15. IMAGES OF VARIETIES
This section is centred around anwering the following natural:

Question 15.1. Let f: X — Y be a morphism of quasi-projective
varieties. If Z is a closed subset then what can we say about the image

[2)?

Definition 15.2. Let f: X — Y be a continuous map of topological
spaces. We say that f is closed if the image of a closed set is closed.

We say that a morphism of quasi-projective varieties is proper if it
15 closed.

Our first guess is that morphisms are proper. Unfortunately this is
not correct. Let X = A% Y = A!, f projection onto the first factor.
Let

Z ={(z,y) €A’ |zy=1}.
Then the image of Z is A' — {0}, an open subset of A, not a closed
subset.

Okay, well perhaps the image of a quasi-projective variety is quasi-
projective (perhaps even the image of affine is affine?)? Unfortunately
this is not true either. For example, take X =Y = Z = A% Let
f: X — Y be the morphism (a,b) — (a,ab). Let us determine the
image . Pick (x,y) € A% If x # 0, then take a = x and b = y/z.
Then (a,ab) = (z,y). Thus I contains the complement of the z-axis.
Now if y # 0 and z = 0, then (z, y) is surely not in the image. However
(0,0) is in the image; indeed it is the image of (0,0). Thus the image
is equal to the complement of the z-axis union the origin, which is not
locally closed.

In fact, it turns out that this is as bad as it gets.

Definition 15.3. Let X be a topological space. A subset Z C X is said
to be constructible if it is the finite union of locally closed subsets.

The image I of A? above is the union of the open set U, and the
closed set (0,0), so [ is constructible. In fact, we are aiming for:

Theorem 15.4 (Chevalley’s Theorem). Let m: X — Y be morphism
of quasi-projective varieties.
Then the 1mage of a constructible set is constructible.

The first case to deal with, in fact the crucial case, which is of con-
siderable interest in its own right, is the case when X is projective:

Theorem 15.5. If f: X — Y is a morphism of quasi-projective va-

rieties and X 1s projective then f is proper.
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It turns out that it is easier to prove a stronger result than (|15.5)).

Definition 15.6. Let 1: X — Y be a morphism of quasi-projective
varieties. We say that i is a closed immersion if the image of i is
closed and v is an isomorphism onto its image.

Definition 15.7. Let m: X — Y be a morphism of quasi-projective
varweties.

We say that 7 is a projective morphism if it can be factored into
a closed immersion 1: X — P" X Y and the projection morphism
P"xY —Y.

Lemma 15.8. Fvery morphism from a projective variety is projective.
Proof. Just take the graph. O
Thus to prove ([15.5)) it suffices to prove:

Theorem 15.9. Fuvery projective morphism is proper.

Clearly closed embeddings are proper and the composition of proper
maps is proper. So to prove ((15.9)) we need to prove:

Lemma 15.10. If7: P" XY — Y denotes projection onto the second
factor then mw is proper.

The trick is to reduce to the case n = 1. The idea is that projective
space P", via projection, is very close to the product P! x P71,

Definition-Lemma 15.11. Let A C P" be a linear subspace and let
N =P* be a complimentary linear subspace. The map

T =ma: P" — A — PF,

given by sending p to the unique point ¢ = w(p) = (A,p) N A is a
morphism, which is called projection from A.

Proof. We only need to check that 7 is a morphism. This is easy
however you do it, but it is particularly easy if we choose coordinates
so that A is given by the vanishing of the last n — k-coordinates. In
this case case 7 is given by the map

[(Xo: Xy X — [Xo: Xy 000 Xi O

Definition 15.12. Let 7: X — Y be a morphism of quasi-projective
varieties. We say that m is a fibre bundle, with fibre F', if we can find
a cover of the base Y, such that over each open subset U of the cover,
7 H(U) is isomorphic to U x F, over U.

Note that if 7 is a fibre bundle then every fibre of 7 is surely a copy

of F. Tt is convenient to denote 7~ (U) by X|y.
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Lemma 15.13. The graph of the projection map from a point p defines
a morphism I' — P*"~1 which is a fibre bundle, with fibre P*.

Proof. The rational map given by projection from a point p
T P ——s P

is clearly defined everywhere, except at the point p of projection. More-
over this map is clearly constant on any line through p. Thus the
morphism I' — P! has fibres equal to the lines through p.

Pick two hyperplanes H; and H,, neither of which contain p. Under
projection, we may indentify H; with the base P*~'. Let V = H, N Ho.
Then the image of V is a hyperplane in P*~!. Let U be the complement
of this hyperplane in P*~!. Projection from V' defines a rational map
down to P!,

Ty - P" --» Pl.
This rational map is an isomorphism on every line [ through p which
does not intersect V.

