
15. Images of varieties

This section is centred around anwering the following natural:

Question 15.1. Let f : X −→ Y be a morphism of quasi-projective
varieties. If Z is a closed subset then what can we say about the image
f(Z)?

Definition 15.2. Let f : X −→ Y be a continuous map of topological
spaces. We say that f is closed if the image of a closed set is closed.

We say that a morphism of quasi-projective varieties is proper if it
is closed.

Our first guess is that morphisms are proper. Unfortunately this is
not correct. Let X = A2, Y = A1, f projection onto the first factor.
Let

Z = { (x, y) ∈ A2 |xy = 1 }.
Then the image of Z is A1 − {0}, an open subset of A1, not a closed
subset.

Okay, well perhaps the image of a quasi-projective variety is quasi-
projective (perhaps even the image of affine is affine?)? Unfortunately
this is not true either. For example, take X = Y = Z = A2. Let
f : X −→ Y be the morphism (a, b) −→ (a, ab). Let us determine the
image I. Pick (x, y) ∈ A2. If x 6= 0, then take a = x and b = y/x.
Then (a, ab) = (x, y). Thus I contains the complement of the x-axis.
Now if y 6= 0 and x = 0, then (x, y) is surely not in the image. However
(0, 0) is in the image; indeed it is the image of (0, 0). Thus the image
is equal to the complement of the x-axis union the origin, which is not
locally closed.

In fact, it turns out that this is as bad as it gets.

Definition 15.3. Let X be a topological space. A subset Z ⊂ X is said
to be constructible if it is the finite union of locally closed subsets.

The image I of A2 above is the union of the open set Ux and the
closed set (0, 0), so I is constructible. In fact, we are aiming for:

Theorem 15.4 (Chevalley’s Theorem). Let π : X −→ Y be morphism
of quasi-projective varieties.

Then the image of a constructible set is constructible.

The first case to deal with, in fact the crucial case, which is of con-
siderable interest in its own right, is the case when X is projective:

Theorem 15.5. If f : X −→ Y is a morphism of quasi-projective va-
rieties and X is projective then f is proper.
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It turns out that it is easier to prove a stronger result than (15.5).

Definition 15.6. Let i : X −→ Y be a morphism of quasi-projective
varieties. We say that i is a closed immersion if the image of i is
closed and i is an isomorphism onto its image.

Definition 15.7. Let π : X −→ Y be a morphism of quasi-projective
varieties.

We say that π is a projective morphism if it can be factored into
a closed immersion i : X −→ Pn × Y and the projection morphism
Pn × Y −→ Y .

Lemma 15.8. Every morphism from a projective variety is projective.

Proof. Just take the graph. �

Thus to prove (15.5) it suffices to prove:

Theorem 15.9. Every projective morphism is proper.

Clearly closed embeddings are proper and the composition of proper
maps is proper. So to prove (15.9) we need to prove:

Lemma 15.10. If π : Pn×Y −→ Y denotes projection onto the second
factor then π is proper.

The trick is to reduce to the case n = 1. The idea is that projective
space Pn, via projection, is very close to the product P1 × Pn−1.

Definition-Lemma 15.11. Let Λ ⊂ Pn be a linear subspace and let
Λ′ = Pk be a complimentary linear subspace. The map

π = πΛ : Pn − Λ −→ Pk,
given by sending p to the unique point q = π(p) = 〈Λ, p〉 ∩ Λ′ is a
morphism, which is called projection from Λ.

Proof. We only need to check that π is a morphism. This is easy
however you do it, but it is particularly easy if we choose coordinates
so that Λ is given by the vanishing of the last n − k-coordinates. In
this case case π is given by the map

[X0 : X1 : · · · : Xn] −→ [X0 : X1 : · · · : Xk]. �

Definition 15.12. Let π : X −→ Y be a morphism of quasi-projective
varieties. We say that π is a fibre bundle, with fibre F , if we can find
a cover of the base Y , such that over each open subset U of the cover,
π−1(U) is isomorphic to U × F , over U .

