
11. Schemes

To define schemes, just as with algebraic varieties, the idea is to first
define what an affine scheme is, and then realise an arbitrary scheme, as
something which is locally an affine scheme. The definition of an affine
scheme is motivated by the correspondence between affine varieties and
finitely generated algebras over a field, without nilpotents. The idea is
that we should be able to associate to any ring R, a topological space
X, and a set of continuous functions on X, which is equal to R. In
practice this is too much to expect and we need to work with a slightly
more general object than a continuous function.

Now if X is an affine variety, the points of X are in correspondence
with the maximal ideals of the coordinate ring A = A(X). Unfortu-
nately if we have two arbitrary rings R and S, then the inverse image
of a maximal ideal won’t be maximal. However it is easy to see that
the inverse image of a prime ideal is a prime ideal.

Definition 11.1. Let R be a ring. X = SpecR denotes the set of
prime ideals of R. X is called the spectrum of R.

Note that given an element of R, we may think of it as a function
on X, by considering it value in the quotient.

Example 11.2. It is interesting to see what these functions look like
in specific cases. Suppose that we take X = Spec k[x, y]. Now any
element f = f(x, y) ∈ k[x, y] defines a function on X. Suppose that
we consider a maximal ideal of the form p = 〈x − a, x − b〉. Then the
value of f at p is equal to the class of f inside the quotient

R/p =
k[x, y]

〈x− a, x− b〉
.

If we identify the quotient with k, under the obvious identification, then
this is the same as evaluating f at (a, b). Now consider Z. Suppose
that we choose an element n ∈ Z. Then the value of n at the prime
ideal p = 〈p〉 is equal to the value of n modulo p. For example, consider
n = 60. Then the value of this function at the point 7 is equal to 60
mod 7 = 4 mod 7. Moroever 60 has zeroes at 2, 3 and 5, where both
3 and 5 are ordinary zeroes, but 2 is a double zero.

Suppose that we take the ring R = k[x]/〈x2〉. Then the spectrum
contains only one element, the prime ideal 〈x〉. Consider the element
x ∈ R. Then x is zero on the unique element of the spectrum, but it is
not the zero element of the ring.

Now we wish to define a topology on the spectrum of a ring. We
want to make the functions above continuous. So given an element
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f ∈ R, we want the set

{ p ∈ SpecR | f(p) = 0 } = { p ∈ SpecR | 〈f〉 ⊂ p },
to be closed. Given that any ideal a is the union of all the principal
ideals contained in it, so that the set of prime ideals which contain a is
equal to the intersection of prime ideals which contain every principal
ideal contained in a and given that the intersection of closed sets is
closed, we have an obvious candidate for the closed sets:

Definition 11.3. The Zariski topology on X is given by taking the
closed sets to be

V (a) = {p ∈ SpecR | a ⊂ p },
where a is any ideal of R.

Lemma 11.4. Let R be a ring.
Then X = SpecR is a topological space. Moreover the open sets

Uf = { p ∈ R | f /∈ p },
form a base for the topology.

Proof. Easy check. �

By what we said above, the Zariski topology is the weakest topology
so that the zero sets of f ∈ R are closed.

Example 11.5. Let k be a field. Then Spec k consists of a single point.
Now consider Spec k[x]. If k is an algebraically closed field, then by
the Nullstellensatz, the maximal ideals are in correspondence with the
points of k. However, since k[x] is an integral domain, the zero ideal is
a prime ideal. Since k[x] is a PID, the proper closed sets of X consist
of finite unions of maximal ideals. The closure of the point ξ = 〈0〉 is
then the whole of X. In particular, not only is the Zariski topology, for
schemes, not Hausdorff or T2, it is not even T1. Now consider k[x, y],
where k is an algebraically closed field. Prime ideals come in three
types. The maximal ideals correspond to points of k2. The zero ideal,
whose closure consists of the whole of X. But there are also the prime
ideals which correspond to prime elements f ∈ k[x, y]. The zero locus
of f is then an irreducible curve C, and in fact the closure of the point
ξ = 〈f〉 is then the curve C. The proper closed sets thus consist of a
finite union of maximal ideals, union infinite sets of the maximal ideals
which consist of all points belonging to an affine curve C, together with
the ideal of each such curve.

