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Birational automorphisms

Theorem: (Hacon, -, Xu) If X is a smooth projective variety of
general type, then the number of birational

automorphisms of X is bounded by c · vol(X, KX),
where c is a constant depending only on the
dimension of X .
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Birational automorphisms

Theorem: (Hacon, -, Xu) If X is a smooth projective variety of
general type, then the number of birational

automorphisms of X is bounded by c · vol(X, KX),
where c is a constant depending only on the
dimension of X .

Definition: The volume of a divisor D is

vol(X, D) = lim sup
n!h0(X,OX(mD))

mn
,

where n is the dimension of X .
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Birational automorphisms

Theorem: (Hacon, -, Xu) If X is a smooth projective variety of
general type, then the number of birational

automorphisms of X is bounded by c · vol(X, KX),
where c is a constant depending only on the
dimension of X .

Definition: The volume of a divisor D is

vol(X, D) = lim sup
n!h0(X,OX(mD))

mn
,

where n is the dimension of X .

When D is nef this is nothing more than the degree
Dn of D, by asymptotic Riemann-Roch.

Birational boundedness – p. 2



Optimal value for c?

A smooth curve C is of general type if and only if
the genus g ≥ 2; the volume of KC is then 2g − 2.
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A smooth curve C is of general type if and only if
the genus g ≥ 2; the volume of KC is then 2g − 2.

The size of the automorphism group of C is at most

84(g − 1) = 42(2g − 2), so we may take c = 42.
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The size of the automorphism group of C is at most

84(g − 1) = 42(2g − 2), so we may take c = 42.

There are infinitely many values of g for which there
is (or is not) a smooth curve of genus g with

84(g − 1) automorphisms.
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Optimal value for c?

A smooth curve C is of general type if and only if
the genus g ≥ 2; the volume of KC is then 2g − 2.

The size of the automorphism group of C is at most

84(g − 1) = 42(2g − 2), so we may take c = 42.

There are infinitely many values of g for which there
is (or is not) a smooth curve of genus g with

84(g − 1) automorphisms.

Theorem: (Xiao) If S is a smooth projective surface of general
type, then the size of the automorphism group is at

most (42)2 vol(S, KS), with equality if and only if

S = C × C and C has 84(g − 1) automorphisms.
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Optimal value for c?

A smooth curve C is of general type if and only if
the genus g ≥ 2; the volume of KC is then 2g − 2.

The size of the automorphism group of C is at most

84(g − 1) = 42(2g − 2), so we may take c = 42.

There are infinitely many values of g for which there
is (or is not) a smooth curve of genus g with

84(g − 1) automorphisms.

Theorem: (Xiao) If S is a smooth projective surface of general
type, then the size of the automorphism group is at

most (42)2 vol(S, KS), with equality if and only if

S = C × C and C has 84(g − 1) automorphisms.

Question: Is c = (42)n the optimal constant in dimension n?
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Canonical series

The birational automorphism group acts on the

linear series |mKX |.
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Canonical series

The birational automorphism group acts on the

linear series |mKX |.

The automorphism group of a curve permutes the
Weierstrass points, the inflection points of the

canonical curve C ⊂ Pg−1.
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Canonical series

The birational automorphism group acts on the

linear series |mKX |.

The automorphism group of a curve permutes the
Weierstrass points, the inflection points of the

canonical curve C ⊂ Pg−1.

There are g3 − g Weierstrass points, up to
multiplicity and this gives a lot of control.
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Canonical series

The birational automorphism group acts on the

linear series |mKX |.

The automorphism group of a curve permutes the
Weierstrass points, the inflection points of the

canonical curve C ⊂ Pg−1.

There are g3 − g Weierstrass points, up to
multiplicity and this gives a lot of control.

This approach does not seem to generalise well to
higher dimensions; it is hard to generalise to higher
dimensions the notion of a Weierstrass point.
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Canonical series

The birational automorphism group acts on the

linear series |mKX |.

