
7. Rational, unirational and rationally connected
varieties

In this section we give a geometric application of some of the ideas
of the previous sections. Recall the definition of a rational variety.

Definition 7.1. A variety X over Spec k is rational if it birational
to Pnk , for some n.

Proposition 7.2. Let X be a variety over Spec k.
Then the following are equivalent:

(1) X is rational.
(2) An open subset of X is isomorphic to an open subset of Pnk .
(3) The function field of X is a purely transcendental extension of

k.

It turns out that the question of which varieties are rational is one of
the subtlest geometric problems one can ask. Note already one subtlety
of this question, which does not arise in the classical case. Now that we
are working with schemes, we are free to work over a non-algebraically
closed field. It turns out that in this case this question can become
very tricky, even in low dimensions.

Definition 7.3. A k-rational point of a scheme X oover S is any
point which is the image of a morphism Spec k −→ X over S. The set
of all k-rational points is denoted X(k).

In other words a k-rational point is simply a point whose residue
field is a subfield of k.

Example 7.4. Let X = A1
R. Then p = 〈x2 + a〉 ∈ X, where a ∈ R

and a > 0, corresponds to two C-valued points. Indeed, there are two
scheme maps

Spec C −→ X,

whose image is p, corresponding to the fact that there are two auto-
morphisms of Spec C over Spec R, given by the identity and complex
conjugation.

Lemma 7.5. Let C ⊂ P2
k be a smooth conic, over a field k.

Then C ' P1
k iff C contains a k-rational point

Proof. One direction is clear as P1
k certainly contains k-rational points.

Now suppose that C contains a k-rational point. After applying an
element of PGL(3, k), we may assume that this point is [0 : 0 : 1].
Consider projection from this point. This defines a morphism C −
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[0 : 0 : 1] −→ P1, which is surely defined over k (indeed it is the restric-
tion of [x : y : z] −→ [x : y]). It is then straightforward to check that
this morphism extends to an isomorphism. �

Example 7.6. The conic C = V (x2 + y2 − z2) ⊂ P2
R is not rational

over Spec R.

Since the problem of determining whether a variety is rational or not
is so delicate, various intermediary notions have been introduced.

Definition 7.7. We say that a variety X is unirational if there is a
dominant rational map Pnk 99K X.

Note some basic properties of unirational varieties.

Lemma 7.8. Let X be a variety over k. The following are equivalent:

(1) X is unirational.
(2) There is a dominant generically finite morphism φ : Y −→ X,

where Y is rational.
(3) The function field of X is contained in a purely transcendental

field extension of k.
(4) There is a finite extension of the function field of X which is a

purely transcendental field extension of k.

Proof. The fact that (1) and (3) are equivalent, follows from the equiv-
alence of categories between dominant rational maps and inclusions of
function fields, and (4) follows from (2) in a similar fashion.

So suppose that φ : Pnk 99K X is a dominant rational map. Replacing
Pn by the normalisation of the graph of φ, we may assume that there a
quasi-projective variety Y and a dominant morphism Y −→ X. If the
dimension of the generic fibre is greater than zero, then pick a hyper-
plane H ⊂ Pn, whose inverse image in Y dominates X. Continuing in
this way, we reduce to the case where is generically finite. �

Question 7.9 (Lüroth’s problem). Is every unirational variety ratio-
nal?

Note that one way to restate Lüroth’s problem is to ask if every sub-
field of a purely transcendental field extension is purely transcendental.
It turns out that the answer is yes in dimension one, in all character-
istics. This is typically a homework problem in a course on Galois
Theory. There is also a simple geometric proof of this fact (essentially
the Riemann-Hurwitz formula). In dimension two the problem is al-
ready considerably harder, and it is false if one allows inseparable field
extensions.
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In dimension three it was shown to be false even in characteristic
zero, in 1972, using three different methods.

One proof is due to Artin and Mumford. It had been observed by
Serre that the cohomology ring of a smooth unirational threefold is in-
distinguishable from that of a rational variety (for P3 one gets Z[x]/〈x3〉
and the cohomology ring varies in a very predictable under blowing up
and down) except possibly that there might be torsion in H3(X,Z).
They then give an reasonably elementary construction of a threefold
with non-zero torsion in H3.