Now suppose that k is not algebraically closed. For example, consider
Spec R[x]. As before the closure of the zero ideal consists of the whole
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of X. The maximal ideals come in two flavours. First there are the
ideals 〈x− a〉, where a ∈ R. But in addition there are also the ideals

〈x2 + ax+ b = (x− α− iβ)(x− α + iβ)〉,
where a, b, α and β > 0 are real numbers, so that b2 − 4a < 0.

There is a very similar (but more complicated) picture inside Spec R[x, y].
The set V (x2 + y2 = −1) does not contain any ideals of the first kind,
but it contains many ideals of the second kind. In the classical picture,
the conic does x2 + y2 = −1 does not contain any points but it does
contain many points if you include all prime ideals.

Now suppose that we take Z. In this case the maximal ideals corre-
spond to the prime numbers, and in addition there is one point whose
closure is the whole spectrum. In this respect Spec Z is very similar to
Spec k[t].

We will need one very useful fact from commutative algebra:

Lemma 11.6. If a E R is an ideal in a ring R then the radical of a is
the intersection of all prime ideals containing a.

Proof. One inclusion is clear; every prime ideal p is radical (that is
equal to its own radical) and so the intersection of all prime ideals
containing a is radical.

Now suppose that r does not belong to the radical of a. Let b be the
ideal generated by the image of a inside the ring Rr. Then the image
of r inside the quotient ring Rr/b is non-zero. Pick an ideal in this
ring, maximal with respect to the property that it does not contain
the image of r. Then the inverse image p of this ideal is a prime ideal
which does not contain r. �

Lemma 11.7. Let X be the spectrum of the ring R and let f ∈ R.
If Uf =

⋃
Ugi

then fn =
∑
bigi, where b1, b2, . . . , bk ∈ R. In partic-

ular Uf is compact.

Proof. Taking complements, we see that

V (〈f〉) =
⋂
i

V (〈gi〉) = V (〈
∑
i

gi〉).

Now V (a) consists of all prime ideals that contain a, and the radical of
a is the intersection of all the prime ideals that contain a. Thus√

〈f〉 =

√
〈
∑
i

gi〉.

But then, in particular, fn is a finite linear combination of the gi and
the corresponding open sets cover Uf . �
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As pointed out above, we need a slightly more general notion of a
function than the one given above:

Definition 11.8. Let R be a ring. We define a sheaf of rings OX on
the spectrum of R as follows. Let U be any open set of X. A section σ
of OX(U) is by definition any function

s : U −→
∐
p∈U

Rp,

where s(p) ∈ Rp, which is locally represented by a quotient. More
precisely, given a point q ∈ U , there is an element f ∈ R such that
Uf ⊂ U and such that the section σ|U is represented by a/fn, for some
a ∈ R and n ∈ N.

An affine scheme is then any locally ringed space isomorphic to
the spectrum of a ring with its associated sheaf. A scheme is a locally
ringed space, which is locally isomorphic, as locally ringed space, to an
affine scheme.

It is not hard to see that OX(U) is a ring (sums and products are
defined in the obvious way) and that we do in fact have a sheaf rather
than just a presheaf.

The key result is the following:

Lemma 11.9. Let X be an affine scheme, isomorphic to the the spec-
trum of R and let f ∈ R.

(1) For any p ∈ X, the stalk OX,p is isomorphic to the local ring
Rp.

(2) The ring OX(Uf ) is isomorphic to Rf .

In particular OX(X) ' R.

