An invitation to log geometry

James M^cKernan

UCSB

An invitation to log geometry – p.1

An easy integral

Everyone knows how to evaluate the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx.$$

An easy integral

Everyone knows how to evaluate the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx.$$

Substitute $x = \sin t$. The integral now ranges from 0 to $\pi/2$. Since $dx = \cos t dt$, we have

$$\frac{dx}{\sqrt{1-x^2}} = \frac{\cos t}{\cos t} = 1,$$

An easy integral

Everyone knows how to evaluate the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx.$$

Substitute $x = \sin t$. The integral now ranges from 0 to $\pi/2$. Since $dx = \cos t dt$, we have

$$\frac{dx}{\sqrt{1-x^2}} = \frac{\cos t}{\cos t} = 1,$$

so we get $\pi/2$.

A very hard integral

No one knows how to evaluate the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^3}} \, dx$$

A very hard integral

No one knows how to evaluate the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^3}} \, dx$$

without introducing new functions and constants.

A very hard integral

No one knows how to evaluate the following integral:

$$\int_0^1 \frac{1}{\sqrt{1-x^3}} \, dx$$

without introducing new functions and constants.

Let us look more carefully at the basic integral.

$$\int \frac{1}{\sqrt{1-x^2}} \, dx.$$

By the same argument as before

$$\int_0^t \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}(t).$$

By the same argument as before

$$\int_0^t \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}(t).$$

Put differently if we denote the above integral by u, then $t = \sin(u)$.

By the same argument as before

$$\int_0^t \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}(t).$$

- Put differently if we denote the above integral by u, then $t = \sin(u)$.
- Note that sin is a more interesting function than \sin^{-1} .

By the same argument as before

$$\int_0^t \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1}(t).$$

- Put differently if we denote the above integral by u, then t = sin(u).
- Note that sin is a more interesting function than \sin^{-1} .
- Indeed it is periodic; has an interesting additivity property and it extends to the whole complex plane.

A simple addition formula

Consider computing c in terms of a and b, where

$$\int_0^a \frac{dx}{\sqrt{1-x^2}} + \int_0^b \frac{dx}{\sqrt{1-x^2}} = \int_0^c \frac{dx}{\sqrt{1-x^2}}.$$

A simple addition formula

Consider computing c in terms of a and b, where

$$\int_0^a \frac{dx}{\sqrt{1-x^2}} + \int_0^b \frac{dx}{\sqrt{1-x^2}} = \int_0^c \frac{dx}{\sqrt{1-x^2}}.$$

$$\gamma = \sin^{-1}(c) = \sin^{-1}(a) + \sin^{-1}(b) = \alpha + \beta.$$

A simple addition formula

Consider computing c in terms of a and b, where

$$\int_0^a \frac{dx}{\sqrt{1-x^2}} + \int_0^b \frac{dx}{\sqrt{1-x^2}} = \int_0^c \frac{dx}{\sqrt{1-x^2}}.$$

$$\gamma = \sin^{-1}(c) = \sin^{-1}(a) + \sin^{-1}(b) = \alpha + \beta.$$

Thus

 $c = \sin(\gamma)$ $= \sin(\alpha + \beta)$

 $= \sin(\alpha) \cos(\beta) + \sin(\beta) \cos(\alpha) = a(1 - b^2)^{1/2} + b(1 - a^2)^{1/2}.$

An interesting generalisation

It was gradually realised by Abel, Euler, Fagnano, Gauss, Jacobi and others that something similiar occurs for cubics.

An interesting generalisation

 It was gradually realised by Abel, Euler, Fagnano, Gauss, Jacobi and others that something similiar occurs for cubics.

Define a function $\phi(z)$ by the rule

$$z = \int_0^{\phi(z)} \frac{dx}{\sqrt{f(x)}},$$

where z is a complex number.

An interesting generalisation

 It was gradually realised by Abel, Euler, Fagnano, Gauss, Jacobi and others that something similiar occurs for cubics.

Define a function $\phi(z)$ by the rule

$$z = \int_0^{\phi(z)} \frac{dx}{\sqrt{f(x)}},$$

where z is a complex number. Any such function ϕ is called an elliptic function.

Properties of elliptic functions

• $\phi(z)$ is doubly periodic, that is

$$\phi(z+m\omega_1+n\omega_2)=\phi(z),$$

for two complex numbers ω_1 and ω_2 which are independent over \mathbb{R} .

Properties of elliptic functions

• $\phi(z)$ is doubly periodic, that is

$$\phi(z+m\omega_1+n\omega_2)=\phi(z),$$

for two complex numbers ω_1 and ω_2 which are independent over \mathbb{R} .

• $\phi(z)$ satisfies an addition formula similar to the easy case.