Define a morphism : T'|y — P! x U via these two projection maps.
Let ¢: P! x U — T'|y be the map defined by sending (py, p2) to the
intersection of (A, p;) and (p,ps). Then ¢ is a morphism and it is not
hard to see that ¢ is the inverse of ¥. Thus 1 is an isomorphism.
Fixing H; and varying Hy it is clear that we get a cover of P! in this
way. 0

Lemma 15.14. To prove (15.10) we may assume that n = 1.

Proof. Let X C P" xY be a closed subset and let I be the image of X
under projection down to Y. If we set

Z={yeY|P"x{y} c X},

then Z is closed and of course Z C I. So it suffices to prove that
IN(Y —Z) is closed. Replacing Y by Y — Z we may as well assume
that Z is empty.

Pick y € Y. As we are assuming that Z is empty we may find p € P"
such that (p,y) ¢ X. If we set

U={yeY|(py) ¢ X},

then U is an open subset of Y. As the problem of showing I is closed
is local on Y, replacing Y by U, we may assume that U =Y.

Let g: I' X Y — P" X Y the morphism which is the identity on Y
and the graph of the blow up on P". Let X’ be the strict transform of
X. By definition X’ is closed. On the other hand, by assumption X
does not intersect {p} X Y so that X’ is equal to the total transform

of X. In particular the images of X’ and X in Y coincide.
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The morphism Y x I' — Y factors through Y x P*~!. So, by
induction on n, it suffices to prove that the image of X' in Y x I' —
Y x P! is closed. But now we are done, as we can check this locally
on Y x P*~! and by ([15.13), I is isomorphic to P* x P"~*, locally over
Pt O

The idea now is to work locally on Y, so that Y is affine, and think
of Y x P! as being P! over the coordinate ring of Y.

Lemma 15.15. Let Y be an affine variety and let X C Y x P! be a
closed subset.

Then X is defined by polynomials F(S,T) € A(Y)[S,T|, where [S :
T) are homogeneous coordinates on P

Proof. We may assume that X is irreducible and Xo = X N (Y x Up) is
dense in X. As Y is affine, then Y x Uj is affine and X is defined by
polynomials f(s), where s = S/T and the coefficients of f belong to
A(Y). If F(S,T) is the homogenisation of f then F'(S,T) € A(Y)[S,T]
vanishes on X and the set of all such polynomials cuts out X set
theoretically. U

Given y € Y and F(S,T) € A(Y)[S,T], let F, = F,(S,T) € K[S, T
be the polynomial we obtain by subsituting in y € Y to the coefficients.

Lemma 15.16. Let X C Y x PL

Then y € w(X) iff for every pair of functions F(S,T) and G(S,T) €
A(Y)[S, T vanishing on X, both F,,(S,T) and G,(S,T') have a common
zero on {y} x PL.

Proof. One inclusion is clear. So suppose that y ¢ 7(X). Pick F'(S,T)
that does not vanish on {y} x P'. Then F,(S,T) has only finitely many
zeroes. For each such zero p;, we may find G*(S, T') such that G} (S, T)
does not vanish at p;. Taking an appropriate linear combination of the
G" gives us a polynomial G such that F, and G, do not have a common
Zero. 0

Lemma 15.17. To prove (15.9) we may assume that X is defined by
two polynomials F and G.

To finish off, the idea is to use elimination theory.

Definition-Lemma 15.18. Let S be a ring, and let F' and G be two
polynomials in S[X,Y], of degrees d and e.
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Let R(F,G) € S be the determinant of the following (d+e) x (d+e)
square matrix

fo i fo oo fauu fao ... 0

fo i fo oo fauu fao ... 0

0 fo i fo v faix fa O

0O 0 ... fo N for oo fa1 fa
go 91 92 .- Ge—1 Ge ... o ...|”
go 91 92 -+ Ge—1 Ge .- 0

0 g0 91 92 - Gee1 e 0

0 0o ... 90 g1 g2 oo Ge—1 e

where f1, fa, ..., fa and g1, s, ..., ge are the coefficients of F' and G.
Then for every mazimal ideal m of S, R(F,G) = 0 in the quotient
ring S/m iff the two polynomials F' and G have a common zero.

Proof. Since expanding a determinant commutes with passing to the
quotient S/m, we might as well assume that S = K is a field.

Now note that the rows of this matrix correspond to the polynomials
Xy '=F and XY 159G, where 0 <i<e—1land 0< j <d—1,
expanded in the standard basis of the vector space P;y._1 of polynomi-
als of degree d+e— 1. Thus the determinant is zero iff the polynomials
B = {XYe17{F XI7Y4-17iG} are dependent, inside Py . ;.