Proof. We first prove (1). There is an obvious ring homomorphism

OX,p −→ Rp,

which just sends a germ (g, U) to its value g(p) at p.
On the other hand, there is an obvious ring homomorphism,

R −→ OX,p,
which sends an element r ∈ R to the pair (r,X). Suppose that f /∈ p.
Then (1/f, Uf ) defines an element of OX,p, and this element is an in-
verse of (f,X). It follows, by the universal property of the localisation,
that there is a ring homomorphism,

Rp −→ OX,p,
which is the inverse map. Hence (1).
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Now we turn to the proof of (2). As before there is an obvious ring
homomorphism,

R −→ OX(Uf ),

which induces a ring homomorphism

Rf −→ OX(Uf ).

We have to show that this map is an isomorphism. We first consider
injectivity. Suppose that a/fn ∈ Rf is sent to zero. Then for every
p ∈ SpecR, f /∈ p, the image of a/fn is equal to zero in Rp. For each
such prime p there is an element h /∈ p such that ha = 0 in R. Let
a be the annihilator of a in R. Then h ∈ a and h /∈ p, so that a is
not a subset of p. Since this holds for every p ∈ Uf , it follows that
V (a) ∩ Uf = ∅. But then f ∈

√
a so that f l ∈ a, for some l. It follows

that f la = 0, so that a/fn is zero in Rf . Thus the map is injective.
Now consider surjectivity. Pick s ∈ OX(Uf ). By assumption, we

may cover Uf by open sets Vi such that s is represented by ai/g
ni
i on

Vi. Replacing gi by gni
i we may assume that ni = 1. By definition

gi /∈ p, for every p ∈ Vi, so that Vi ⊂ Ugi
. Now since sets of the form

Uh form a base for the topology, we may assume that Vi = Uhi
. As

Uhi
⊂ Ugi

it follows that V (gi) ⊂ V (hi) so that√
〈hi〉 ⊂

√
〈gi〉.

But then hni
i ∈ 〈gi〉, so that hni

i = cigi. In particular
ai
gi

=
ciai
hni
i

.

Replacing hi by hni
i and ai by ciai, we may assume that Uf is covered

by Uhi
, and that s is represented by ai/hi on Uhi

.
Now observe that by (11.7), fn =

∑
bihi, where b1, b2, . . . , bk ∈ R

and Uf can be covered by finitely many of the sets Uhi
. Thus we may

assume that we have only finitely many hi. Now on Uhihj
= Uhi

∩ Uhj
,

there are two ways to represent s, one way by ai/hi and the other by
aj/hj. By injectivity, we have ai/hi = aj/hj in Rhihj

so that for some
n,

(hihj)
n(hjai − hiaj) = 0.

Since there are only finitely many i and j, we may assume that n is
independent of i and j. We may rewrite this equation as

hn+1
j (hni ai)− hn+1

i (hnj aj) = 0.

If we replace hi by hn+1
i and ai by hni ai, then s is still represented by

ai/hi and moreover
hjai = hiaj.
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Let a =
∑

i biai, where fn =
∑

i bihi. Then for each j,

hja =
∑
i

biaihj

=
∑
i

bihiaj

= fnaj.

But then a/fn = aj/hj on Uhj
. But then a/fn represents s on the

whole of Uf . �

Note that by (2) of (11.9), we have achieved our aim of constructing
a topological space from an arbitrary ring R, which realises R as a
natural subset of the continuous functions.

Definition 11.10. A morphism of schemes is simply a morphism be-
tween two locally ringed spaces which are schemes.

The gives us a category, the category of schemes. Note that the
category of schemes contains the category of affine schemes as a full
subcategory and that the category of schemes is a full subcategory of
the category of locally ringed spaces.

Theorem 11.11. There is an equivalence of categories between the
category of affine schemes and the category of commutative rings with
unity.

Proof. Let F be the functor that associates to an affine scheme, the
global sections of the structure sheaf. Given a morphism

(f, f#) : (X,OX) = SpecB −→ (Y,OY ) = SpecA,

of locally ringed spaces then let

φ : A −→ B,

be the induced map on global sections. It is clear that F is then a
contravariant functor and F is essentially surjective by (11.9).

