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An easy integral

Everyone knows how to evaluate the following integral:

∫ 1

0

1
√

1 − x2
dx.

Substitute x = sin t. The integral now ranges from 0 to
π/2. Since dx = cos tdt, we have

dx
√

1 − x2
=

cos t

cos t
= 1,

so we get π/2.
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A very hard integral

No one knows how to evaluate the following integral:

∫ 1

0

1
√

1 − x3
dx

without introducing new functions and constants.

Let us look more carefully at the basic integral.
∫

1
√

1 − x2
dx.
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Back to basics

By the same argument as before
∫ t

0

1
√

1 − x2
dx = sin−1(t).

Put differently if we denote the above integral by u,
then t = sin(u).

Note that sin is a more interesting function than
sin−1.

Indeed it is periodic; has an interesting additivity
property and it extends to the whole complex plane.
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A simple addition formula

Consider computing c in terms of a and b, where
∫ a

0

dx
√

1 − x2
+

∫ b

0

dx
√

1 − x2
=

∫ c

0

dx
√

1 − x2
.

γ = sin−1(c) = sin−1(a) + sin−1(b) = α + β.

Thus

c = sin(γ)

= sin(α + β)

= sin(α) cos(β) + sin(β) cos(α) = a(1 − b2)1/2 + b(1 − a2)1/2.
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An interesting generalisation

It was gradually realised by Abel, Euler, Fagnano,
Gauss, Jacobi and others that something similiar
occurs for cubics.

Define a function φ(z) by the rule

z =

∫ φ(z)

0

dx
√

f(x)
,

where z is a complex number.

Any such function φ is called an elliptic function.
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Properties of elliptic functions

φ(z) is doubly periodic, that is

φ(z + mω1 + nω2) = φ(z),

for two complex numbers ω1 and ω2 which are
independent over R.

φ(z) satisfies an addition formula similar to the easy
case.

Specifically if we define z3 as a function of z1 and z2

by the formula

φ(z1) + φ(z2) = φ(z3),

then z3 is a rational function of z1 and z2.
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Why?

We still have not answered the basic question:

Why is the cubic case so much harder than the
quadratic case?

Let us look at the problem from two different
perspectives.

From an algebraic perspective, we are really looking
at algebraic curves

y =
√

f(x) so that y2 = f(x).
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Algebraic Perspective

If f(x) = 1 − x2, then we can parametrise the curve.
Indeed if we project from the point (0, 1) down to
the x-axis, so that the point (x, y) projects down to
(t, 0), then we obtain the standard parametrisation

x =
2t

1 + t2
and y =

t2 − 1

1 + t2
.

Similarly for any quadratic polynomial.

The explains why the first integral is so easy.

It turns out if f(x) is a general cubic (has no
repeated roots) then there is no such parametrisation.
To see this we need the second perpsective.
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Complex Variables

Really we should think of x and y as being complex
variables.

Thus as a real manifold, our algebraic curve is a real
surface.

In fact it is easy to compactify (passing from affine
space A

2 = C
2 to projective space P

2) so that we
have a compact Riemann surface.
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Riemann surfaces

The first surface is then isomorphic to P
1, the

Riemann sphere.

The second surface is isomorphic to an elliptic
curve, a quotient of C by a two dimensional lattice
Λ ' Z

2.

The periods ω1 and ω2 are generators for the Λ, so
that φ(z) descends to the elliptic curve.

It turns out that there is no holomorphic map (let
alone algebraic) from the Riemann sphere to an
elliptic curve. To see this we need differential forms.
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Differential Forms

To get a differential form, just drop the integral sign
from:

∫ t

0

1
√

1 − x3
dx to get

1
√

1 − x3
.

Differential forms transform via the Jacobian matrix.

Given a complex manifold (or algebraic variety), the
most important invariant of a form ω is its zero locus
and polar locus, which is a divisor.
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Divisors

A divisor D is a formal linear combination of
codimension one subvarieties:

D =
∑

niDi,

where ni may be positive or negative.

Given a differential form ω, locally it is of the form
f(z)dz1 ∧ dz2 ∧ dz3 . . . dzn and we take the zeroes
minus the poles of f

(f)0 − (f)∞,

to get a divisor KX , which we call the canonical
divisor.
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Curves

It turns out that the canonical divisor determines a
considerable amount of the geometry of an algebraic
variety. We first look at curves.

Riemann proved that if the genus of C is g, then the
canonical divisor has degree 2g − 2.

Moreover if f : C −→ B is a non-constant
holomorphic map of Riemann surfaces then

2g − 2 = d(2h − 2) + b,

where b ≥ 0 count the number of branch points.
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Curves Continued

Consider the case where C = P
1.

Then g = 0 and 2g − 2 = −2.

Thus
−2 = d(2h − 2) + b,

which forces 0. But then B ' P
1 and P

1 never
covers an elliptic curve, which has genus one.
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Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve

0 simply connected PGL(2) Infinite

0 1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0

simply connected PGL(2) Infinite

0 1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected

PGL(2) Infinite

0 1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2)

Infinite

0 1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite

0 1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0

1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1

abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian

almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian

fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian fg abelian gp

+ve ≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian fg abelian gp
+ve

≥
2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian fg abelian gp
+ve ≥

2

large Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian fg abelian gp
+ve ≥

2
large

Finite Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian fg abelian gp
+ve ≥

2
large Finite

Finite

An invitation to log geometry – p.16



Behaviour of the canonical divisor

KC g Topology:
Fundamental gp

Geometry:
Auto Group

Arithmetic:
# Rational pts

-ve 0 simply connected PGL(2) Infinite
0 1 abelian almost abelian fg abelian gp
+ve ≥

2
large Finite Finite

An invitation to log geometry – p.16



Log Geometry

There are two ways to go from here. The first is to
increase the dimension. However it is also
interesting to consider open varieties.

Let U be a quasi-projective variety. Then by
Hironaka we may embed U into a projective variety
X , such that the complement is a divisor D, such
that the pair (X, D) is smooth.

It turns out that the divisor KX + D reflects the
geometry.
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