Let X be a topological space (respectively ringed space). The category of presheaves of groups (respectively \mathcal{O}_X-modules) on X is denoted \mathcal{P} and the category of sheaves of groups (respectively \mathcal{O}_X-modules) on X is denoted \mathcal{S}.

1. A **zero object** of a category \mathcal{C} is any object which is simultaneously an initial and a terminal object. Identify a zero object in \mathcal{P}.

2. If \mathcal{C} is a category with a zero object 0 and X and Y are two objects of \mathcal{C}, the **zero morphism** $0_{XY} : X \to Y$ is the composition of $X \to 0$ and $0 \to Y$. What is the zero morphism between two presheaves F and G on X?

3. If \mathcal{C} is a category with zero object 0 and $f : X \to Y$ is a morphism in \mathcal{C} then the kernel of f is the equaliser of f and the zero morphism 0_{XY}. If $f : F \to G$ is a morphism of presheaves on the topological space X, then show that the presheaf $\text{Ker} \ f$, defined by
 \[U \to \text{Ker} \ f(U), \]
 is a kernel in the category \mathcal{P}. If F and G are sheaves (ie if f is a morphism in \mathcal{S}) then show that $\text{Ker} \ f$ is also a kernel in the category \mathcal{S}.

4. Let I be the category consisting of two objects and four morphisms, the two identity maps and two morphisms going from the first object to the second. If $F : I \to \mathcal{C}$ is any functor, the direct limit is called the co-equaliser (so that the co-equaliser is the dual notion of the equaliser). If \mathcal{C} is a category with zero object 0 and $f : X \to Y$ is a morphism in \mathcal{C} then the cokernel of f is the co-equaliser of f and the zero morphism 0_{XY}.
 (i) Identify the cokernel of a morphism of presheaves $f : F \to G$.
 (ii) Identify the cokernel of a morphism of sheaves $f : F \to G$.
 (iii) Give examples to show that if $f : F \to G$ is a morphism of sheaves, we get different answers if we take the cokernel in \mathcal{P} or in \mathcal{S}.

5. Suppose we are given morphisms of sheaves $f_i : \mathcal{F}_i \to \mathcal{F}_{i+1}$. We say that this sequence is exact at \mathcal{F}_i, if $\text{Ker} \ f_i = \text{Im} \ f_{i-1}$ (as subsheaves of \mathcal{F}_i).
 (i) Show that
 \[0 \to \mathcal{F} \to \mathcal{G}, \]
 is exact at \mathcal{F} iff $\mathcal{F} \to \mathcal{G}$ is injective.
(ii) Show that
\[\mathcal{F} \rightarrow \mathcal{G} \rightarrow 0, \]
is exact at \(\mathcal{G} \) iff \(\mathcal{F} \rightarrow \mathcal{G} \) is surjective.

(iii) Show that the sequence above is exact at \(\mathcal{F} \) iff the induced sequence of maps of stalks is exact at \(\mathcal{F}_{ip} \) for every \(p \in X \).

(iv) Let
\[0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H}, \]
be an exact sequence of sheaves on the topological space \(X \). Show that if \(U \subset X \) is any open set then the sequence
\[0 \rightarrow \mathcal{F}(U) \rightarrow \mathcal{G}(U) \rightarrow \mathcal{H}(U), \]
is exact.

(v) Give examples to show that a similar result fails for short exact sequences
\[0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{H} \rightarrow 0. \]