The automorphism group of a curve permutes the
Weierstrass points, the inflection points of the

canonical curve C ⊂ Pg−1.

There are g3 − g Weierstrass points, up to
multiplicity and this gives a lot of control.

This approach does not seem to generalise well to
higher dimensions; it is hard to generalise to higher
dimensions the notion of a Weierstrass point.

Instead we merge the approaches of Alexeev and
Tsuji.
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Riemann-Hurwitz

Let C be a smooth curve of genus g with

automorphism group G and let π : C −→ B = C/G
be the quotient morphism.
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Riemann-Hurwitz

Let C be a smooth curve of genus g with

automorphism group G and let π : C −→ B = C/G
be the quotient morphism.

Then KC = π∗(KB + ∆), where ∆ =
∑

ri−1
ri

pi

comes from Riemann-Hurwitz.
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Riemann-Hurwitz

Let C be a smooth curve of genus g with

automorphism group G and let π : C −→ B = C/G
be the quotient morphism.

Then KC = π∗(KB + ∆), where ∆ =
∑

ri−1
ri

pi

comes from Riemann-Hurwitz.

2g − 2 = vol(KC) = |G| · vol(KB + ∆) =

|G|(2h − 2 +
∑

ri−1
ri

).
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Riemann-Hurwitz

Let C be a smooth curve of genus g with

automorphism group G and let π : C −→ B = C/G
be the quotient morphism.

Then KC = π∗(KB + ∆), where ∆ =
∑

ri−1
ri

pi

comes from Riemann-Hurwitz.

2g − 2 = vol(KC) = |G| · vol(KB + ∆) =

|G|(2h − 2 +
∑

ri−1
ri

).

So we want to bound the quantity 2h − 2 +
∑

ri−1
ri

,

the volume of KB + ∆, from below.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.

Otherwise h = 0 and
∑

ri−1
ri

> 2.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.

Otherwise h = 0 and
∑

ri−1
ri

> 2.

Five terms: v ≥ 5 · 1/2 − 2 = 1/2.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.

Otherwise h = 0 and
∑

ri−1
ri

> 2.

Five terms: v ≥ 5 · 1/2 − 2 = 1/2.

Four terms: v ≥ 3 · 1/2 + 2/3 − 2 = 1/6.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.

Otherwise h = 0 and
∑

ri−1
ri

> 2.

Five terms: v ≥ 5 · 1/2 − 2 = 1/2.

Four terms: v ≥ 3 · 1/2 + 2/3 − 2 = 1/6.

Three terms: v ≥ 1/2 + 2/3 + 6/7 − 2 = 1/42.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.

Otherwise h = 0 and
∑

ri−1
ri

> 2.

Five terms: v ≥ 5 · 1/2 − 2 = 1/2.

Four terms: v ≥ 3 · 1/2 + 2/3 − 2 = 1/6.

Three terms: v ≥ 1/2 + 2/3 + 6/7 − 2 = 1/42.

So we get equality if and only if there is a Riemann

surface which is a cover of B = P1, ramified over 0,
1 and ∞ to orders 2, 3 and 7.
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A lower bound for v = 2h−2+
∑ ri−1

ri
.

If h ≥ 2 then v ≥ 2.

If h = 1 then
∑

ri−1
ri

> 0, so that v ≥ 1/2.

Otherwise h = 0 and
∑

ri−1
ri

> 2.

Five terms: v ≥ 5 · 1/2 − 2 = 1/2.

Four terms: v ≥ 3 · 1/2 + 2/3 − 2 = 1/6.

Three terms: v ≥ 1/2 + 2/3 + 6/7 − 2 = 1/42.

So we get equality if and only if there is a Riemann

surface which is a cover of B = P1, ramified over 0,
1 and ∞ to orders 2, 3 and 7.

This is a purely topological question.
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Lower bound

We can run the same argument in all dimensions.
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Lower bound

We can run the same argument in all dimensions.