Properties of elliptic functions

• $\phi(z)$ is doubly periodic, that is

$$\phi(z+m\omega_1+n\omega_2)=\phi(z),$$

for two complex numbers ω_1 and ω_2 which are independent over \mathbb{R} .

- $\phi(z)$ satisfies an addition formula similar to the easy case.
- Specifically if we define z_3 as a function of z_1 and z_2 by the formula

$$\phi(z_1) + \phi(z_2) = \phi(z_3),$$

then z_3 is a rational function of z_1 and z_2 .

• We still have not answered the basic question:

We still have not answered the basic question:
Why is the cubic case so much harder than the quadratic case?

- We still have not answered the basic question:
- Why is the cubic case so much harder than the quadratic case?
- Let us look at the problem from two different perspectives.

Why?

- We still have not answered the basic question:
- Why is the cubic case so much harder than the quadratic case?
- Let us look at the problem from two different perspectives.
- From an algebraic perspective, we are really looking at algebraic curves

$$y = \sqrt{f(x)}$$
 so that $y^2 = f(x)$.

Algebraic Perspective

If f(x) = 1 - x², then we can parametrise the curve.
 Indeed if we project from the point (0, 1) down to the x-axis, so that the point (x, y) projects down to (t, 0), then we obtain the standard parametrisation

$$x = \frac{2t}{1+t^2}$$
 and $y = \frac{t^2 - 1}{1+t^2}$.

Similarly for any quadratic polynomial.

Algebraic Perspective

If f(x) = 1 - x², then we can parametrise the curve.
 Indeed if we project from the point (0, 1) down to the x-axis, so that the point (x, y) projects down to (t, 0), then we obtain the standard parametrisation

$$x = \frac{2t}{1+t^2}$$
 and $y = \frac{t^2 - 1}{1+t^2}$.

Similarly for any quadratic polynomial.The explains why the first integral is so easy.

Algebraic Perspective

If f(x) = 1 - x², then we can parametrise the curve.
 Indeed if we project from the point (0, 1) down to the x-axis, so that the point (x, y) projects down to (t, 0), then we obtain the standard parametrisation

$$x = \frac{2t}{1+t^2}$$
 and $y = \frac{t^2 - 1}{1+t^2}$.

Similarly for any quadratic polynomial.

- The explains why the first integral is so easy.
- It turns out if f(x) is a general cubic (has no repeated roots) then there is no such parametrisation.
 To see this we need the second perpsective.

Complex Variables

Really we should think of x and y as being complex variables.

Complex Variables

Really we should think of x and y as being complex variables.

Thus as a real manifold, our algebraic curve is a real surface.

Complex Variables

- Really we should think of x and y as being complex variables.
- Thus as a real manifold, our algebraic curve is a real surface.
- In fact it is easy to compactify (passing from affine space A² = C² to projective space P²) so that we have a compact Riemann surface.

The first surface is then isomorphic to \mathbb{P}^1 , the Riemann sphere.

The first surface is then isomorphic to \mathbb{P}^1 , the Riemann sphere.

The second surface is isomorphic to an elliptic curve, a quotient of \mathbb{C} by a two dimensional lattice $\Lambda \simeq \mathbb{Z}^2$.

- The first surface is then isomorphic to \mathbb{P}^1 , the Riemann sphere.
- The second surface is isomorphic to an elliptic curve, a quotient of \mathbb{C} by a two dimensional lattice $\Lambda \simeq \mathbb{Z}^2$.
- The periods ω_1 and ω_2 are generators for the Λ , so that $\phi(z)$ descends to the elliptic curve.

- The first surface is then isomorphic to \mathbb{P}^1 , the Riemann sphere.
- The second surface is isomorphic to an elliptic curve, a quotient of \mathbb{C} by a two dimensional lattice $\Lambda \simeq \mathbb{Z}^2$.
- The periods ω_1 and ω_2 are generators for the Λ , so that $\phi(z)$ descends to the elliptic curve.
- It turns out that there is no holomorphic map (let alone algebraic) from the Riemann sphere to an elliptic curve. To see this we need differential forms.

Differential Forms

To get a differential form, just drop the integral sign from:

$$\int_{0}^{t} \frac{1}{\sqrt{1-x^{3}}} \, dx \quad \text{to get} \quad \frac{1}{\sqrt{1-x^{3}}}.$$

To get a differential form, just drop the integral sign from:

$$\int_{0}^{t} \frac{1}{\sqrt{1-x^{3}}} \, dx \quad \text{to get} \quad \frac{1}{\sqrt{1-x^{3}}}.$$

Differential forms transform via the Jacobian matrix.
To get a differential form, just drop the integral sign from:

$$\int_{0}^{t} \frac{1}{\sqrt{1-x^{3}}} \, dx \quad \text{to get} \quad \frac{1}{\sqrt{1-x^{3}}}.$$

Differential forms transform via the Jacobian matrix.
Given a complex manifold (or algebraic variety), the most important invariant of a form ω is its zero locus and polar locus, which is a divisor.