Note that if π is a fibre bundle then every fibre of π is surely a copy
of F . It is convenient to denote π−1(U) by X|U .
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Lemma 15.13. The graph of the projection map from a point p defines
a morphism Γ −→ Pn−1, which is a fibre bundle, with fibre P1.

Proof. The rational map given by projection from a point p

π : Pn 99K Pn−1,

is clearly defined everywhere, except at the point p of projection. More-
over this map is clearly constant on any line through p. Thus the
morphism Γ −→ Pn−1 has fibres equal to the lines through p.

Pick two hyperplanes H1 and H2, neither of which contain p. Under
projection, we may indentify H1 with the base Pn−1. Let V = H1∩H2.
Then the image of V is a hyperplane in Pn−1. Let U be the complement
of this hyperplane in Pn−1. Projection from V defines a rational map
down to P1,

πV : Pn 99K P1.

This rational map is an isomorphism on every line l through p which
does not intersect V .

Define a morphism ψ : Γ|U −→ P1×U via these two projection maps.
Let φ : P1 × U −→ Γ|U be the map defined by sending (p1, p2) to the
intersection of 〈Λ, p1〉 and 〈p, p2〉. Then φ is a morphism and it is not
hard to see that φ is the inverse of ψ. Thus ψ is an isomorphism.
Fixing H1 and varying H2 it is clear that we get a cover of Pn−1 in this
way. �

Lemma 15.14. To prove (15.10) we may assume that n = 1.

Proof. Let X ⊂ Pn×Y be a closed subset and let I be the image of X
under projection down to Y . If we set

Z = { y ∈ Y |Pn × {y} ⊂ X },
then Z is closed and of course Z ⊂ I. So it suffices to prove that
I ∩ (Y − Z) is closed. Replacing Y by Y − Z we may as well assume
that Z is empty.

Pick y ∈ Y . As we are assuming that Z is empty we may find p ∈ Pn
such that (p, y) /∈ X. If we set

U = { y ∈ Y | (p, y) /∈ X },
then U is an open subset of Y . As the problem of showing I is closed
is local on Y , replacing Y by U , we may assume that U = Y .

Let q : Γ × Y −→ Pn × Y the morphism which is the identity on Y
and the graph of the blow up on Pn. Let X ′ be the strict transform of
X. By definition X ′ is closed. On the other hand, by assumption X
does not intersect {p} × Y so that X ′ is equal to the total transform
of X. In particular the images of X ′ and X in Y coincide.
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The morphism Y × Γ −→ Y factors through Y × Pn−1. So, by
induction on n, it suffices to prove that the image of X ′ in Y × Γ −→
Y × Pn−1 is closed. But now we are done, as we can check this locally
on Y × Pn−1 and by (15.13), Γ is isomorphic to P1× Pn−1, locally over
Pn−1. �

The idea now is to work locally on Y , so that Y is affine, and think
of Y × P1 as being P1 over the coordinate ring of Y .

Lemma 15.15. Let Y be an affine variety and let X ⊂ Y × P1 be a
closed subset.

Then X is defined by polynomials F (S, T ) ∈ A(Y )[S, T ], where [S :
T ] are homogeneous coordinates on P1.

Proof. We may assume that X is irreducible and X0 = X ∩ (Y ×U0) is
dense in X. As Y is affine, then Y × U0 is affine and X0 is defined by
polynomials f(s), where s = S/T and the coefficients of f belong to
A(Y ). If F (S, T ) is the homogenisation of f then F (S, T ) ∈ A(Y )[S, T ]
vanishes on X and the set of all such polynomials cuts out X set
theoretically. �

Given y ∈ Y and F (S, T ) ∈ A(Y )[S, T ], let Fy = Fy(S, T ) ∈ K[S, T ]
be the polynomial we obtain by subsituting in y ∈ Y to the coefficients.