We need to bound the volume of a log smooth pair

(X, ∆) from below, where X is a projective variety

and the coefficients of ∆ are of the form (r − 1)/r.
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Lower bound

We can run the same argument in all dimensions.

We need to bound the volume of a log smooth pair

(X, ∆) from below, where X is a projective variety

and the coefficients of ∆ are of the form (r − 1)/r.

Theorem: (Hacon,-,Xu) Suppose that I ⊂ [0, 1] satisfies the

DCC and Ī ⊂ Q. Let D denote the set of all log

smooth pairs (X, ∆) such that the coefficients of ∆
belong to I . Then the set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC.
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Lower bound

We can run the same argument in all dimensions.

We need to bound the volume of a log smooth pair

(X, ∆) from below, where X is a projective variety

and the coefficients of ∆ are of the form (r − 1)/r.

Theorem: (Hacon,-,Xu) Suppose that I ⊂ [0, 1] satisfies the

DCC and Ī ⊂ Q. Let D denote the set of all log

smooth pairs (X, ∆) such that the coefficients of ∆
belong to I . Then the set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC.

Status: A paper in the case of a global quotient will appear
soon and a paper containing the general case exists.Birational boundedness – p. 7



Descending Chain Condition

Note that the set

R = {
r − 1

r
| r ∈ N ∪ {∞}},

satisfies the DCC, and the only accumulation point
is one.
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Descending Chain Condition

Note that the set

R = {
r − 1

r
| r ∈ N ∪ {∞}},

satisfies the DCC, and the only accumulation point
is one.

Note that if the set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC, then there is a constant δ > 0
such that if vol(X, KX + ∆) 6= 0, then

vol(X, KX + ∆) > δ.
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Descending Chain Condition

Note that the set

R = {
r − 1

r
| r ∈ N ∪ {∞}},

satisfies the DCC, and the only accumulation point
is one.

Note that if the set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC, then there is a constant δ > 0
such that if vol(X, KX + ∆) 6= 0, then

vol(X, KX + ∆) > δ.

In the case when I = R, c = 1/δ is an upper bound.
Birational boundedness – p. 8



The argument of Tsuji

The proof proceeds by induction.
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The argument of Tsuji

The proof proceeds by induction.

We prove that there is a constant M , which only
depends on I such that the natural rational map

φM(KX+∆) associated to |M(KX + ∆)| is birational.
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The argument of Tsuji

The proof proceeds by induction.

We prove that there is a constant M , which only
depends on I such that the natural rational map

φM(KX+∆) associated to |M(KX + ∆)| is birational.

The hard part is to deal with the case when the
volume is small.
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The proof proceeds by induction.

We prove that there is a constant M , which only
depends on I such that the natural rational map

φM(KX+∆) associated to |M(KX + ∆)| is birational.

The hard part is to deal with the case when the
volume is small.

In fact, one first proves that φM(KX+∆) is birational if

vol(X, M(KX + ∆)) is bounded from below.
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The argument of Tsuji

The proof proceeds by induction.

We prove that there is a constant M , which only
depends on I such that the natural rational map

φM(KX+∆) associated to |M(KX + ∆)| is birational.

The hard part is to deal with the case when the
volume is small.

In fact, one first proves that φM(KX+∆) is birational if

vol(X, M(KX + ∆)) is bounded from below.

This step is hard and uses lifting of sections and
comparison of various types of adjunction.
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The argument of Tsuji

The proof proceeds by induction.

We prove that there is a constant M , which only
depends on I such that the natural rational map

φM(KX+∆) associated to |M(KX + ∆)| is birational.

The hard part is to deal with the case when the
volume is small.

In fact, one first proves that φM(KX+∆) is birational if

vol(X, M(KX + ∆)) is bounded from below.

This step is hard and uses lifting of sections and
comparison of various types of adjunction.

