
14. Rational maps

It is often the case that we are given a variety X and a morphism
defined on an open subset U of X. As open sets in the Zariski topology
are very large, it is natural to view this as a map on the whole of X,
which is not everywhere defined.

Definition 14.1. A rational map φ : X 99K Y between quasi-projective
varieties is a pair (f, U) where U is a dense open subset of X and
f : U −→ Y is a morphism of varieties. Two rational maps (f1, U1) and
(f2, U2) are considered equal if there is a dense open subset V ⊂ U1∩U2

such that the two functions f1|V and f2|V are equal.

It is customary to avoid using the pair notation and to leave U
unspecified. We often say in this case that φ is defined on U . Note
that if U and V are two dense open sets, and (f, U), (g, V ) represent
the same rational map, then (h, U ∪ V ) also represents the same map,
where h is defined in the obvious way. By Noetherian induction, it
follows that there is a largest open set on which φ is defined, which is
called the domain of φ. The complement of the domain is called the
locus of indeterminancy.

One way to get a picture of a rational map, is to consider the graph.

Definition 14.2. Let φ : X 99K Y be a rational map.
The graph of φ is the closure of the graph of f , where the pair

(f, U) represents φ.
The image of φ is the image of the graph of φ under the second

projection.

Note that the domain of φ is precisely the locus where the first
projection map is an isomorphism.

Definition 14.3. Let φ : X 99K Y and ψ : Y 99K Z be two rational
maps. Suppose that φ = (f, U) and ψ = (g, V ) and that f(U) ∩ V is
non-empty. Then we may define the composition of φ and ψ by taking
the pair (g ◦ f, f−1(V )).

Note that in general, we cannot compose rational maps. The problem
might be that the image of the first map might lie in the locus where
the second map is not defined. However there will never be a problem
if X is irreducible and φ is dominant:

Definition 14.4. We say that φ is dominant if the closure of the
image of φ is the whole of Y .

Note that this gives us a category, the category of irreducible varieties
and dominant rational maps.
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Definition 14.5. We say that a dominant rational map φ : X 99K Y
of irreducible quasi-projective varieties is birational if it has an inverse.
In this case we say that X and Y are birational. We say that X is
rational if it is birational to Pn.

It is interesting to see an example. Let φ : P2 99K P2 be the map

[X : Y : Z] −→ [Y Z : XZ : XY ].

This map is clearly a rational map. It is called a Cremona trans-
formation. Note that it is a priori not defined at those points where
two coordinates vanish. To get a better understanding of this map, it
is convenient to rewrite it as

[X : Y : Z] −→ [1/X : 1/Y : 1/Z].

Written as such it is clear that this map is an involution, so that it is
in particular a birational map.

It is interesting to check whether or not this map really is well defined
at the points [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0]. To do this, we need to
look at the graph.

Consider the following map,

A2 99K A1,

which assigns to a point p ∈ A2 the slope of the line connecting the
point p to the origin,

(x, y) −→ x/y.

Now this map is not defined along the locus where y = 0. Replacing
A1 with P1 we get a map

(x, y) −→ [x : y].

Now the only point where this map is not defined is the origin. We
consider the graph,

Γ ⊂ A2 × P1.

Consider how the graph sits over A2. Outside the origin, the first
projection is an isomorphism. Over the origin, the graph is contained
a copy of the image, that is P1. Consider any line y = tx, through the
origin. Then this line, minus the origin, is sent to the point with slope
t. It follows that the closure of this line is sent to the point with slope
t. Varying t, it follows that any point of the fibre over P1 is a point of
the graph.

Thus the morphism p : Γ −→ A2 is an isomorphism outside the origin
and contracts a whole copy of P1 to a point. For this reason, we call p
a blow up.
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Definition 14.6. Let φ : X 99K Y be a rational map, which is given
locally by f1, f2, . . . , fk. Let I be the ideal spanned by f1, f2, . . . , fk. The
induced morphism p : Γ −→ X is called the blow up of the ideal I.

