MODEL ANSWERS TO THE FOURTH HOMEWORK

1. (i) Here is a pretty sneaky way to solve this problem. First note
that this problem is étale local about any pair of points p and ¢q. But
any smooth curve is étale locally equivalent to P!. So we may assume
that C = P!. In this case divisors of degree two can be identified
with polynomials of degree two, modulo constants, that is P2, which is
smoooth.

Alternatively, working locally, we may assume that C' = Spec C[t] is
affine. On C x C' we have coordinates x and y, so that C' x C =
Spec Clz,y]. Then Cy = SpecC[z,y]?>. Now the action of Z, is the
standard one, given by swapping x and y. The ring of invariants is

Clz,y)” = Clz + y, zy] = Clu, v],

by a classical result, whose proof goes back to Newton. But then Cj is
smooth.

(ii) Clear.

(iii) Consider the linear system |K¢| C Cs. The Abel-Jacobi map
collapses this to a point, since by definition the fibres of the Abel-
Jacobi map are linear systems. By Riemann-Roch, |K¢| is a g4 and so
defines a copy of P! C C,.

(iv) NE(Cy) C R% Thus there are two rays, of which one is given
by the gi. The first thing to do is compute the intersection pairing
between the basis elements z and §. We will use push-pull, which we
may state in the form

a- f'f=fla- [*B) = fua P,

where f: X — Y is a finite morphism of degree d, « is a cycle of
dimension k£ on X and [ is a cycle of dimension n — k on Y.

We apply this to the natural map f: C' x C — Cs of degree 2. First
note that f*d = A C C' x C, where A is the diagonal. Now A ~ C,
and

2=Koc=(Kg+A)-A=2Kc+A-A=4+A%
Thus A? = —2. But then
62 = f6-A=2A*= —4.
In particular § generates the other extremal ray. Now note that

flo=X=X1+ X, =1[{p} x C1+[C < {p}],
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where p € C' is any point.
= frr- X, =1

Finally,
We want to calculate the class v = ax + bd of the g3. We have

l=v-2=(ax+bd) -z =a+20b.
How about v - 67 This counts the number r of ramification points of
the ¢g3. By Riemann-Hurwitz,

2=29—-2=-2-24r=m,

so that r = 6. Thus

6=7v-90=(ax+ b)) 0=2a—40b.
Thus a = 2, b = —1/2 and v = 2z — 6/2. To check this calculation,
note that as v represents a copy of P! contracted to a smooth point, in
fact

—1=7 =020 —-6/2)* =42 2200 —0*/4=4—4—4/4=—1.

Thus NE(C,) is the two dimensional cone spanned by § and 4z — 4.
(v) It is classical that the image of x represents the class 6 of the ©
divisor. The © divisor is ample. 70 = x + ¢y, where ¢ is determined
by the constraint that
O=7"0-v=(rx+cy)-vy=1-c
Thus ¢ = 1. The Seshadri contstant is the largest d such that
70 — dry
is nef. Since this dots ~ positively, we want to find d such that
(70 — d~y) -0 =0,
that is
2—6(d—1)=(x—(d—=1)y)-0=0.
Thus d = 4/3.

2. Note that the kernel of a ¢-linear map is a linear subspace. Let K;
be the kernel of the ¢'-linear map f*. Then

ocvicVaclVsC...,

is an ascending chain of linear subspaces of V. This chain must sta-
bilise; suppose that it stabilises at V,,. Then V,, is a linear subspace
of V', consisting of those elements of V' for which some power of f is
zero. Certainly fly, is nilpotent, and f(V},) C V,,. Now note that the
image of a g-linear map is a linear subspace (since we are working over
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an algebraically closed field; in fact we only need that the groundfield
is separably closed). Let W; be the image of f. Then

VoW, DWy,DW3D ...,

is a descending chain of linear subspaces of V. This chain must stabilise;
suppose that it stabilises at V. Then V; consists of those elements of
V' which are in the image of all powers of f. It follows that f(V;) = V.
Arguing as in the case of linear maps, f|y, has an eigenvector, so that
V; has a basis of eigenvectors, that is

f(vi) = A,
for some scalar \; # 0. Pick a; so that a?" = A;*. Then
f(wi) = w;,

where w; = a;v; is a basis of eigenvectors, with eigenvalue one. Finally
suppose that a € V. Let ap = f¥(a). Then we may choose k suffi-
ciently large, so that oy € V. Suppose that f*(3) = ay, where 8 € Vi,
and let v = a — (. Then

() = ffa) = f*8) = 0.
Thus
V=V,+V,.
On the other hand, it is clear that the intersection is trivial.
3. A cylic cover f: Y — X of degree p is given locally by an equation
of the form y» —y — a = 0, where a € Oy is some regular function on

an open affine U of X. If U = Spec A then V = f~}(U) = Spec B,
where
Aly]

(yP —y — ;)

Given f, take a cover {U;} and functions a; € Oy, such that Y is
given locally by vy — y; — a; = 0. We may assume that the overlaps
Uij = UyNU; = Spec A;; = A are affine, and in this case we have an
isomorphism of A-algebras,

Al) _ Aly)
(Wi —vi —ai) (W) —y; —aj)’
where we assume that y; and y; correspond under this isomorphism.
Consider the 1-cycle,

a=(y; =vi—y;) € Hl(X, Ox).

Then
Fra=(y; =y —y) =y —yj — (a; — a;)) = o+ ().
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Thus F*a = «, and it is easy to reverse this argument.

4. (i) By Keel’s Theorem, it suffices to show that C|g(p) is semiample.
Suppose that B is a component of E(D). Then C - B = 0. The space
P of line bundles of degree zero on B is a projective variety. The line
bundle L = Op(C) is an element of P(F,), which is a finite group G.
But then L must have finite order, so that C|p is semiample.

(ii) The space P of line bundles of degree zero on C' is a projective
variety. The line bundle L = O¢(C) is an element of P(FF,), which is
a finite group G. But then L must have finite order, so that C|¢ is
torsion.

(ili) By induction on k. There is a short exact sequence

0— Og((k—1)C) — Os(kC) — O¢(kC) — 0.
If Kk =1, then we get an isomorphism
Hl(S, 05(0)) ~ Hl(S, Os)

By assumption h°(C,O¢(kC)) = 0, for 0 < k < m. But then by
Riemann-Roch 1! (C, Oc(kC)) = 0, in the same range. It follows that

H'(S,05((k = 1)C)) =~ H'(S, Os(kC)),
for 0 < k < m. But then
H'(S,05(kC)) ~ H(S, Os),
in the same range.
(iv) By (iii) it suffices to evaporate
H'(S,0s),
which we did in class. Suppose that f: T'— S evaporates
HY(S,05((m —1)C)) ~ H'(S, Og).
There is a commuative diagram

HY(S, Og(mC)) — H(C,00) — HY(S, Os((m — 1)C))

H(T, Or(mD)) — H(D,Op) — H'(T, Or((m — 1)D)).

Let 0 € HY(C,O¢) be any non-vanishing section. Suppose that its
image in H'(S, Os((m — 1)C)) is §. If § is not zero, then we cannot
lift o to an element of H°(S,Og(mC)). Let ¢’ be the image of ¢ in
H°(D,Op). Then ¢’ is also a non-vanishing section. Let & be the
image of o/ in H' (T, Or((m — 1)D)). Then ¢’ is also the image of 4.
But then by our choice of f, §' = 0.