This step is much easier in the case when (X, ∆) is a
quotient.
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that given

any (X, ∆) ∈ D, there is a t ∈ T and a birational
map f : Zt 99K X , where the strict transform of ∆,
and
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that given

any (X, ∆) ∈ D, there is a t ∈ T and a birational
map f : Zt 99K X , where the strict transform of ∆,
and the exceptional locus of ft is contained in the
support of Bt.
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that given

any (X, ∆) ∈ D, there is a t ∈ T and a birational
map f : Zt 99K X , where the strict transform of ∆,
and the exceptional locus of ft is contained in the
support of Bt.

the family of rational surfaces, with empty
boundary, is log birationally bounded.
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that given

any (X, ∆) ∈ D, there is a t ∈ T and a birational
map f : Zt 99K X , where the strict transform of ∆,
and the exceptional locus of ft is contained in the
support of Bt.

the family of rational surfaces, with empty
boundary, is log birationally bounded. In fact take T
a point, and Z = (P2, L).
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that given

any (X, ∆) ∈ D, there is a t ∈ T and a birational
map f : Zt 99K X , where the strict transform of ∆,
and the exceptional locus of ft is contained in the
support of Bt.

the family of rational surfaces, with empty
boundary, is log birationally bounded. In fact take T
a point, and Z = (P2, L).

the set of rational threefolds is not log birationally

bounded.
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Log birationally bounded

Definition: We will say that a family of log pairs D is log
birationally bounded, if there is a flat family of log

pairs (Z, B) −→ T , T of finite type, such that given

any (X, ∆) ∈ D, there is a t ∈ T and a birational
map f : Zt 99K X , where the strict transform of ∆,
and the exceptional locus of ft is contained in the
support of Bt.

the family of rational surfaces, with empty
boundary, is log birationally bounded. In fact take T
a point, and Z = (P2, L).

the set of rational threefolds is not log birationally

bounded. Just take P2 × P1 and blow up C × {0},
where C is a smooth plane curve.
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The argument of Alexeev

Theorem: (Hacon,-,Xu) If D is a log birationally bounded
family of log pairs, where the coefficients of ∆
belong to a set I which satisfies the DCC, then the
set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC.
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The argument of Alexeev

Theorem: (Hacon,-,Xu) If D is a log birationally bounded
family of log pairs, where the coefficients of ∆
belong to a set I which satisfies the DCC, then the
set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC.

If (X, ∆) is kawamata log terminal and the
coefficients belong to a finite set, then the volume
takes on only finitely many values.
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The argument of Alexeev

Theorem: (Hacon,-,Xu) If D is a log birationally bounded
family of log pairs, where the coefficients of ∆
belong to a set I which satisfies the DCC, then the
set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC.

If (X, ∆) is kawamata log terminal and the
coefficients belong to a finite set, then the volume
takes on only finitely many values.

One possible application is to boundedness of the
moduli functor of varieties of general type.
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The argument of Alexeev

Theorem: (Hacon,-,Xu) If D is a log birationally bounded
family of log pairs, where the coefficients of ∆
belong to a set I which satisfies the DCC, then the
set

{ vol(X, KX + ∆) | (X, ∆) ∈ D },

satisfies the DCC.

If (X, ∆) is kawamata log terminal and the
coefficients belong to a finite set, then the volume
takes on only finitely many values.

One possible application is to boundedness of the
moduli functor of varieties of general type.

In fact Alexeev proved stronger statements for all of
these results in the case of surfaces.
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ACC for the log canonical threshold

We sketch another possible application.
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ACC for the log canonical threshold

We sketch another possible application.

First we give some background.

Let C ⊂ C2 be a plane curve. The log canonical
threshold λ of C is the largest real number t such

that (C2, tC) is log canonical.
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ACC for the log canonical threshold

We sketch another possible application.

First we give some background.

Let C ⊂ C2 be a plane curve. The log canonical
threshold λ of C is the largest real number t such

that (C2, tC) is log canonical.

This means that there is a divisor, of log discrepancy
zero, that is, coefficient one.
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ACC for the log canonical threshold

We sketch another possible application.

