
13. Projective varieties and schemes

Definition 13.1. Let R be a ring. We say that R is graded, if there
is a direct sum decomposition,

R =
⊕
d∈N

Rd,

where each Rd is an additive subgroup of R, such that

RdRe ⊂ Rd+e.

The elements of Rd are called the homogeneous elements of order
d.

Let R be a graded ring. We say that an R-module M is graded if
there is a direct sum decomposition

M =
⊕
n∈N

Mn,

compatible with the grading on R in the obvious way,

RdMn ⊂Md+n.

A morphism of graded modules is an R-module map φ : M −→ N
of graded modules, which respects the grading,

φ(Mn) ⊂ Nn.

A graded submodule is a submodule for which the inclusion map is
a graded morphism. A graded ideal I of R is an ideal, which when
considered as a submodule, is a graded submodule.

Note that the kernel, image and cokernel of a morphism of graded
modules is a graded module. Note also that an ideal is a graded ideal
iff it is generated by homogeneous elements. Here is the key example:

Example 13.2. Let R be the polynomial ring over a ring S. Define a
direct sum decomposition of R by taking Rn to be the set of homogeneous
polynomials of degree n. Given a graded ideal I in R, that is an ideal
generated by homogeneous elements of R, the quotient is a graded ring.

Remark 13.3. Suppose that R is a graded ring, and that S is a multi-
plicative set, generated by homogeneous elements. Then RS is a graded
ring, where the grading is given by

deg f/g = deg f − deg g,

where, of course, the grading is now given by the integers.
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Definition 13.4. Let X ⊂ Pn be a projective variety. The ideal I(X) of
X is the ideal generated by the homogeneous polynomials which vanish
on X.

The homogeneous coordinate ring of X is equal to the quotient
K[X0, X1, . . . , Xn]/I(X).

Note that the homogeneous coordinate ring of X is a graded ring,
since the ideal I(X) is homogeneous. Note the following:

Lemma 13.5. Let I be a homogeneous ideal in a graded ring R.
Then the radical of I is also a homogeneous ideal.

Proof. Pick r ∈ R, such that rn ∈ I. Suppose that

r = r0 + r1 + · · ·+ rk,

is the decomposition of r into its homogeneous pieces. We want to
prove that ri belongs to the radical of I. By induction, it suffices to
prove that rk is in the radical. But if we expand rn, then rnk is the only
part of degree nk. Since I is homogeneous, it follows that rnk ∈ I. Thus
rk is in the radical of I. �

Theorem 13.6. Let I be a homogeneous ideal in the polynomial ring
and let X = V (I).

If X is not empty then I(X) is equal to the radical of I.

Indeed the proof is the same as before, using (13.5). Note that this
establishes a correspondence between projective varieties and homoge-
neous ideals, with the only twist being that the ideal

〈X0, X1, . . . , Xn〉,
does not correspond to any projective variety. One subtle point is that
the homogeneous coordinate ring remembers the embedding, unlike the
coordinate ring of an affine variety. Thus there is no correspondence
between projective varieties and finitely generated graded K-algebras
without nilpotents.

Note that for a projective variety, unlike for an affine variety there are
three different ways in which a collection of homogeneous polynomials
can cut out X.

Definition 13.7. Let X be a projective variety and let F1, F2, . . . , Fk
be a collection of homogenous polynomials. We say that F1, F2, . . . , Fk
cuts out X

(1) set-theoretically if V (F1, F2, . . . , Fk) = X.
(2) scheme-theoretically if for every i, if f1, f2, . . . , fk denotes

the dehomogenisation of F1, F2, . . . , Fk in the affine piece Xi 6=
0, then 〈f1, f2, . . . , fk〉 = I(X ∩ Ui).
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(3) ideal-theoretically if 〈F1, F2, . . . , Fk〉 = I(X).

Note that X ∩Ui is an affine variety in An. Of course we are familiar
with the first and last notion. A moments thought will convince the
reader that the middle notion is intermediary between the other two.
Let us see that this notion is really distinct from the other two.

