HWK #5, DUE WEDNESDAY 10/14

Let X be a topological space (respectively ringed space). The category of presheaves of groups (respectively \mathcal{O}_X -modules) on X is denoted \mathcal{P} and the category of sheaves of groups (respectively \mathcal{O}_X -modules) on X is denoted \mathcal{S} .

1. A zero object of a category C is any object which is simultaneously an initial and a terminal object. Identify a zero object in \mathcal{P} .

2. If \mathcal{C} is a category with a zero object 0 and X and Y are two objects of \mathcal{C} , the **zero morphism** $0_{XY}: X \longrightarrow Y$ is the composition of $X \longrightarrow 0$ and $0 \longrightarrow Y$. What is the zero morphism between two presheaves \mathcal{F} and \mathcal{G} on X?

3. If \mathcal{C} is a category with zero object 0 and $f: X \longrightarrow Y$ is a morphism in \mathcal{C} then the kernel of f is the equaliser of f and the zero morphism 0_{XY} . If $f: \mathcal{F} \longrightarrow \mathcal{G}$ is a morphism of presheaves on the topological space X, then show that the presheaf Ker f, defined by

$$U \longrightarrow \operatorname{Ker} f(U),$$

is a kernel in the category \mathcal{P} . If \mathcal{F} and \mathcal{G} are sheaves (ie if f is a morphism in \mathcal{S}) then show that Ker f is also a kernel in the category \mathcal{S} .

4. Let \mathbb{I} be the category consisting of two objects and four morphisms, the two identity maps and two morphisms going from the first object to the second. If $F: \mathbb{I} \longrightarrow \mathcal{C}$ is any functor, the direct limit is called the co-equaliser (so that the co-equaliser is the dual notion of the equaliser) If \mathcal{C} is a category with zero object 0 and $f: X \longrightarrow Y$ is a morphism in \mathcal{C} then the cokernel of f is the co-equaliser of f and the zero morphism 0_{XY} .

(i) Identify the cokernel of a morphism of presheaves $f: \mathcal{F} \longrightarrow \mathcal{G}$.

(ii) Identify the cokernel of a morphism of sheaves $f: \mathcal{F} \longrightarrow \mathcal{G}$.

(iii) Give examples to show that if $f: \mathcal{F} \longrightarrow \mathcal{G}$ is a morphism of sheaves, we get different answers if we take the cokernel in \mathcal{P} or in \mathcal{S} .

5. Suppose we are given morphisms of sheaves $f_i: \mathcal{F}_i \longrightarrow \mathcal{F}_{i+1}$. We say that this sequence is exact at \mathcal{F}_i , if Ker $f_i = \text{Im } f_{i-1}$ (as subsheaves of \mathcal{F}_i).

(i) Show that

$$0\longrightarrow \mathcal{F}\longrightarrow \mathcal{G},$$

is exact at \mathcal{F} iff $\mathcal{F} \longrightarrow \mathcal{G}$ is injective.

(ii) Show that

$$\mathcal{F} \longrightarrow \mathcal{G} \longrightarrow 0,$$

is exact at \mathcal{G} iff $\mathcal{F} \longrightarrow \mathcal{G}$ is surjective.

(iii) Show that the sequence above is exact at \mathcal{F}_i iff the induced sequence of maps of stalks is exact at \mathcal{F}_{ip} for every $p \in X$. (iv) Let

$$0\longrightarrow \mathcal{F}\longrightarrow \mathcal{G}\longrightarrow \mathcal{H},$$

be an exact sequence of sheaves on the topological space X. Show that if $U \subset X$ is any open set then the sequence

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \mathcal{G}(U) \longrightarrow \mathcal{H}(U),$$

is exact.

(v) Give examples to show that a similar result fails for short exact sequences

$$0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0.$$