First we give some background.

Let C ⊂ C2 be a plane curve. The log canonical
threshold λ of C is the largest real number t such

that (C2, tC) is log canonical.

This means that there is a divisor, of log discrepancy
zero, that is, coefficient one.

In particular λ ∈ (0, 1], since C has coefficient one.
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ACC for the log canonical threshold

We sketch another possible application.

First we give some background.

Let C ⊂ C2 be a plane curve. The log canonical
threshold λ of C is the largest real number t such

that (C2, tC) is log canonical.

This means that there is a divisor, of log discrepancy
zero, that is, coefficient one.

In particular λ ∈ (0, 1], since C has coefficient one.

Note that the smaller the log canonical threshold, the
worse the singularities.
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Some examples

If C is given by y2 + x3, then the log canonical

threshold is 5/6 and the exceptional divisor of log
discrepancy zero is given by the last exceptional
divisor of the minimal log resolution.
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Some examples

If C is given by y2 + x3, then the log canonical

threshold is 5/6 and the exceptional divisor of log
discrepancy zero is given by the last exceptional
divisor of the minimal log resolution.

If π : S −→ C2 extracts just this exceptional divisor

then we have KS + 5/6C̃ + E = π∗(KC2 + 5/6C).
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Some examples

If C is given by y2 + x3, then the log canonical

threshold is 5/6 and the exceptional divisor of log
discrepancy zero is given by the last exceptional
divisor of the minimal log resolution.

If π : S −→ C2 extracts just this exceptional divisor

then we have KS + 5/6C̃ + E = π∗(KC2 + 5/6C).

If we restrict to E we get a numerically trivial
divisor, and we may think of this as giving us an

equation for a, (KS + aC̃ + E) · E = 0.
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Some examples

If C is given by y2 + x3, then the log canonical

threshold is 5/6 and the exceptional divisor of log
discrepancy zero is given by the last exceptional
divisor of the minimal log resolution.

If π : S −→ C2 extracts just this exceptional divisor

then we have KS + 5/6C̃ + E = π∗(KC2 + 5/6C).

If we restrict to E we get a numerically trivial
divisor, and we may think of this as giving us an

equation for a, (KS + aC̃ + E) · E = 0.

Now S has two singularities along E, one of index
two and the other of index three, so that

(KS + aC̃ + E)|E = −2 + 1/2 + 2/3 + a and

a = 5/6, by orbifold adjunction. Birational boundedness – p. 13



Further examples

If C is given as ya + xb, then the log canonical

threshold is min(1/a + 1/b, 1), by a very similar
calculation.
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Further examples

If C is given as ya + xb, then the log canonical

threshold is min(1/a + 1/b, 1), by a very similar
calculation.

More generally still, if S ⊂ Pn is the hypersurface

given by xa1

1 + xa2

2 + · · ·+ xan

n then the log canonical

threshold is min(1/a1 + 1/a2 + · · · + 1/an, 1).
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Further examples

If C is given as ya + xb, then the log canonical

threshold is min(1/a + 1/b, 1), by a very similar
calculation.

More generally still, if S ⊂ Pn is the hypersurface

given by xa1

1 + xa2

2 + · · ·+ xan

n then the log canonical

threshold is min(1/a1 + 1/a2 + · · · + 1/an, 1).

Conjecture: (Shokurov) The set of all log canonical thresholds
satisfies the ACC.
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Further examples

If C is given as ya + xb, then the log canonical

threshold is min(1/a + 1/b, 1), by a very similar
calculation.

More generally still, if S ⊂ Pn is the hypersurface

given by xa1

1 + xa2

2 + · · ·+ xan

n then the log canonical

threshold is min(1/a1 + 1/a2 + · · · + 1/an, 1).

Conjecture: (Shokurov) The set of all log canonical thresholds
satisfies the ACC.