Lemma 15.16. Let X ⊂ Y × P1.
Then y ∈ π(X) iff for every pair of functions F (S, T ) and G(S, T ) ∈

A(Y )[S, T ] vanishing on X, both Fy(S, T ) and Gy(S, T ) have a common
zero on {y} × P1.

Proof. One inclusion is clear. So suppose that y /∈ π(X). Pick F (S, T )
that does not vanish on {y}×P1. Then Fy(S, T ) has only finitely many
zeroes. For each such zero pi, we may find Gi(S, T ) such that Gi

y(S, T )
does not vanish at pi. Taking an appropriate linear combination of the
Gi gives us a polynomial G such that Fy and Gy do not have a common
zero. �

Lemma 15.17. To prove (15.9) we may assume that X is defined by
two polynomials F and G.

To finish off, the idea is to use elimination theory.

Definition-Lemma 15.18. Let S be a ring, and let F and G be two
polynomials in S[X, Y ], of degrees d and e.
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Let R(F,G) ∈ S be the determinant of the following (d+ e)× (d+ e)
square matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 f2 . . . fd−1 fd . . . 0 . . .
f0 f1 f2 . . . fd−1 fd . . . 0 . . .
0 f0 f1 f2 . . . fd−1 fd 0 . . .
...

...
...

...
...

...
...

...
...

0 0 . . . f0 f1 f2 . . . fd−1 fd
g0 g1 g2 . . . ge−1 ge . . . 0 . . .
g0 g1 g2 . . . ge−1 ge . . . 0 . . .
0 g0 g1 g2 . . . ge−1 ge 0 . . .
...

...
...

...
...

...
...

...
...

0 0 . . . g0 g1 g2 . . . ge−1 ge

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where f1, f2, . . . , fd and g1, g2, . . . , ge are the coefficients of F and G.
Then for every maximal ideal m of S, R̄(F,G) = 0 in the quotient

ring S/m iff the two polynomials F̄ and Ḡ have a common zero.

Proof. Since expanding a determinant commutes with passing to the
quotient S/m, we might as well assume that S = K is a field.

Now note that the rows of this matrix correspond to the polynomials
X iY e−1−iF and XjY d−1−jG, where 0 ≤ i ≤ e − 1 and 0 ≤ j ≤ d − 1,
expanded in the standard basis of the vector space Pd+e−1 of polynomi-
als of degree d+e−1. Thus the determinant is zero iff the polynomials
B = {X iY e−1−iF,XjY d−1−jG} are dependent, inside Pd+e−1.

To finish off then it suffices to prove that this happens only when
the two polynomials share a common zero. Now note that Pd+e−1 has
dimension d+e. Thus the d+e polynomials B are independent iff they
are a basis. Suppose that they share a common zero. Then the space
spanned by B is contained in the vector subspace of all polynomials
vanishing at the given point, and so B does not span. Now suppose that
they are dependent. Collecting terms, there are then two polynomials
A and B of degrees e− 1 and d− 1 such that

AF +BG = 0.

Suppose that d ≤ e. Then every zero of G must be a zero of AF . As
G has e zeroes and A has at most d− 1 zeroes, it follows that one zero
of G must be a zero of F . �

Proof of (15.9). By (15.17) it suffices to prove the result when n = 1
and X is defined by two polynomials F and G. In this case π(X) is
precisely given by the resultant of F and G, which is an element of
A(Y ). �
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(15.5) has the following very striking consequence.

Corollary 15.19. Every regular function on a connected projective
variety is constant.

Proof. By definition a regular function is a morphism f : X −→ A1.
Now by (15.5) the image of X is closed in A1. The only closed subsets
of A1 are finite sets of points or the whole of A1. On the other hand
f extends in an obvious way to a morphism g : X −→ P1. We haven’t
changed the image, but the image is now also a closed subset of P1.
Thus the image cannot be A1.

