HWK #2, DUE WEDNESDAY 09/23

1. Let \(p_1, p_2, \ldots, p_{n+2} \) and \(q_1, q_2, \ldots, q_{n+2} \) be two sets of \(n+2 \) points in linear general position in \(\mathbb{P}^n \). Show that there is a unique element of \(\text{PGL}(n+1) \) sending \(p_i \) to \(q_i \).

2. Let \(K \) be an algebraically closed field. Show that, up to conjugacy, any element \(\phi \) of \(\text{PGL}(2, K) \) is one of

 (1) the identity,
 (2) \(z \rightarrow az, \ a \in K^* \),
 (3) \(z \rightarrow z + 1 \),

 and that the three cases are distinguished by the number of fixed points; at least three; two; one.

3. Show that the twisted cubic is defined by the equations \(XW = YZ \), \(Y^2 = XZ \) and \(Z^2 = YW \).

4. a) Show the intersection of any two of the quadrics above is the union of \(C \) and a line (in fact either a tangent line or a secant line, that is a line which meets \(C \) twice).

b) More generally, if \(\lambda = [\lambda_0 : \lambda_1 : \lambda_2] \) is a point of \(\mathbb{P}^2 \), let \(F_\lambda \) denote the quadratic polynomial

 \[\lambda_0(Y^2 - XZ) + \lambda_1(XW - YZ) + \lambda_2(Z^2 - YW). \]

 Show that if \(\lambda \neq \mu \) then the zero locus of \(F_\lambda \) and \(F_\mu \) is also the union of \(C \) and a line (again, in fact either a tangent or secant line).

5. Show that any set of points on a rational normal curve are in linear general position.

6. Show that the image of \(\mathbb{P}^n \) under the \(d \)-uple embedding is defined by the equations

 \[Z_I Z_J = Z_{I'} Z_{J'}, \]

 where \(I, J, I' \) and \(J' \) are any \((n+1)\)-tuples of positive integers who sum is \(d \) and

 \[I + J = I' + J'. \]