Clearly p is always birational, as it is an isomorphism outside V (I).
In our case I = 〈x, y〉, the maximal ideal of p, so that we call p

the blow up of a point. Suppose we have coordinates [S : T ] on P1.
Then outside of the origin, the graph satisfies the equation xT = yS.
Thus the closure must satisfy the same equation. Since this equation
determines the graph outside the origin, in fact the graph is defined by
this equation (as the whole fibre over the origin lives in the graph, we
don’t need anymore equations).

The inverse image of the origin is called the exceptional divisor.

Definition 14.7. Let π : X −→ Y be a birational morphism. The
locus where π is not an isomorphism is called the exceptional locus.
If V ⊂ Y , the inverse image of V is called the total transform. Let Z
be the image of the exceptional locus. Suppose that V is not contained
in Z. The strict transform of V is the closure of the inverse image
of V − Z.

It is interesting to compute the strict transform of some planar
curves. We have already seen that lines through the origin lift to curves
that sweep out the exceptional divisor. In fact the blow up separates
the lines through the origin. These are then the fibres of the second
morphism.

Let us now take a nodal cubic,

y2 = x2 + x3.

We want to figure out its strict transform, so that we need the inverse
image in the blow up. Outside the origin, there are two equations to
be satisfied,

y2 = x2 + x3 and xT = yS.

Passing to the coordinate patch y = xt, where t = T/S, and substitut-
ing for y in the first equation we get

x2t2 − x2 − x3 = x2(t2 − x− 1).

Now if x = 0, then y = 0, so that in fact locally x = 0 is the equation
of the exceptional divisor. So the first factor just corresponds to the
exceptional divisor. The second factor will tell us what the closure of
our curve looks like, that is the strict transform. Now over the origin,
x = 0, so that t2 = 1 and t = ±1. Thus our curve lifts to a curve
which intersects the exceptional divisor in two points. (If we compute
in the coordinate patch x = sy, we will see that the curve does not
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meet the point at infinity). These two points correspond to the fact
that the nodal cubic has two tangent lines at the origin, one of slope 1
and one of slope −1. We call the closure of the inverse image outside
the origin as the strict transform (the total transform being just the
whole inverse image).

Now consider what happens for the cuspidal cubic, y2 = x3. In this
case we get

(xt)2 − x3 = x2(t2 − x).

Once again the factor of x2 corresponds to the fact that the inverse
image surely contains the exceptional divisor. But now we get the
equation t2 = 0, so that there is only one point over the origin, as one
might expect from the geometry.

Let us go back to the Cremona transformation. To compute what
gets blown up and blown down, it suffices to figure out what gets
blown down, by symmetry. Consider the line X = 0. If bc 6= 0, the
point [0 : b : c] gets mapped to [0 : 0 : 1]. Thus the strict transform of
the line X = 0 in the graph gets blown down to a point. By symmetry
the strict transforms of the other two lines are also blown down to
points. Outside of the union of these three lines, the map is clearly an
isomorphism.

Thus the involution blows up the three points [0 : 0 : 1], [0 : 1 : 0],
and [1 : 0 : 0] and then blows down the three disjoint lines. Note that
the three exceptional divisors become the three new coordinate lines.

One of the most impressive results of the nineteenth century is the
following characterisation of the birational automorphism group of P2.

Theorem 14.8 (Noether). The birational automorphism group is gen-
erated by a Cremona transformation and PGL(3).

This result is very deceptive, since it is known that the birational
automorphism group is, by any standards, very large.

Definition 14.9. A rational function is a rational map to A1.
The set of all rational functions, denoted K(X), is called the func-

tion field.

Lemma 14.10. Let X be an irreducible variety.
Then the function field is a field. If U ⊂ X is any open affine subset,

then function field is precisely the field of fractions of the coordinate
ring.

Proof. Clear, since on an irreducible variety, any rational function is
determined by its restriction to any open subset, and locally any mor-
phism is given by a rational function. �
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Proposition 14.11. Let K be an algebraically closed field.
Then there is an equivalence of categories between the category of ir-

reducible varieties over K with morphisms the dominant rational maps,
and the category of finitely generated field extensions of K.