Another proof is due to Clemens and Griffiths. It is not hard to
prove that every smooth cubic hypersurface in P4 is unirational. On
the other hand they prove that some smooth cubics are not rational.
To prove this consider the family of lines on the cubic. It turns out
that this is a two dimensional family, and that a lot of the geometry of
the cubic is controlled by the geometry of this surface.

The third proof is due to Iskovskikh and Manin. They prove that
every smooth quartic in P4 is not rational. On the other hand, some
quartics are unirational. In fact they show, in an amazing tour de force,
that the birational automorphism group of a smooth quartic is finite.
Clearly this means that a smooth quartic is never rational.

Let us see how to prove that a smooth cubic threefold is unirational.

Definition 7.10. Let π : X −→ S be a morphism of schemes. A sec-
tion of is a morphism σ : S −→ X such that σ ◦ π is the identity. A
rational section is a section defined on some open subset U of S.

Lemma 7.11. Let π : X −→ S be a morphism of integral schemes, of
finite type. Then picking a rational section of π is equivalent to picking
a rational point of the generic fibre.

Proof. Let K be the function field of S. We may as well assume that
both S = SpecA and X = SpecB are affine, so that K is the field of
fractions of A. The generic fibre has coordinate ring B ⊗

A
K. Suppose

that we have a rational section. Then we may as well assume that
we have a section. But this is equivalent to a ring homomorphism
B −→ A. In turn this induces a ring homomorphism B ⊗

A
K −→ K

which is equivalent to a morphism SpecK −→ Xξ, where ξ is the
generic point of S. But this is exactly the same as a rational point of
the general fibre.

Now suppose that we have a rational point of the generic fibre. This
is equivalent to a ring homorphism B ⊗

A
K −→ K. Since we have

a morphism of finite type, B is a finitely generated A-algebra. Pick
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generators b1, b2, . . . , bk. Denote the image of bi in K by ci/di, where
ci and di are elements of A. Passing to the open affine subset Ud of S,
where d is the product d1 · d2 · · · · · dk, we may assume that di = 1, so
that we get a morphism B −→ A. But this is equivalent to a section
of π. �

Definition 7.12. Let S be a scheme. Projective n-space over S,
denoted PnS, is the scheme obtained by base change of PnZ, where S −→
Spec Z is the canonical morphism. A projective morphism over S,
π : X −→ S is any morphism, which admits a factorisation into a
closed immersion X −→ PnS over S.

A conic bundle is a projective morphism, where n = 2 and the
fibres are conics. A rational conic bundle, is any morphism, which is
a conic bundle over an open subset of the base.

Of course the fibres of any conic bundle have three types

• a smooth conic,
• a pair of lines,
• a double line.

In the case when X and S are integral schemes, a morphism is a
rational conic bundle iff the generic fibre is a smooth conic in P2

K ,
where K is the function field of the base.

Proposition 7.13. Let π : X −→ S be a rational conic bundle, between
two varieties, over an algebraically closed field k. Let T ⊂ X be a
subvarety of X which dominates S.

(1) If T is unirational, then so is X.
(2) If T −→ S is birational and T is rational, then so is X.

Proof. Consider the base change T −→ S of X. Let Y be a component
of the base change of maximal dimension, which dominates X. Then
Y −→ T is a conic bundle. Moreover, there is a natural morphism
T −→ Y which is a section. Possibly base changing further, we may
assume that the base is rational, and that there is a rational section.
Thus it suffices to prove (2).

Consider the generic fibre. By assumption it is a smooth conic in P2
K ,

where K is not algebraically closed. The rational section implies that
this conic has a rational point. But then this conic is isomorphic to P1

K .
The function field of this conic is then K(t). The generic point of X is
also the ceneric point of the generic fibre. It follows that the function
field of X is isomorphic to K(t). Since K is purely transcendental over
k the groundfield, this implies that the field of fractions of X is purely
transendental over k. But then X is rational. �
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To finish off, we have to exhibit a conic bundle structure on a smooth
cubic threefold.

