Y, 0) = aX2 + bXY + cY 2,

vanishes at [1 : ±i : 0]. Thus

ax2 + bx+ c = 0,

has roots±i, which is only possible if b = 0 and a = c. Hence F (X, Y, 0)
is a non-zero multiple of X2 + Y 2. Possibly rescaling, we may assume
that

F (X, Y, Z) = X2 + Y 2 + ZG(X, Y, Z)

where G(X, Y, Z) is a linear polynomial. Thus

f(x, y) = x2 + y2 + g(x, y),

for some linear polynomial g. Completing the square, we can put this
in the form

(x− a)2 + (y − b)2 = k.

The condition that f = 0 contains more than one point is equivalent
to requiring that k > 0, so that k = r2, some r > 0 and we have the
equation of a circle. �

Since we want to work over C, it turns out that we want to reinvent
the wheel:

Definition 2.2. The curve C ⊂ P2
C, given as F = 0, is a circle if F

has degree two and C contains the points [1 : ±i : 0].
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Let us consider the general polynomial of degree two in X, Y and
Z,

F (X, Y, Z) = aX2 + bY 2 + cZ2 + dY Z + eXZ + fXY,

where a, b, c, d, e and f are in K. Thus polynomials of degree two are
naturally in correspondence with K6. On the other, if F = λG, λ 6= 0,
then F and G define the same zero locus. Over an algebraically closed
field, the converse is true. Thus the set of conics in P2 is naturally in
bijection with K6 modulo scalars, that is P5.

Given that we want to count how many circles pass through two
points and that a circle is nothing more than a conic that passes
through two fixed points, the natural problem is to identify the fol-
lowing locus:

Hp = { [a : b : c : d : e : f ] ∈ P5 |F = 0 passes through p },
where p ∈ P2 is a point.

Lemma 2.3. Hp ⊂ P5 is a hyperplane (that is a linear space defined
by a single equation).

Proof. Indeed, if p = [u : v : w], then [a : b : c : d : e : f ] ∈ Hp iff
[a : b : c : d : e : f ] satisfies the linear equation

u2A+ v2B + w2C + (vw)D + (uw)E + (uv)F = 0. �

For example, the conic passes through p = [0 : 0 : 1] iff the coefficient
of Z2 is zero iff c = 0.

Lemma 2.4. Suppose we are given five points p1, p2, p3, p4 and p5,
and we are working over an infinite field.

Then, either there is a unique conic through these points, or infinitely
many.

Proof. Let Hi ⊂ P5 be the hyperplane corresponding to pi. Then the
set of conics passing through the given points corresponds to the inter-
section of the five hyperplanes. As the intersection of linear spaces is
a linear space, the result follows. �

Definition 2.5. Let X ⊂ Pn. We say that X is in linear general
position if every subset with k < n + 2 points spans a linear space of
dimension k − 1.

Here the span of points in Pn is defined as it is in An. Thus a
collection of points in the plane is in linear general position, if no three
points are collinear, a collection of points in P3 is in linear general
position, if no three points are collinear and no four points are coplanar,
and so on.
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Note also that if X has more than n points, we only have to check
that no subset of n+ 1 points are contained in a hyperplane.

Theorem 2.6. There is a unique conic passing through five points in
linear general position.

Proof. Suppose not. Then the intersection of the five hyperplanes H1,
H2, H3, H4 and H5 would contain a line, call it l ⊂ P5. Pick two points
of this line, corresponding to two quadratic polynomials F and G. As
any two points on l, span l, the general point of l is given as [sF + tG],
for [s : t] ∈ P1. Thus the curve sF + tG = 0 contains the five given
points p1, p2, p3, p4 and p5.

Pick any point p ∈ P2. Then we may find [s : t] ∈ P1 such that
(sF + tG)(p) = 0. Indeed, if G(p) = 0, take [s : t] = [0 : 1], else set
s = 1 and

t = −F (p)

G(p)
.

Now pick p collinear with p1 and p2. Then the conic C corresponding
to sF + tG = 0 contains the three points p1, p2 and p of the line
m = 〈p1, p2〉. Pick coordinates so that m is given as Z = 0. Then the
quadratic polynomial

F (X, Y, 0),

has three zeroes. It follows that F (X, Y, 0) = 0, so that F (X, Y, Z) =
ZG(X, Y, Z). In other words the curve C is the union of the two lines
Z = 0 and G = 0. But then one of the two lines contains three of
our five points, which contradicts our assumption that the points are
in linear general position. �

Corollary 2.7. There is a unique circle passing through three non-
collinear points in R2.

Proof. Note that the line spanned by the points [1 : ±i : 0] is the line
at infinity of P2

C. Thus given three points p, q and r in R2, which are
not collinear, then the five points p, q, r and [1 : ±i : 0] are in linear
general position in P2

C.
By (2.6) there is a unique conic through the five given points. Now

of the five hyperplanes that define this conic, three are defined by lin-
ear equations with real coefficients and even though the other two have
complex roots, the equations of the hyperplanes are complex conju-
gates. Since the set of solutions to a set of equations which is invariant
under complex conjugation, is invariant under complex conjugation, it
follows that this unique solution has coefficients which are invariant
under complex conjugation, which is to say that it is a point with real
coordinates. In particular the definining equation of the unique conic
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passing through the five given point is real. On the other hand the cor-
responding curve contains three real points. Therefore by (2.1) there
is a unique circle through the three real points. �

Note the fancy footwork needed to deal with the problem of working
over non algebraically closed fields.

It turns out there are other ways to prove (2.6). To give these other
ways, we need to talk about maps between varieties.
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