Thus the image is a finite set of points. As X is connected, the image
is connected and so the image is a point. �

Corollary 15.20. Let X be a closed and connected subset of an affine
variety.

If X is also projective then X is a point.

Proof. By assumption X ⊂ An. Suppose that X contains at least two
points. Then at least one coordinate must be different. Let f be the
function on An corresponding to this coordinate. Then f restricts to a
non-constant regular function on X, which contradicts (15.5). �

Corollary 15.21. Let X ⊂ Pn be a closed subset and let H be a hy-
persurface.

If X is not a finite set of points, then H ∩X is non-empty.

Proof. Suppose not. We may assume that X is irreducible. Let G be
the defining equation of H. Pick F of degree equal to the degree of G.
Then F/G is a regular function on X, since G is nowhere zero on X,
and we can choose F so that F/G is not constant. But this contradicts
(15.19). �

We can now answer our original question. Note that constructible
sets are closed under complements and finite intersections and unions.

Lemma 15.22. Let X be a Noetherian topological space and let Z be
a subset.

Then Z is constructible iff it is of the form Z = Z0 − (Z1 − (Z2 −
· · · − Zk)), where Zi are closed and decreasing subsets.

Proof. Suppose that Z is constructible. Let Z0 be the closure of Z.
Then Z is dense in Z0 and as Z is constructible, Z contains an open
dense subset of Z0. Clearly the difference Z0 − Z is constructible. Let
Z1 be the closure. Then Z ⊃ Z0−Z1. If Z0 = Z1 then since Z contains
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an open dense subset of Z0, it follows that Z0 is empty. Continuing in
this way, we construct a decreasing sequence of closed subsets,

Z0 ⊃ Z1 ⊃ · · · ⊃ Zk ⊃ . . . .

As X is Noetherian this sequence must terminate.
Now suppose that Z is an alternating difference of closed subsets,

Z = Z0 − (Z1 − (Z2 − · · · − Z2k−1)).

Then Z = (Z0 − Z1) ∪ (Z1 − Z2) · · · ∪ (Z2k−2 − Z2k−1). �

Proof of (15.4). As the image of a union is the union of the images,
it suffices to prove that the image of a locally closed subset is con-
structible. Suppose that Z is a locally closed subset. Replacing X by
the closure of Z and Y by the closure of the image, we may assume
that π|Z is dominant. Suppose that π(Z) contains an open subset. Re-
placing X by the complement of the inverse image, we are then done
by Noetherian induction.

Thus we are reduced to proving that π(Z) contains an open subset.
Replacing X by an open subset, we may assume that X is affine. Re-
placing X by its graph and applying induction on n, we may assume
that X ⊂ An and that the map is the restriction of the projection map

An −→ An−1,

where
(x1, x2, . . . , xn) −→ (x1, x2, . . . , xn−1),

so that there is a commutative diagram

X - An

Y

π

?
- An−1.

?

Thus we may assume that X ⊂ Y × A1 and that we are projecting
onto Y . Clearly we may replace A1 by P1. As Y is affine, every closed
subset of Y × P1 is defined by polynomials F (S, T ) ∈ A(Y )[S, T ].

Let V be the complement of Z in X, so that Z = X − V and both
X and V are closed in An. Pick G(S, T ) ∈ A(Y )[S, T ] vanishing on V
but not on X.

Suppose that X = Y × P1. Let

W = { y ∈ Y | {y} × P1 ⊂ V },
If y ∈ W then every coefficient of Gy vanishes. In particular W is con-
tained in a proper closed subset of Y (the vanishing of the coefficients
of G) and π(Z) contains the the complement of this closed subset.
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So we may assume that X is a proper closed subset of Y × P1. Pick
F (S, T ) ∈ A(Y )[S, T ] vanishing on X. Since X is closed, π(X) is
closed, whence π(X) = Y . But R(F,G) is a non-zero polynomial that
vanishes on π(V ) and π(Z) contains UR(F,G). �
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