Proof. Define a functor F from the category of varieties to the category
of fields as follows. Given a variety X, let K(X) be the function field of
X. Given a rational map φ : X 99K Y , define F (φ) : K(Y ) −→ K(X)
by composition. If f is a rational function on Y , then φ◦f is a rational
function on X.

We have to check that F is essentially surjective and fully faithful.
Suppose that L is a finitely generated field extension of K. Then
L = K(α1, α2, . . . , αn). Let A = K[α1, α2, . . . , αn]. Let X be any
affine variety with coordinate ring A. Then X is irreducible as A is an
integral domain and the function field of X is precisely L as this is the
field of fractions of A.

The fact that F is fully faithful is proved in the same way as before.
�

Proposition 14.12. Let X and Y be two irreducible varieties.
Then the following are equivalent

(1) X and Y are birational.
(2) X and Y contain isomorphic open subsets.
(3) The function fields of X and Y are isomorphic.

Proof. We have already seen that (1) and (3) are equivalent and clearly
(2) implies (1) (or indeed (3)). It remains to prove that if X and Y are
birational then they contain isomorphic open subsets.

Let φ : X 99K Y be a birational map with inverse ψ : Y 99K X.
Suppose that φ is defined on U and ψ is defined on V . Let U ′ =
φ−1(V ) ⊂ U . Let f be the restriction of φ to U ′. Then f : U ′ −→
f(U ′) ⊂ V . Suppose that ψ is represented by (g, V ).

The composition g ◦ f : U ′ −→ U ′ is the identity morphism, as it is
the identity on an open subset. Therefore f(U ′) = g−1(U ′) is open and
so g : f(U ′) −→ U ′ is the inverse of f . Indeed f ◦ g and g ◦ f are both
morphisms and equal to the identity on dense open subsets, so that
they are both the identity morphism. So U ′ and f(U ′) are isomorphic
open subsets. �

Corollary 14.13. Let X be an irreducible variety.
Then the following are equivalent

(1) X is rational.
(2) X contains an open subset of Pn.
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(3) The function field of X is a purely transcendental extension of
K.

Proof. Immediate from (14.12). �

Let us consider some examples. I claim that the curve C = V (y2 −
x2 − x3) is rational. We have already seen that there is a morphism
A1 −→ C. We want to show that it is a birational map. One way to
proceed is to construct the inverse. In fact the inverse map is C 99K A1

given by (x, y) −→ y/x. Another way to proceed is to prove that the
function field is purely transcendental. Now the coordinate ring is

K[x, y]/〈y2 − x2 − x3〉.

So the fraction field is K(x, y), where y2 = x2 + x3. Consider t = y/x.
I claim that K(t) = K(x, y). Clearly there is an inclusion one way.
Now t2 = y2/x2 = 1 + x. So x = t2− 1 ∈ K(t). But y = tx, so that we
do indeed have equality K(t) = K(x, y). Thus C is rational.

Perhaps a more interesting example is to consider the Segre variety
V ⊂ P3. Consider projection π from a point p of the Segre variety,

π : V 99K P2.

Clearly the only possible point of indeterminancy is the point p. Since
a line, not contained in V , meets the Segre variety in at most two
points, it follows that this map is one to one outside p, unless that line
is contained in V . On the other hand, if q ∈ P2, the line 〈p, q〉 will
meet the Segre variety in at least two points, one of which is p.

Now at the point p, there passes two lines l and m (one line of each
ruling). These get mapped to two separate points, say q and r. It
follows that p is indeed a point of indeterminancy. To proceed further,
it is useful to introduce coordinates. Suppose that p = [0 : 0 : 0 : 1],
where V = V (XW − Y Z).

Now projection from p ∈ P3 defines a rational map

φ : P3 99K P2,

whose exceptional locus is a copy of P2. Indeed the graph of φ lies in
P3 × P2 and as before over the point p, we get a copy of the whole of
the image P2, as can be seen by looking at lines through p. Working
on the affine chart W 6= 0, V is locally defined as x = yz. If [R : S : T ]
are coordinates on P2, the equations for the blow up of P3 are given as

xS = yR xT = zR yT = zS.