Now suppose that φ : A −→ B is a ring homomorphism. We are
going to construct a morphism

(f, f#) : (X,OX) −→ (Y,OY ),

of locally ringed spaces. Suppose that we are given p ∈ X. Then p
is a prime ideal of B. But then q = φ−1(p) is a prime ideal of A.
Thus we get a function f : X −→ Y . Now if a is an ideal of A, then
f−1(V (a)) = V (〈φ(a)〉), so that f is certainly continuous. For each
prime ideal p of B, there is an induced morphism

φp : Aφ−1(p) −→ Bp,
6



of local rings. Now suppose that V ⊂ Y is an open set. We want to
define a ring homomorphism

f#(V ) : OY (V ) −→ OX(f−1(V )).

Suppose first that V = Ug, where g ∈ A. Then OY (V ) = Ag and
f−1(V ) ⊂ Uφ(g). But then there is a restriction map

OX(Uφ(g)) ' Bφ(g) −→ OX(f−1(V )).

On the other hand, composing there is a ring homomorphism

A −→ Bφ(g).

Since the image of g is invertible, by the universal property of the
localisation, there is an induced ring homomorphism

Ag −→ Bφ(g).

Putting all of this together, we have defined f#(V ) when V = Ug.
Since the sets Ug form a base for the topology, and these maps are
compatible in the obvious sense, this defines a morphism

f# : OY −→ f∗OX ,

of sheaves. Clearly the induced map on local rings is given by φp, and
so (f, f#) is a morphism of local rings.

Finally it suffices to prove that these two assignments are inverse.
The composition one way is clear. If we start with φ and construct
(f, f#) then we get back φ on global sections. Conversely suppose that
we start with (f, f#), and let φ be the map on global sections. Given
p ∈ X, we get a morphism of local rings on stalks, which is compatible
with φ and localisation, so that we get a commutative diagram

A
φ- B

Af(p)

? f#
p- Bp.

?

But since f#
p is a morphism of local rings, it follows that φ−1(p) = f(p),

so that f coincides with the map induced by φ. But then f# is also
the map induced by φ. �

Definition 11.12. Let X be a scheme and let x ∈ X be a point of X.
The residue field of X at x is the quotient of OX,x by its maximal
ideal.

We recall some basic facts about valuations and valuation rings.
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Definition 11.13. Let K be a field and let G be a totally ordered
abelian group. A valuation of K with values in G, is a map

ν : K − {0} −→ G,

such that for all x and y ∈ K − {0} we have:

(1) ν(xy) = ν(x) + ν(y).
(2) ν(x+ y) ≥ min(ν(x), ν(y)).

Definition-Lemma 11.14. If ν is a valuation, then the set

R = {x ∈ K | ν(x) ≥ 0 } ∪ {0},
is a subring of K, which is called the valuation ring of ν. The set

m = {x ∈ K | ν(x) > 0 } ∪ {0},
is an ideal in R and the pair (R,m) is a local ring.

Proof. Easy check. �

Definition 11.15. A valuation is called a discrete valuation if G =
Z and ν is surjective. The corresponding valuation ring is called a
discrete valuation ring. Any element t ∈ R such that ν(t) = 1 is
called a uniformising parameter.

Lemma 11.16. Let R be an integral domain, which is not a field.
The following are equivalent:

• R is a DVR.
• R is a local ring and a PID.

Proof. Suppose that R is a DVR. Then R is certainly a local ring.
Suppose that a and b ∈ R and ν(a) = ν(b). Then ν(b/a) = ν(b) −
ν(a) = 0 and so 〈a〉 = 〈b〉. It follows that the ideals of R are of the
form

Ik = { a ∈ R | ν(a) ≥ k }.
As ν is surjective, there is an element t ∈ R such that ν(t) = 1. Then

Ik = 〈tk〉 = mk.

