
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. (i) Here is a pretty sneaky way to solve this problem. First note
that this problem is étale local about any pair of points p and q. But
any smooth curve is étale locally equivalent to P1. So we may assume
that C = P1. In this case divisors of degree two can be identified
with polynomials of degree two, modulo constants, that is P2, which is
smoooth.
Alternatively, working locally, we may assume that C = Spec C[t] is
affine. On C × C we have coordinates x and y, so that C × C =
Spec C[x, y]. Then C2 = Spec C[x, y]Z2 . Now the action of Z2 is the
standard one, given by swapping x and y. The ring of invariants is

C[x, y]Z2 = C[x+ y, xy] = C[u, v],

by a classical result, whose proof goes back to Newton. But then C2 is
smooth.
(ii) Clear.
(iii) Consider the linear system |KC | ⊂ C2. The Abel-Jacobi map
collapses this to a point, since by definition the fibres of the Abel-
Jacobi map are linear systems. By Riemann-Roch, |KC | is a g1

2 and so
defines a copy of P1 ⊂ C2.
(iv) NE(C2) ⊂ R2. Thus there are two rays, of which one is given
by the g1

2. The first thing to do is compute the intersection pairing
between the basis elements x and δ. We will use push-pull, which we
may state in the form

α · f ∗β = f∗(α · f ∗β) = f∗α · β,

where f : X −→ Y is a finite morphism of degree d, α is a cycle of
dimension k on X and β is a cycle of dimension n− k on Y .
We apply this to the natural map f : C × C −→ C2 of degree 2. First
note that f ∗δ = ∆ ⊂ C × C, where ∆ is the diagonal. Now ∆ ' C,
and

2 = KC = (KS + ∆) ·∆ = 2KC + ∆ ·∆ = 4 + ∆2.

Thus ∆2 = −2. But then

δ2 = f ∗δ ·∆ = 2∆2 = −4.

In particular δ generates the other extremal ray. Now note that

f ∗x = X = X1 +X2 = [{p} × C] + [C × {p}],
1
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where p ∈ C is any point.

x2 = f ∗x ·X1 = 1.

Finally,
x · δ = X1 · f ∗δ = 2X1 ·∆ = 2.

We want to calculate the class γ = ax+ bδ of the g1
2. We have

1 = γ · x = (ax+ bδ) · x = a+ 2b.

How about γ · δ? This counts the number r of ramification points of
the g1

2. By Riemann-Hurwitz,

2 = 2g − 2 = −2 · 2 + r = r,

so that r = 6. Thus

6 = γ · δ = (ax+ bδ) · δ = 2a− 4b.

Thus a = 2, b = −1/2 and γ = 2x − δ/2. To check this calculation,
note that as γ represents a copy of P1 contracted to a smooth point, in
fact

−1 = γ2 = (2x− δ/2)2 = 4x2 − 2x · δ − δ2/4 = 4− 4− 4/4 = −1.

Thus NE(C2) is the two dimensional cone spanned by δ and 4x− δ.
(v) It is classical that the image of x represents the class θ of the Θ
divisor. The Θ divisor is ample. π∗θ = x + cγ, where c is determined
by the constraint that

0 = π∗θ · γ = (x+ cγ) · γ = 1− c.
Thus c = 1. The Seshadri contstant is the largest d such that

π∗θ − dγ
is nef. Since this dots γ positively, we want to find d such that

(π∗θ − dγ) · δ = 0,

that is
2− 6(d− 1) = (x− (d− 1)γ) · δ = 0.

