HWK #2, DUE WEDNESDAY 09/23

- 1. Let $p_1, p_2, \ldots, p_{n+2}$ and $q_1, q_2, \ldots, q_{n+2}$ be two sets of n+2 points in linear general position in \mathbb{P}^n . Show that there is a unique element of $\operatorname{PGL}(n+1)$ sending p_i to q_i .
- 2. Let K be an algebraically closed field. Show that, up to conjugacy, any element ϕ of $\mathrm{PGL}(2,K)$ is one of
 - (1) the identity,
 - $(2) z \longrightarrow az, a \in K^*,$
 - (3) $z \longrightarrow z + 1,$

and that the three cases are distinguished by the number of fixed points; at least three; two; one.

- 3. Show that the twisted cubic is defined by the equations XW = YZ, $Y^2 = XZ$ and $Z^2 = YW$.
- 4. a) Show the intersection of any two of the quadrics above is the union of C and a line (in fact either a tangent line or a secant line, that is a line which meets C twice).
- b) More generally, if $\lambda = [\lambda_0 : \lambda_1 : \lambda_2]$ is a point of \mathbb{P}^2 , let F_{λ} denote the quadratic polynomial

$$\lambda_0(Y^2 - XZ) + \lambda_1(XW - YZ) + \lambda_2(Z^2 - YW).$$

Show that if $\lambda \neq \mu$ then the zero locus of F_{λ} and F_{μ} is also the union of C and a line (again, in fact either a tangent or secant line).

- 5. Show that any set of points on a rational normal curve are in linear general position.
- 6. Show that the image of \mathbb{P}^n under the d-uple embedding is defined by the equations

$$Z_I Z_J = Z_{I'} Z_{J'},$$

where $I,\ J,\ I'$ and J' are any (n+1)-tuples of positive integers who sum is d and

$$I + J = I' + J'.$$