Lemma 7.14. Let S be a smooth cubic surface in P3.
Then S contains twenty seven lines.

Proof. A cubic is specified by choosing the coefficients of a homoge-
neous cubic in four variables of which there are

(
6
3

)
= 20; the space

of all cubics is therefore naturally parametrised by P19. Consider the
incidence correspondence

Σ = { (l, F ) ∈ G(1, 3)× P19 | l ⊂ V (F ) } ⊂ G(1, 3)× P19.

Then this is a closed subset of G(1, 3) × P19 and the two natural pro-
jections f : Σ −→ G(1, 3) and g : Σ −→ P19 are proper (the image of a
closed set is closed; in fact f and g are projective).

Let p ∈ G(1, 3) and consider f−1(l). This is the space of cubics
containing the line l. There are two ways to figure out what the fibre
looks like. Firstly one can change coordinates so that l = V (X2, X3),
so that the points of l are [a : b : 0 : 0]. In this case the coefficients
of X3, X2Y , XY 2 and Y 3 must all vanish. The fibre is a copy of a
linear subspace of dimension 15 in P19. Alternatively pick four distinct
points p1, p2, p3 and p4 of l. The condition that F (pi) = 0 imposes
one linear constraint. One can check that these four points impose
independent conditions, so that that the space of cubics containing all
four points is a linear subspace of dimension 15. Suppose F (pi) = 0, for
1 ≤ i ≤ 4. Then F |l is a cubic polynomial in two variables, vanishing at
four points. Thus F |l is the zero polynomial, l ⊂ V (F ) iff F vanishes
at pi, for 1 ≤ i ≤ 4. Thus Σ fibres over an irreducible base with
irreducible fibres of the same dimension. It follows that Σ is irreducible
of dimension 4 + 15 = 19.

It suffices then to exhibit a single cubic with twenty seven lines, since
then the morphism g must be dominant, whence surjective. It is a fun
exercise to compute the 27 lines on X3 + Y 3 + Z3 + T 3 = 0. �

Lemma 7.15. Let V be a smooth cubic threefold in P4. Then V con-
tains a

(1) two dimensional family of lines, and a
(2) four dimensional family of conics.

Proof. Let H be a general hyperplane in P4. Then S = H ∩ V is
a smooth cubic surface in P3. But then we have already seen that
S contains a finite number of lines. Given any line l in S, then any
hyperplane containing l cuts out l union a residual conic. Conversely
given any conic in S, the hyperplane spanned by the conic, cuts out a

5



residual line. Thus the family of conics contained in S has dimension
one.

But if one fixes a line l then there is a two dimensional family of
hyperplanes that contains it, and if one fixes a conic there is a one
dimensional family of hyperplanes containing the conic. Since there
is a four dimensional family of hyperplanes, it follows that there is a
two dimensional family of lines on V and a four dimensional family of
conics. �

Another way to restate (7.15) is that there are a finite number of
lines through the general point of V , but a two dimensional family of
conics. Let V be a smooth cubic in P4. Let l be a line contained in
V and consider the family of planes which contains l. This family is
isomorphic to P2. On the other hand, any plane intersects V in a plane
cubic. Thus a plane which contains l intersects V in a residual plane
conic. The family of all planes that contain V defines a conic bundle
on W , the total space of the family of residual conics. Since there is
a unique plane containing l through any point of V away from l, W is
birational to V and is obtained from V by blowing up the locus l. Let E
be the corresponding exceptional divisor. The fibres of the morphism
E −→ l are lines in the corresponding planes. Thus E is rational and
the morphism E −→ S, where S is the base of the family of conics,
is two to one, since a general line will meet a conic in two points. It
follows by (7.13) that V is indeed unirational.

Since it is so hard to distinguish between rational and unirational,
yet another closely related notion has been introduced.

Definition 7.16. Let X be a variety, over an algebraically closed field
of characteristic zero. We say that X is rationally connected if
for two general points x and y of X, we may find a rational curve
connecting x and y.

One convenient way to restate this condition, is that for two general
points x and y, we may find a morphism

f : P1
k −→ X,

such that f(0) = x and f(∞) = y. Indeed the nonconstant image of
P1
k is always birational to P1

k.
Note the following basic properties of rationally connected varieties.