Theorem: (de Fernex, Ein, Kollár, Mustaţă) This conjecture
holds for hypersurfaces.
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Further examples

If C is given as ya + xb, then the log canonical

threshold is min(1/a + 1/b, 1), by a very similar
calculation.

More generally still, if S ⊂ Pn is the hypersurface

given by xa1

1 + xa2

2 + · · ·+ xan

n then the log canonical

threshold is min(1/a1 + 1/a2 + · · · + 1/an, 1).

Conjecture: (Shokurov) The set of all log canonical thresholds
satisfies the ACC.

Theorem: (de Fernex, Ein, Kollár, Mustaţă) This conjecture
holds for hypersurfaces.

We hope to prove the full version of Shokurov’s
conjecture using birational boundedness.
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Inductive arguments

If a set satisfies the ACC, we may run induction.
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Inductive arguments

If a set satisfies the ACC, we may run induction.

Theorem: (Birkar) Assume termination of all flips in
dimension n − 1 and ACC for the log canonical
threshold in dimension n.
If KX + ∆ is kawamata log terminal and KX + ∆ is
numerically equivalent to D ≥ 0, then any sequence

of (KX + ∆)-flips terminates.
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points of any set which satisfies the ACC.
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Inductive arguments

If a set satisfies the ACC, we may run induction.

Theorem: (Birkar) Assume termination of all flips in
dimension n − 1 and ACC for the log canonical
threshold in dimension n.
If KX + ∆ is kawamata log terminal and KX + ∆ is
numerically equivalent to D ≥ 0, then any sequence

of (KX + ∆)-flips terminates.

It is natural to wonder what are the accumulation
points of any set which satisfies the ACC.

Conjecture: (Kollár) Any accumulation point of the log
canonical threshold in dimension n is a log
canonical threshold in dimension n − 1. In
particular, the set of accumulation points is rational.

Birational boundedness – p. 15



Standard reduction

First we extract a divisor of log discrepancy zero
(coefficient one) and restrict to this divisor.
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Standard reduction

First we extract a divisor of log discrepancy zero
(coefficient one) and restrict to this divisor.

We are reduced to considering log canonical pairs

(X, ∆), such that KX + ∆ is numerically trivial, in
dimension one less.
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(X, ∆), such that KX + ∆ is numerically trivial, in
dimension one less.

If the conjecture fails, then there is an infinite

sequence (Xi, ∆i) whose coefficients are increasing.
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(coefficient one) and restrict to this divisor.

We are reduced to considering log canonical pairs

(X, ∆), such that KX + ∆ is numerically trivial, in
dimension one less.

If the conjecture fails, then there is an infinite

sequence (Xi, ∆i) whose coefficients are increasing.

Running the MMP, we are reduced to the case when
the Picard number of X is one.
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Standard reduction

First we extract a divisor of log discrepancy zero
(coefficient one) and restrict to this divisor.

We are reduced to considering log canonical pairs

(X, ∆), such that KX + ∆ is numerically trivial, in
dimension one less.

If the conjecture fails, then there is an infinite

sequence (Xi, ∆i) whose coefficients are increasing.

Running the MMP, we are reduced to the case when
the Picard number of X is one.

Shifting the coefficients around, we may assume that
there is only one component whose coefficient is
increasing.
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Warm up

Suppose that (Xi, ∆i) is not kawamata log terminal.
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Warm up

Suppose that (Xi, ∆i) is not kawamata log terminal.

Extracting a divisor of log discrepancy zero
(coefficient one), running the MMP, and restricting
to this component, we reduce the dimension by one,
and we are done by induction.

Birational boundedness – p. 17



Warm up

Suppose that (Xi, ∆i) is not kawamata log terminal.

Extracting a divisor of log discrepancy zero
(coefficient one), running the MMP, and restricting
to this component, we reduce the dimension by one,
and we are done by induction.

In fact our aim is to either reduce to this case, or
argue that we are already done.
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Suppose that (Xi, ∆i) is not kawamata log terminal.