Divisors

A divisor D is a formal linear combination of codimension one subvarieties:

$$D = \sum n_i D_i,$$

where n_i may be positive or negative.

Divisors

A divisor D is a formal linear combination of codimension one subvarieties:

$$D = \sum n_i D_i,$$

where n_i may be positive or negative.

Given a differential form ω , locally it is of the form $f(z)dz_1 \wedge dz_2 \wedge dz_3 \dots dz_n$ and we take the zeroes minus the poles of f

$$(f)_0 - (f)_\infty,$$

to get a divisor K_X , which we call the canonical divisor.

Curves

It turns out that the canonical divisor determines a considerable amount of the geometry of an algebraic variety. We first look at curves.

Curves

It turns out that the canonical divisor determines a considerable amount of the geometry of an algebraic variety. We first look at curves.

Riemann proved that if the genus of C is g, then the canonical divisor has degree 2g - 2.

Curves

- It turns out that the canonical divisor determines a considerable amount of the geometry of an algebraic variety. We first look at curves.
- Riemann proved that if the genus of C is g, then the canonical divisor has degree 2g 2.
- Moreover if $f: C \longrightarrow B$ is a non-constant holomorphic map of Riemann surfaces then

$$2g - 2 = d(2h - 2) + b,$$

where $b \ge 0$ count the number of branch points.

Curves Continued

Consider the case where $C = \mathbb{P}^1$.

Curves Continued

Consider the case where C = P¹.
Then g = 0 and 2g - 2 = -2.

Consider the case where C = P¹.
Then g = 0 and 2g − 2 = −2.
Thus

$$-2 = d(2h - 2) + b,$$

which forces 0. But then $B \simeq \mathbb{P}^1$ and \mathbb{P}^1 never covers an elliptic curve, which has genus one.

$[K_C]$	g	Topology: Fundamental on	Geometry: Auto Group	Arithmetic: # Rational pts
-ve				

K_C	g _	Topology:	Geometry:	Arithmetic:
		Fundamental gp	Auto Group	# Rational pts
-ve	0			

K_C	g _	Topology:	Geometry:	Arithmetic:
		Fundamental gp	Auto Group	# Rational pts
-ve	0	simply connected		

K_C	g	Topology:	Geometry:	Arithmetic:
		Fundamental gp	Auto Group	# Rational pts
-ve	0	simply connected	PGL(2)	

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0				

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1			

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian		

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve				

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$			

K_C	g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$	large		

K_C	\overline{g}	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$	large	Finite	

K_C	\overline{g}	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Rational pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$	large	Finite	Finite

Log Geometry

There are two ways to go from here. The first is to increase the dimension. However it is also interesting to consider open varieties.

Log Geometry

- There are two ways to go from here. The first is to increase the dimension. However it is also interesting to consider open varieties.
- Let U be a quasi-projective variety. Then by Hironaka we may embed U into a projective variety X, such that the complement is a divisor D, such that the pair (X, D) is smooth.

Log Geometry

- There are two ways to go from here. The first is to increase the dimension. However it is also interesting to consider open varieties.
- Let U be a quasi-projective variety. Then by Hironaka we may embed U into a projective variety X, such that the complement is a divisor D, such that the pair (X, D) is smooth.
- It turns out that the divisor $K_X + D$ reflects the geometry.

$egin{array}{c} K_C + g \\ D \end{array}$	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve			

$\begin{bmatrix} K_C - \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0			

$\begin{bmatrix} K_C \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected		

$\begin{bmatrix} K_C \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	

	ntegral pts
-ve = 0 simply connected $PGL(2)$ Infi	nite

$\begin{bmatrix} K_C + \\ D \end{bmatrix}$	-g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0				

$egin{array}{c} K_C - \\ D \end{array}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1			

$\begin{bmatrix} K_C \\ D \end{bmatrix}$	$\vdash g$	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian		

-ve0simply connectedPGL(2)Infinite01abelianalmost abelianInfinite				
0 1 abelian almost abelian				
$egin{array}{c} K_C - \\ D \end{array}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
---	----	-----------------------------	-------------------------	-------------------------------
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp

$\begin{bmatrix} K_C - \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve				

$\begin{bmatrix} K_C - \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$			

$\begin{bmatrix} K_C \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$	large		

$\begin{bmatrix} K_C \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$	large	Finite	

$\begin{bmatrix} K_C \\ D \end{bmatrix}$	+g	Topology: Fundamental gp	Geometry: Auto Group	Arithmetic: # Integral pts
-ve	0	simply connected	PGL(2)	Infinite
0	1	abelian	almost abelian	fg abelian gp
+ve	$\frac{\geq}{2}$	large	Finite	Finite