In fact if F1, F2, . . . , Fk generate the ideal of X, note that the prod-
ucts Gij = XiFj, 0 ≤ i ≤ n and 0 ≤ j ≤ n certainly cut out X
set-theoretically (essentially because the common vanishing locus of
the Xi is empty). Now the products Gij certainly don’t generate the
ideal of X (indeed, supposing that the degrees of Fj are increasing, it
is clear that F1 is not a combination of the Gij by reasons of degree).
On the other hand, on the affine open piece Ui, the dehomogenisation
of Gij is the same as the dehomogenisation of Fj. Thus Gij certainly
cut out X scheme-theoretically.

It is interesting to go back to some of the morphisms given before
and give intrinsic definitions of these maps, at least in characteristic
zero.

Let V be a vector space of dimension two. Then there is a natural
map

V −→ Symd(V ),

obtained by sending a vector v to its dth symmetric power, vd. This
induces a map

P1 −→ Pd,
obtained by sending the line [v] to the line [vd].

Lemma 13.8. Suppose that the characteristic is zero (or more gener-
ally coprime to d).

Then the map defined above is precisely the d-uple embedding.

Proof. Pick a basis e and f of V . Then a general vector in V is of
the form v = ae + bf . Then we expand (ae + bf)d using the binomial
Theorem.

(ae+ df)d = aded +

(
d

1

)
ad−1bed−1 + · · ·+ bdfd.

Thus the given map is

[a, b] −→ [ad :

(
d

1

)
ad−1b :

(
d

2

)
ad−2b2 : · · · : bd].

Replacing a by S and b by T , note that the entries gives us a basis
for the polynomials of degree d. Thus changing coordinates we get the
d-uple embedding. �
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Note that this interpretation sheds new light on the fact that the ra-
tional normal curve is a determinental variety. Indeed we have identi-
fied the rational normal curve as being the locus of rank one symmetric
tensors in Symd(V ).

Similarly, in characteristic zero, the general d-uple embedding, has
the same description. In particular the Veronese surface in P5, may be
identified as the locus of rank one symmetric tensors inside P(Sym2(V )),
where V is a three dimensional vector space.

Proposition 13.9. Let X ⊂ Pn be a projective variety.
Then we can embed X into projective space so that X is cut out

scheme-theoretically by quadratic equations.

Proof. Suppose that F1, F2, . . . , Fk generate the ideal of X. Multiplying
each Fi by all monomials of a given degree, we may assume that the
degree of each Fi is the same (as above, the new polynomials still cut
out X scheme-theoretically). Now consider the d-uple embedding of Pn
into PN . Let Y be the image of X. Then the polynomials F1, F2, . . . , Fk
correspond to linear polynomials in PN . Since the image of PN is cut
out ideal theoretically by quadrics and the restriction of a quadric to
a hyperplane is a quadric, it follows that Y is cut out by quadrics in
some linear space contained in PN . �

Now we turn to the definition of projective schemes. The definition
mirrors that for affine schemes. First we start with a graded ring S,

S =
⊕
d∈N

Sd.

We set
S+ =

⊕
d>0

Sd,

and we let ProjS denote the set of all homogeneous prime ideals of S,
which do not contain S+. We put a topology on ProjS analogously to
the way we put a topology on SpecS; if a is a homogeneous ideal of S,
then we set

V (a) = { p ∈ ProjS | a ⊂ p }.
The Zariski topology is the topology where these are the closed sets.
If p is a homogeneous prime ideal, then S(p) denotes the elements of
degree zero in the localisation of S at the set of homogenous elements
which do not belong to p. We define a sheaf of rings OX on X = ProjS
by considering, for an open set U ⊂ X, all functions

s : U −→
∐
p∈U

S(p),
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such that s(p) ∈ S(p), which are locally represented by quotients. That
is given any point q ∈ U , there is an open neighbourhood V of p in
U and homogeneous elements a and f in S of the same degree, such
that for every p ∈ V , f /∈ p and s(p) is represented by the class of
a/f ∈ S(p).

Proposition 13.10. Let S be a graded ring and set X = ProjS.

(1) For every p ∈ X, the stalk OX,p is isomorphic to S(p).
(2) For any homogeneous element f ∈ S+, set

Uf = { p ∈ ProjS | f /∈ p }.
Then Uf is open in ProjS, these sets cover X and we have an
isomorphism of locally ringed spaces

(Uf ,OX |Uf
) ' SpecS(f).

where S(f) consists of all elements of degree zero in the locali-
sation Sf .

In particular ProjS is a scheme.