Thus R is a PID.
Now suppose that R is a local ring and a PID. Let m be the unique

maximal ideal. As R is a PID, m = 〈t〉, for some t ∈ R. Define a map

ν : K −→ Z,

by sending a to k, where a ∈ mk − mk+1 and extending this to any
fraction a/b in the obvious way. It is easy to check that ν is a valuation
and that R is the valuation ring. �
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There are two key examples of a DVR. First let k be field and let
R = k[t]〈t〉. Then R is a local ring and a PID so that R is a DVR. t
is a uniformising parameter. Note that R is the stalk of the struture
shear of the affine line at the origin.

Now let

∆ = { z ∈ C | |z| < 1 },
be the unit disc in the complex plane. Then the stalk O∆,0 of the sheaf
of holomorphic functions is a local ring. The order of vanishing realises
this ring as a DVR. z is a uniformising parameter.

In fact if C is a smooth algebraic curve, an algebraic variety of di-
mension one, then OC,p is a DVR.

Example 11.17. Let R be the local ring of a curve over an algebraically
closed field (or more generally a discrete valuation ring). Then SpecR
consists of two points; the maximal ideal, and the zero ideal. The first
t0 is closed and has residue field the groundfield k of C, the second t0
has residue field the quotient ring K of R, and its closure is the whole
of X. The inclusion map R −→ K corresponds to a morphism which
sends the unique point of SpecK to t1.

There is another morphism of ringed spaces which sends the unique
point of SpecK to t0 and uses the inclusion above to define the map
on structure sheaves. Since there is only one way to map R to K, this
does not come from a map on rings. In fact the second map is not
a morphism of locally ringed spaces, and so it is not a morphism of
schemes.

Example 11.18. It is interesting to see an example of an affine scheme,
in a seemingly esoteric case. Consider the case of a number field k
(that is a finite extension of Q, with its ring of integers A ⊂ k (that
is the integral closure of Z inside k). As a particular example, take
k = Q(

√
3). Then A = Z ⊕ Z〈

√
3〉. The picture is very similar to

the case of Z. There are infinitely many maximal ideals, and only one
point which is not closed, the zero ideal. Moreover, as there is a natural
ring homomorphism Z −→ A, by our equivalence of categories, there is
an induced morphism of schemes SpecA −→ Spec Z. We investigate
this map. Consider the fibre over a point 〈p〉 ∈ Spec Z. This is just the
set of primes in A containing the ideal pA. It is well known by number
theorists, that three things can happen:

(1) If p divides the discriminant of k/Q (which in this case is 12),
that is p = 2 or 3, then the ideal 〈p〉 is a square in A.

〈2〉A = 〈−1 +
√

3〉2,
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and
〈3〉A = 〈

√
3〉2.

(2) If 3 is a square modulo p, the prime 〈p〉 factors into a product
of distinct primes,

〈11〉A = 〈4 + 3
√

3〉〈4− 3
√

3〉,
or

〈13〉A = 〈4 +
√

3〉〈4−
√

3〉,
(3) If p > 3 and 3 is not a square mod p (e.g p = 5 and 7), the

ideal 〈p〉 is prime in A.

Definition 11.19. Let C be a category and let X be an object of C.
Let D = C|X be the category whose objects consist of pairs f : Y −→
X, where f is a morphism of C, and whose morphisms, consist of
commutative diagrams

Y
φ - Z

X.

g

�

f

-

D is known as the category over X. If X is a scheme, then a scheme
over X is exactly an object of the category of schemes over X. Let R
be a ring. Affine n-space over R, denoted An

R, is the spectrum of
the polynomial ring R[x1, x2, . . . , xn].

One of the key ideas of schemes, is to work over arbitrary bases.
Note that since there is an inclusion R −→ R[x1, x2, . . . , xn] of rings,
affine space over R is a scheme over SpecR. Thus we may define affine
space over any affine scheme.
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