Extracting a divisor of log discrepancy zero
(coefficient one), running the MMP, and restricting
to this component, we reduce the dimension by one,
and we are done by induction.

In fact our aim is to either reduce to this case, or
argue that we are already done.

The standard method to create non kawamata log
terminal centres is the method of concentration of
singularities due to Kawamata and Shokurov.
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Warm up

Suppose that (Xi, ∆i) is not kawamata log terminal.

Extracting a divisor of log discrepancy zero
(coefficient one), running the MMP, and restricting
to this component, we reduce the dimension by one,
and we are done by induction.

In fact our aim is to either reduce to this case, or
argue that we are already done.

The standard method to create non kawamata log
terminal centres is the method of concentration of
singularities due to Kawamata and Shokurov.

For this to work we need a divisor of large volume.
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Two cases

∆n
i is unbounded:
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Two cases

∆n
i is unbounded: There is a divisor Di ∼R ǫi∆i such

that KXi
+ (1 − ǫi)∆i + Di is not kawamata log

terminal,
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warm up argument.
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terminal, and we are done by a similar argument to the
warm up argument.
Otherwise ∆n

i is bounded:
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+ (1 − ǫi)∆i + Di is not kawamata log

terminal, and we are done by a similar argument to the
warm up argument.
Otherwise ∆n

i is bounded: Let Λi be the same divisor as
∆i, but with the limiting coefficients.
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i is unbounded: There is a divisor Di ∼R ǫi∆i such

that KXi
+ (1 − ǫi)∆i + Di is not kawamata log

terminal, and we are done by a similar argument to the
warm up argument.
Otherwise ∆n

i is bounded: Let Λi be the same divisor as
∆i, but with the limiting coefficients. By induction, we
may find Λi ≤ Πi, with fixed rational coefficients, such
that KXi

+ Πi is klt.

Birational boundedness – p. 18



Two cases

∆n
i is unbounded: There is a divisor Di ∼R ǫi∆i such

that KXi
+ (1 − ǫi)∆i + Di is not kawamata log

terminal, and we are done by a similar argument to the
warm up argument.
Otherwise ∆n

i is bounded: Let Λi be the same divisor as
∆i, but with the limiting coefficients. By induction, we
may find Λi ≤ Πi, with fixed rational coefficients, such
that KXi

+ Πi is klt.
KXi

+ Πi has bounded volume, so this family is log
birationally bounded and the result is clear in this case.
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Idle speculation

Conjecture: (Borisov,Alexeev,Borisov) Fix n and ǫ > 0.
The family of all Fano varieties of dimension n and
log discrepancy at least ǫ > 0 is bounded (in the
usual sense).
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Conjecture: (Borisov,Alexeev,Borisov) Fix n and ǫ > 0.
The family of all Fano varieties of dimension n and
log discrepancy at least ǫ > 0 is bounded (in the
usual sense).

It has long been realised that this conjecture implies
many other conjectures, such as ACC for the log
canonical threshold and Batyrev’s conjecture, to do
with the cone of nef curves.
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The family of all Fano varieties of dimension n and
log discrepancy at least ǫ > 0 is bounded (in the
usual sense).

It has long been realised that this conjecture implies
many other conjectures, such as ACC for the log
canonical threshold and Batyrev’s conjecture, to do
with the cone of nef curves.

Question: Perhaps one can push birational boundedness
methods to prove some of these conjectures, even
the BAB conjecture?
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Conjecture: (Borisov,Alexeev,Borisov) Fix n and ǫ > 0.
The family of all Fano varieties of dimension n and
log discrepancy at least ǫ > 0 is bounded (in the
usual sense).

It has long been realised that this conjecture implies
many other conjectures, such as ACC for the log
canonical threshold and Batyrev’s conjecture, to do
with the cone of nef curves.

Question: Perhaps one can push birational boundedness
methods to prove some of these conjectures, even
the BAB conjecture?

Question: Perhaps one can prove termination of flips for
KX + ∆ kawamata log terminal and ∆ big?
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