
Polynomial equations

James McKernan

MIT

Polynomial equations – p. 1



Classical geometry: conic sections

Menaechmus studied conic sections in 3rd century BC:
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Conic sections: circle
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Conic sections: ellipse
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Conic sections: hyperbola
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Conic sections: parabola
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Conic sections: pair of lines

Polynomial equations – p. 7



Conic sections: double line
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Algebraic perspective

Every conic section is the solution of a quadratic
equation in two variables, x and y:
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Algebraic perspective

Every conic section is the solution of a quadratic
equation in two variables, x and y:

• circle: x2 + y2 = 1;

• ellipse: x2/2 + y2 = 1;

• hyperbola: x2
− y2 = 1;

• parabola: y = x2;

• pair of lines: x2
− y2 = (x + y)(x − y) = 0; and

• double line: x2 = 0.
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Algebraic perspective

Every conic section is the solution of a quadratic
equation in two variables, x and y:

• circle: x2 + y2 = 1;

• ellipse: x2/2 + y2 = 1;

• hyperbola: x2
− y2 = 1;

• parabola: y = x2;

• pair of lines: x2
− y2 = (x + y)(x − y) = 0; and

• double line: x2 = 0.

The algebraic perspective both unifies and offers the
opportunity to consider more complicated examples:
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Increasing the degree

We can increase the degree of the polynomial.
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We can increase the degree of the polynomial.

If we go from two to three we get cubics instead of
conics.
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Increasing the degree

We can increase the degree of the polynomial.

If we go from two to three we get cubics instead of
conics.

E.g., y2 = x3, y2 = x3 + x2 or y2 = x3
− x;
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Increasing the degree

We can increase the degree of the polynomial.

If we go from two to three we get cubics instead of
conics.

E.g., y2 = x3, y2 = x3 + x2 or y2 = x3
− x;

Newton, circa 1700, looked at cubics and found 72
different (topological) types of cubics.
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Increasing the number of variables

We can increase the number of variables.
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We can increase the number of variables.

If we go from two to three we get surfaces instead of
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E.g. x2 + y2 = z2, xy = zw, Clebsch cubic;
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Increasing the number of variables

We can increase the number of variables.

If we go from two to three we get surfaces instead of
curves.

E.g. x2 + y2 = z2, xy = zw, Clebsch cubic;

Cayley communicated to the Royal society the
discovery of the 27 lines on a cubic surface in 1869.

Polynomial equations – p. 11



27 lines on the Clebsch cubic
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Increasing the number of equations

Perhaps the most interesting possibility is to
increase the number of equations.
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Increasing the number of equations

Perhaps the most interesting possibility is to
increase the number of equations.

If we go from one equation to two equations, in
three variables, we get curves in space.

E.g. plane sections of the cone give conics in space.

Prediction: One of the most interesting scientific
challenges of the twenty first century will be to
understand both theoretically and practically how to
solve large systems of polynomial equations in lots
of variables.
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Increasing the number of equations

Perhaps the most interesting possibility is to
increase the number of equations.

If we go from one equation to two equations, in
three variables, we get curves in space.

E.g. plane sections of the cone give conics in space.

Prediction: One of the most interesting scientific
challenges of the twenty first century will be to
understand both theoretically and practically how to
solve large systems of polynomial equations in lots
of variables.

Many of the interesting practical applications of
algebraic geometry involve solving such systems.
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The cubic revisited

The Italian school of algebraic geometry developed
a different approach to understanding algebraic
varieties (solutions to polynomial equations).

Polynomial equations – p. 14
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a different approach to understanding algebraic
varieties (solutions to polynomial equations).

If we pick six skew lines on the cubic surface, we
can replace them by six points, to get the usual plane
(we blow down the six lines).
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The cubic revisited

The Italian school of algebraic geometry developed
a different approach to understanding algebraic
varieties (solutions to polynomial equations).

If we pick six skew lines on the cubic surface, we
can replace them by six points, to get the usual plane
(we blow down the six lines).

We can use this description of a cubic surface to
enumerate all of the lines on a cubic surface.

The six skew lines, the fifteen lines connecting the
six points we blow up and the six conics which pass
through five of the six points.

27 = 6 + 15 + 6.
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Clebsch cubic, red lines
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Examples of green and blue lines
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Lines on quintic threefolds

Quintic threefolds in four space are defined by a
single equation.
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Lines on quintic threefolds

Quintic threefolds in four space are defined by a
single equation.

For example, x5 + y5 + z5 + t5 = 1.

Smooth quintic threefolds contain 2,875 lines,
609,250 conics, 31,720,635 twisted cubics, ....

One can blow down a line on a quintic threefold and
blow up the line in a different way.

This is a fundamentally new geometric operation,
called a flop, which only appears in dimension three
and higher.

Closely related to flops are flips.
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Threefolds and beyond

Shigefumi Mori introduced a program, c. 1980, to
generalise the work of the Italian school to
threefolds and higher dimensions.
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Threefolds and beyond

Shigefumi Mori introduced a program, c. 1980, to
generalise the work of the Italian school to
threefolds and higher dimensions.

Start with any algebraic variety and keep blowing
down (and flip) spurious subvarieties (lines, planes,
...) until we get to an algebraic variety with a
simpler geometry.
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threefolds and higher dimensions.

Start with any algebraic variety and keep blowing
down (and flip) spurious subvarieties (lines, planes,
...) until we get to an algebraic variety with a
simpler geometry.

Based on the work of many, many others, recently
Birkar, Cascini, Hacon and I finished many of the
important steps of Mori’s program in all dimensions
(existence of flips and termination in special cases).
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Threefolds and beyond

Shigefumi Mori introduced a program, c. 1980, to
generalise the work of the Italian school to
threefolds and higher dimensions.

Start with any algebraic variety and keep blowing
down (and flip) spurious subvarieties (lines, planes,
...) until we get to an algebraic variety with a
simpler geometry.

Based on the work of many, many others, recently
Birkar, Cascini, Hacon and I finished many of the
important steps of Mori’s program in all dimensions
(existence of flips and termination in special cases).

These slides were produced using latex (prosper)
and surf (a program to draw curves and surfaces).
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