Proof. The proof of (1) follows similar lines to the affine case and is
left as an exercise for the reader. Uf = X − V (〈f〉) and so Uf is
certainly open and these sets certainly cover X. We are going to define
an isomorphism

(g, g#) : (Uf ,OX |Uf
) −→ SpecS(f).

If a is any homogeneous ideal of S, consider the ideal aSf ∩ S(f). In
particular if p is a prime ideal of S, then φ(p) = pSf ∩ S(f) is a prime
ideal of S(f). It is easy to see that φ is a bijection. Now a ⊂ p iff

aSf ∩ S(f) ⊂ pSf ∩ S(f) = φ(p),

so that φ is a homeomorphism. If p ∈ Uf then S(p) and (S(f))φ(p) are
naturally isomorphic. As in the proof in the affine case, this induces a
morphism g# of sheaves which is easily seen to be an isomorphism. �

Definition 13.11. Let R be a ring. Projective n-space over R,
denoted PnR, is the proj of the polynomial ring R[x1, x2, . . . , xn].

Note that PnR is a scheme over S = SpecR. Note that we can also
define projective n-space PnS over any scheme S. Just pull back PnZ
along the unique morphism S −→ Spec Z.

We end this section with a result that we could have proved earlier.
We show that the category of varieties embeds in a natural way into
the category of schemes. We start with the problem of adding the extra
points, which are not closed:
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Definition-Lemma 13.12. If X is a topological space, then let t(X)
be the set of irreducible closed subsets of X. Then t(X) is naturally a
topological space and if we define a map α : X −→ t(X) by sending a
point to its closure then α induces a bijection between the closed sets of
X and t(X).

Proof. Observe that

• If Y ⊂ X is a closed subset, then t(Y ) ⊂ t(X),
• if Y1 and Y2 are two closed subsets, then t(Y1∪Y2) = t(Y1)∪t(Y2),

and
• if Yα is any collection of closed subsets, then t(∩Yα) = ∩t(Yα).

The defines a topology on t(X) and the rest is clear. �

Theorem 13.13. Let k be an algebraically closed field. Then there is
a fully faithful functor t from the category of varieties over k to the
category of schemes over Spec k. For any variety V , the set of points
of V may be recovered from the closed points of t(V ) and the sheaf of
regular functions is the restriction of the structure sheaf to the set of
closed points.

Proof. We will show that (t(V ), α∗OV ) is a scheme, where OV is the
sheaf of regular functions on V . As this problem is local and any variety
has an open affine cover, it suffices to prove this when V is an affine
variety, with coordinate ring A. Let X be the spectrum of A. We are
going to a define a morphism of locally ringed spaces,

β = (f, f#) : (V,OV ) −→ (X,OX).

If p ∈ V , then let f(p) = mp ∈ X be the maximal ideal of elements of
A vanishing at p. By the Nullstellensatz, f induces a bijection between
the closed points of X and the points of V . It is easy to see that f is
a homeomorphism onto its image. Now let U ⊂ X be an open set. We
need to define a ring homomorphism

f#(U) : OX(U) −→ f∗OV (U) = OV (f−1(U)).

Let s ∈ OX(U). We want to define r = f#(U)(s). Pick p ∈ U . Then
we define r(p) to be the image of s(mp) ∈ Amp inside the quotient

Amp/mp ' k.

It is easy to see that r is a regular function and that f#(U) is a ring
isomorphism. This defines f# and β.

As the irreducible subsets of V are in bijection with the prime ideals
of A, it follows that (X,OX) is isomorphic to (t(V ), α∗OV ), and so the
latter is an affine scheme.
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Note that there is a natural inclusion

k ⊂ OV (V ) = OX(X),

which associates to a scalar the constant function on V . As Spec k is
affine there is a morphism X −→ Spec k and so X is a scheme over
Spec k.

Suppose that V and W are quasi-projective varieties. To give a
morphism from V to W is the same as to cover V and W by affine
varieties Vi and Wi and to give morphisms on each piece which agree
on overlaps. Now a morphism Vi −→ Wi is the same as a k-algebra
homomorphism Bi −→ Ai between the two coordinate rings, which
induces a morphism between the two corresponding varieties Xi = t(Vi)
and Yi = t(Wi). It is easy to see that these glue to give a morphism
X = t(V ) −→ Y = t(Y ) This defines the functor t and it is easy to
check that t is fully faithful. �

7


	13. Projective varieties and schemes