To finish off then it suffices to prove that this happens only when
the two polynomials share a common zero. Now note that Py.. 1 has
dimension d+e. Thus the d+ e polynomials B are independent iff they
are a basis. Suppose that they share a common zero. Then the space
spanned by B is contained in the vector subspace of all polynomials
vanishing at the given point, and so B does not span. Now suppose that
they are dependent. Collecting terms, there are then two polynomials
A and B of degrees e — 1 and d — 1 such that

AF + BG =0.

Suppose that d < e. Then every zero of G must be a zero of AF. As
G has e zeroes and A has at most d — 1 zeroes, it follows that one zero
of G must be a zero of F. O

Proof of (15.9). By (15.17)) it suffices to prove the result when n = 1
and X is defined by two polynomials F' and G. In this case 7(X) is

precisely given by the resultant of F' and (G, which is an element of
A(Y). O
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(15.5)) has the following very striking consequence.

Corollary 15.19. FEvery reqular function on a connected projective
variety is constant.

Proof. By definition a regular function is a morphism f: X — Al
Now by the image of X is closed in A'. The only closed subsets
of Al are finite sets of points or the whole of A!. On the other hand
f extends in an obvious way to a morphism g: X — P!. We haven’t
changed the image, but the image is now also a closed subset of P!.
Thus the image cannot be A,

Thus the image is a finite set of points. As X is connected, the image
is connected and so the image is a point. U

Corollary 15.20. Let X be a closed and connected subset of an affine
variety.
If X is also projective then X is a point.

Proof. By assumption X C A™. Suppose that X contains at least two
points. Then at least one coordinate must be different. Let f be the
function on A" corresponding to this coordinate. Then f restricts to a
non-constant regular function on X, which contradicts . U

Corollary 15.21. Let X C P" be a closed subset and let H be a hy-
persurface.
If X is not a finite set of points, then H N X is non-empty.

Proof. Suppose not. We may assume that X is irreducible. Let G be
the defining equation of H. Pick F' of degree equal to the degree of G.
Then F/G is a regular function on X, since G is nowhere zero on X,
and we can choose F' so that F'/G is not constant. But this contradicts

(15.19). O

We can now answer our original question. Note that constructible
sets are closed under complements and finite intersections and unions.

Lemma 15.22. Let X be a Noetherian topological space and let Z be
a subset.

Then Z is constructible iff it is of the form Z = Zy — (Zy — (Zy —
o — Zy)), where Z; are closed and decreasing subsets.

Proof. Suppose that Z is constructible. Let Z; be the closure of Z.
Then Z is dense in Z, and as Z is constructible, Z contains an open
dense subset of Z,. Clearly the difference Z, — Z is constructible. Let

Z1 be the closure. Then Z D Zy— Z;. If Zy = Z; then since Z contains
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an open dense subset of 7, it follows that Z; is empty. Continuing in
this way, we construct a decreasing sequence of closed subsets,

o D1 DDl D....

As X is Noetherian this sequence must terminate.
Now suppose that Z is an alternating difference of closed subsets,

Z - ZO — (Zl — (ZQ — s — ngfl)).
Then Z = (ZO - Zl> U (Zl - ZQ) - U (ng_g - ZQk—l)- L]

Proof of . As the image of a union is the union of the images,
it suffices to prove that the image of a locally closed subset is con-
structible. Suppose that Z is a locally closed subset. Replacing X by
the closure of Z and Y by the closure of the image, we may assume
that 7|z is dominant. Suppose that m(Z) contains an open subset. Re-
placing X by the complement of the inverse image, we are then done
by Noetherian induction.

Thus we are reduced to proving that 7(Z) contains an open subset.
Replacing X by an open subset, we may assume that X is affine. Re-
placing X by its graph and applying induction on n, we may assume
that X C A™ and that the map is the restriction of the projection map

An SN An—l7
where
(1,22, .., x,) — (1,22, ..., Tp_1),
so that there is a commutative diagram
X — A"

|

Yy — A" L

Thus we may assume that X C Y x A! and that we are projecting
onto Y. Clearly we may replace A! by P!. As Y is affine, every closed
subset of Y x P! is defined by polynomials F(S,T) € A(Y)[S, T].

Let V' be the complement of Z in X, so that Z = X — V and both
X and V are closed in A". Pick G(S,T) € A(Y)[S,T] vanishing on V/
but not on X.

Suppose that X =Y x P! Let

W={yeY[{y} xP' cV}

If y € W then every coefficient of G, vanishes. In particular W is con-
tained in a proper closed subset of Y (the vanishing of the coefficients

of G) and 7(Z) contains the the complement of this closed subset.
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So we may assume that X is a proper closed subset of Y x P!. Pick
F(S,T) € A(Y)[S,T] vanishing on X. Since X is closed, 7(X) is
closed, whence 7(X) =Y. But R(F,G) is a non-zero polynomial that
vanishes on 7(V') and 7(Z) contains Ug(r,q). O
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