The blow up of V at p is given as the strict transform of V in the blow
up of P3. We work in the patch T 6= 0. Then x = rz and y = sz so
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that the we get the equation

rz − sz2 = z(r − sz) = 0.

Now z = 0 corresponds to the whole exceptional locus so that r = sz
defines the strict transform. In this case z = 0, means r = 0, so that
we get a line in the exceptional P2.

In other words the graph of π is the blow up of p, with an exceptional
divisor isomorphic to P1. The graph of π then blows down the strict
transform of the two lines. Note that the image of the exceptional
divisor, is precisely the line connecting the two points q and r.

To see that π is birational, we write down the inverse,

ψ : P2 99K V.

Given [R : S : T ], we send this to [R : S : T : ST/R]. Clearly this lies
on the quadric XW − Y Z and is indeed the inverse map. Note that
the inverse map blows up q and r then blows down the line connecting
them to p.

In fact it turns out that the picture above for rational maps on
surfaces is the complete picture.

Theorem 14.14 (Elimination of Indeterminancy). Let φ : S 99K Z be
a rational map from a smooth surface.

Then there is an iterated sequence of blow ups of points p : T −→ S
such that the induced rational map ψ : T −→ Z is a morphism.

Theorem 14.15. Let φ : S 99K T be a birational map of smooth sur-
faces.

Then there is an iterated sequence of blow ups of points p : W −→ S
such that the induced map q : W −→ T is also an iterated sequence of
blow up of points.

In fact it turns out that both of these results generalise to all dimen-
sions. In the first result, one must allow blowing up the ideal of any
smooth subvariety. In the second result, one must allow mixing up the
sequence of blowing up and down, although it is conjectured that the
one can perform first a sequence of blow ups and then a sequence of
blow downs.

Another way to proceed, is to compute the field of fractions. The
coordinate ring on the affine piece W 6= 0 is

K[x, y, z]/〈x− yz〉 = k[y, z].

The field of fractions is visibly then K(y, z). However perhaps the
easiest way to proceed is to observe that P1×P1 contains A1×A1 ' A2,
so that the Segre Variety is clearly rational.
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In fact it turns out in general to be a vary hard problem to determine
which varieties are rational. As an example of this consider Lüroth’s
problem.

Definition 14.16. We say that a variety X is unirational if there is
a dominant rational map φ : Pn 99K X.

Question 14.17 (Lüroth). Is every unirational variety rational?

Note that one way to restate Lüroth’s problem is to ask if every
subfield of a purely transcendental field extension is purely transcen-
dental. It turns out that the answer is yes in dimension one, in all
characteristics. This is typically a homework problem in a course on
Galois Theory.

In dimension two the problem is already considerably harder, and it
is false if one allows inseparable field extensions. The first step is in
fact to establish (14.14) and (14.15).

In dimension three it was shown to be false even in characteristic
zero, in 1972, using three different methods.

One proof is due to Artin and Mumford. It had been observed by
Serre that the cohomology ring of a smooth unirational threefold is

indistinguishable from that of a rational variety (for P3 one gets Z[x]
〈x3〉 ,

and the cohomology ring varies in a very predictable under blowing up
and down) except possibly that there might be torsion in H3(X,Z).
They then give an reasonably elementary construction of a threefold
with non-zero torsion in H3.

Another proof is due to Clemens and Griffiths. It is not hard to
prove that every smooth cubic hypersurface in P4 is unirational. On
the other hand they prove that some smooth cubics are not rational.
To prove this consider the family of lines on the cubic. It turns out
that this is a two dimensional family, and that a lot of the geometry of
the cubic is controlled by the geometry of this surface.

The third proof is due to Iskovskikh and Manin. They prove that
every smooth quartic in P4 is not rational. On the other hand, some
quartics are unirational. In fact they show, in an amazing tour de force,
that the birational automorphism group of a smooth quartic is finite.
Clearly this means that a smooth quartic is never rational.
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