If X is rationally connected and X 99K Y is a dominant rational map,
then Y is rationally connected. On the other hand Pnk is rationally
connected; indeed just take the line connecting the two points. It
follows that every unirational variety is rationally connected. It is
expected that the converse is false. In fact, if X ⊂ Pnk is a hypersurface
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of degree d, then X is rationally connected iff d ≤ n. On the other
hand, it is expected that the general quartic in P4 is not rationally
connected. However to prove this seems one of the most challenging
problems in birational geometry.

Rationally connected varieties have some other very nice properties.

Definition 7.17. Let X be a smooth variety, over an algebraically
closed field of characteristic zero. We say that X is rationally chain
connected if for two general points x and y of X, we may find a cchain
of rational curves connecting x and y,

C =
k⋃
i=0

Ci,

where x ∈ C0, y ∈ Ck and Ci ∩ Ci+1 6= ∅.
Theorem 7.18. Let X be a smooth variety over an algebraically closed
field of characteristic zero.

The following are equivalent

(1) For every two points x and y ∈ X we may find a raitonal curve
connecting x to y.

(2) X is rationally connected,
(3) X is rationally chain connected.

Theorem 7.19 (Deformation Invariance). Let π : X −→ B be a family
of smooth varieties, over an algebraically closed field of characteristic
zero. Suppose that b and b′ belong to the same connected component of
B.

Then Xb is rationally connected iff Xb′ is rationally connected.

Just recently, the following deep result has been proved concerning
rationally connected varieties.

Theorem 7.20. Let π : X −→ B be a morphism of varieties, over an
algebraically closed field of characteristic zero.

If both the generic fibre of π and B are rationally connected then X
is rationally connected.

We sketch some of the details of the proof. The first key fact, proved
by Kollár, Miyaoka and Mori, is that given any variety over an alge-
braically closed field of characteristic zero, there is a maximal rationally
connected fibration.

Theorem 7.21. Let X be a variety over an algebraically closed field
of characteristic zero. Then there is a fibration π : X 99K B, whose
generic fibre is rationally connected, such that any other such rational
map fibre through π.
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We now need a few simple results.

Definition 7.22. A variety X is said to be ruled if it is birational
to Y × P1. We say that X is uniruled if X is dominated by a ruled
variety.

Lemma 7.23. A variety X is uniruled iff for every general point x we
can find a rational curve C containing x.

Lemma 7.24. To prove (7.20), it suffices to prove that if π : X −→ P1

is a morphism of varieties over an algebraically closed field of charac-
teristic zero, such that the generic fibre of π is rationally connected,
then π has a section.

Proof. Let π : X −→ B be a morphism of varieties, over an alge-
braically closed field of characteristic zero, where both the generic fibre
of π and B are rationally connected. By (7.18), it suffices to prove that
X is rationally chain connected.

Let x and y ∈ X. Let b be the image of x in B, c the image of y.
Since B is rationally connected, we may find a chain of rational curves
C in B connecting b to c. By induction on the length of the chain, we
may assume that the chain connecting b to c has length one. Pulling
back to P1, we may as well assume that the base is P1. Assume that
we can find a section σ. Let Σ = σ(B), so that Σ is a rational curve
dominating B. Let x′ = σ(b), and y′ = σ(c).

As the generic fibre is rationally connected both of the fibres π−1(b)
and π−1(y) are rationally connected. Pick a rational curve Cb connect-
ing x to x′ and a rational curve Cc connecting y to y′, whose existence
is guaranteed by (7.18). Then C = Cb ∪ Σ ∪ Cc is a rational chain
connecting x to y. But then X is rationally connected by (7.18). �

Now to prove that there is always a section, the key point is to
establish that every fibre is reduced. Indeed, a section intersects the
general fibre in one reduced point, so that the intersection number is
one. Therefore the intersection number with every fibre is one. But if
F = mG, (that is F is a fibre with multiplicity m) then

Σ · F = m(Σ ·G) ≥ m.

Thus m = 1.
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