Thus d = 4/3.
2. Note that the kernel of a q-linear map is a linear subspace. Let Ki

be the kernel of the qi-linear map f i. Then

0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ . . . ,

is an ascending chain of linear subspaces of V . This chain must sta-
bilise; suppose that it stabilises at Vn. Then Vn is a linear subspace
of V , consisting of those elements of V for which some power of f is
zero. Certainly f |Vn is nilpotent, and f(Vn) ⊂ Vn. Now note that the
image of a q-linear map is a linear subspace (since we are working over
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an algebraically closed field; in fact we only need that the groundfield
is separably closed). Let Wi be the image of f i. Then

V ⊃ W1 ⊃ W2 ⊃ W3 ⊃ . . . ,

is a descending chain of linear subspaces of V . This chain must stabilise;
suppose that it stabilises at Vs. Then Vs consists of those elements of
V which are in the image of all powers of f . It follows that f(Vs) = Vs.
Arguing as in the case of linear maps, f |Vs has an eigenvector, so that
Vs has a basis of eigenvectors, that is

f(vi) = λivi,

for some scalar λi 6= 0. Pick ai so that aq−1
i = λ−1

i . Then

f(wi) = wi,

where wi = aivi is a basis of eigenvectors, with eigenvalue one. Finally
suppose that α ∈ V . Let αk = fk(α). Then we may choose k suffi-
ciently large, so that αk ∈ Vs. Suppose that fk(β) = αk, where β ∈ Vs,
and let γ = α− β. Then

fk(γ) = fk(α)− fkβ) = 0.

Thus
V = Vs + Vn.

On the other hand, it is clear that the intersection is trivial.
3. A cylic cover f : Y −→ X of degree p is given locally by an equation
of the form yp − y − a = 0, where a ∈ OU is some regular function on
an open affine U of X. If U = SpecA then V = f−1(U) = SpecB,
where

B =
A[y]

〈yp − y − ai〉
.

Given f , take a cover {Ui} and functions ai ∈ OUi
such that Y is

given locally by yp
i − yi − ai = 0. We may assume that the overlaps

Uij = Ui ∩ Uj = SpecAij = A are affine, and in this case we have an
isomorphism of A-algebras,

A[yi]

〈yp
i − yi − ai〉

' A[yj]

〈yp
j − yj − aj〉

,

where we assume that yi and yj correspond under this isomorphism.
Consider the 1-cycle,

α = (yij = yi − yj) ∈ H1(X,OX).

Then

F ∗α = (yp
ij = yp

i − y
p
j = yi − yj − (ai − aj)) = α + δ(yi).
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Thus F ∗α = α, and it is easy to reverse this argument.
4. (i) By Keel’s Theorem, it suffices to show that C|E(D) is semiample.
Suppose that B is a component of E(D). Then C · B = 0. The space
P of line bundles of degree zero on B is a projective variety. The line
bundle L = OB(C) is an element of P (Fq), which is a finite group G.
But then L must have finite order, so that C|B is semiample.
(ii) The space P of line bundles of degree zero on C is a projective
variety. The line bundle L = OC(C) is an element of P (Fq), which is
a finite group G. But then L must have finite order, so that C|C is
torsion.
(iii) By induction on k. There is a short exact sequence

0 −→ OS((k − 1)C) −→ OS(kC) −→ OC(kC) −→ 0.

If k = 1, then we get an isomorphism

H1(S,OS(C)) ' H1(S,OS).

By assumption h0(C,OC(kC)) = 0, for 0 < k < m. But then by
Riemann-Roch h1(C,OC(kC)) = 0, in the same range. It follows that

H1(S,OS((k − 1)C)) ' H1(S,OS(kC)),

for 0 < k < m. But then

H1(S,OS(kC)) ' H1(S,OS),

in the same range.
(iv) By (iii) it suffices to evaporate

H1(S,OS),

which we did in class. Suppose that f : T −→ S evaporates

H1(S,OS((m− 1)C)) ' H1(S,OS).

There is a commuative diagram

H0(S,OS(mC)) - H0(C,OC) - H1(S,OS((m− 1)C))

H0(T,OT (mD))
?

- H0(D,OD)
?

- H1(T,OT ((m− 1)D)).
?

Let σ ∈ H0(C,OC) be any non-vanishing section. Suppose that its
image in H1(S,OS((m − 1)C)) is δ. If δ is not zero, then we cannot
lift σ to an element of H0(S,OS(mC)). Let σ′ be the image of σ in
H0(D,OD). Then σ′ is also a non-vanishing section. Let δ′ be the
image of σ′ in H1(T,OT ((m − 1)D)). Then δ′ is also the image of δ.
But then by our choice of f , δ′ = 0.


