Finite generation of canonical rings I

James M^cKernan

UCSB

Finite generation of canonical rings I – p.1

Motivating Conjecture

Let us start with a well-known motivating:

Motivating Conjecture

Let us start with a well-known motivating: **Conjecture.** *Let X be a smooth projective variety. Then either*

1. $H^0(X, \mathcal{O}_X(mK_X)) \neq 0$ for some m > 0, or

2. X is covered by rational curves.

Motivating Conjecture

Let us start with a well-known motivating: **Conjecture.** *Let X be a smooth projective variety. Then either*

1. $H^0(X, \mathcal{O}_X(mK_X)) \neq 0$ for some m > 0, or

2. X is covered by rational curves.

One approach to this conjecture: Find a nice birational representative Y of X. Let us start with a well-known motivating: **Conjecture.** *Let X be a smooth projective variety. Then either*

- 1. $H^0(X, \mathcal{O}_X(mK_X)) \neq 0$ for some m > 0, or
- 2. X is covered by rational curves.

One approach to this conjecture: Find a nice birational representative Y of X. **Definition.** Let $\pi \colon X \longrightarrow U$ be a projective morphism of normal varieties, and let $\phi \colon X \dashrightarrow Y$ be a birational map over U, whose inverse does not contract any divisors. Let D be an \mathbb{R} -Cartier divisor on X.

We say that ϕ is *D*-negative

We say that ϕ is *D*-negative if $\phi_*D = D'$ is \mathbb{R} -Cartier, and for some resolution

We say that ϕ is *D*-negative if $\phi_*D = D'$ is \mathbb{R} -Cartier, and for some resolution

 $p^*D = q^*D' + E$, where $E \ge 0$ E contains the transform of every divisor exceptional for $X \dashrightarrow Y$.

We say that ϕ is *D*-negative if $\phi_*D = D'$ is \mathbb{R} -Cartier, and for some resolution

 $p^*D = q^*D' + E$, where $E \ge 0$ E contains the transform of every divisor exceptional for $X \dashrightarrow Y$. Key Point:

 $H^0(X, \mathcal{O}_X(\lfloor mD \rfloor)) \simeq H^0(Y, \mathcal{O}_Y(\lfloor mD' \rfloor)), \ \forall m \ge 0.$

Finite generation of canonical rings I - p.3

Log terminal model

Definition. Let $\pi: X \longrightarrow U$ be a proper morphism of normal varieties. Let (X, Δ) be a kawamata log terminal pair. A log terminal model for $K_X + \Delta$ over U is a $(K_X + \Delta)$ -negative rational map $\phi: X \dashrightarrow Y$ over U, where $Y \longrightarrow U$ is projective, Y is Q-factorial and $K_Y + \Gamma = K_Y + \phi_* \Delta$ is nef. **Definition.** Let $\pi: X \longrightarrow U$ be a proper morphism of <u>normal</u> varieties. Let (X, Δ) be a kawamata log terminal pair. A log terminal model for $K_X + \Delta$ over U is a $(K_X + \Delta)$ -negative rational map $\phi: X \dashrightarrow Y$ over U, where $Y \longrightarrow U$ is projective, Y is \mathbb{Q} -factorial and $K_Y + \Gamma = K_Y + \phi_* \Delta$ is nef. **Theorem.** [Birkar, Cascini, Hacon, -] Let $\pi: X \longrightarrow U$ be a proper morphism of normal varieties. If $K_X + \Delta$ is π -pseudo-effective and Δ is big over U, then $K_X + \Delta$ has a log terminal model over U.

Definition. Let $\pi: X \longrightarrow U$ be a proper morphism of *normal varieties. Let* (X, Δ) *be a kawamata log terminal* pair. A log terminal model for $K_X + \Delta$ over U is a $(K_X + \Delta)$ -negative rational map $\phi: X \dashrightarrow Y$ over U, where $Y \longrightarrow U$ is projective, Y is \mathbb{Q} -factorial and $K_Y + \Gamma = K_Y + \phi_* \Delta$ is nef. **Theorem.** [Birkar, Cascini, Hacon, -] Let $\pi: X \longrightarrow U$ be a proper morphism of normal varieties. If $K_X + \Delta$ is π -pseudo-effective and Δ is big over U, then $K_X + \Delta$ has a log terminal model over U. I would like to spend most of the rest of the talk drawing some conclusions from the main theorem.

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety of general type. Then

- 1. X has a minimal model,
- 2. X has a canonical model.

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety of general type. Then

1. X has a minimal model,

2. X has a canonical model.

Proof. Pick k such that $B \in |kK_X| \neq \emptyset$.

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety of general type. Then

1. X has a minimal model,

2. X has a canonical model.

Proof. Pick k such that $B \in |kK_X| \neq \emptyset$. Then $K_X + \Delta = K_X + \epsilon B$, is klt for $\epsilon > 0$ sufficiently small.

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety of general type. Then

1. X has a minimal model,

2. X has a canonical model.

Proof. Pick k such that $B \in |kK_X| \neq \emptyset$. Then $K_X + \Delta = K_X + \epsilon B$, is klt for $\epsilon > 0$ sufficiently small. But a log terminal model for $K_X + \Delta$ is the same as a minimal model for X. Hence (1).

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety of general type. Then

1. X has a minimal model,

2. X has a canonical model.

Proof. Pick k such that $B \in |kK_X| \neq \emptyset$. Then $K_X + \Delta = K_X + \epsilon B$, is klt for $\epsilon > 0$ sufficiently small. But a log terminal model for $K_X + \Delta$ is the same as a minimal model for X. Hence (1). (1) and the base point free theorem imply (2).

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety of general type. Then

1. X has a minimal model,

2. X has a canonical model.

Proof. Pick k such that $B \in |kK_X| \neq \emptyset$. Then $K_X + \Delta = K_X + \epsilon B$, is klt for $\epsilon > 0$ sufficiently small. But a log terminal model for $K_X + \Delta$ is the same as a minimal model for X. Hence (1). (1) and the base point free theorem imply (2).

A similar proof works when $K_X + \Delta$ is big and kawamata log terminal.

Finite generation

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety. Then the canonical ring

$$R(X, K_X) = \bigoplus_{m \in \mathbb{N}} H^0(X, \mathcal{O}_X(mK_X)),$$

is finitely generated.

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety. Then the canonical ring

$$R(X, K_X) = \bigoplus_{m \in \mathbb{N}} H^0(X, \mathcal{O}_X(mK_X)),$$

is finitely generated. Proof. Fujino and Mori proved that if $f: X \dashrightarrow Y$ is the litaka fibration then

$$R(X, K_X) = R(Y, K_Y + \Gamma) = \bigoplus_{m \in \mathbb{N}} H^0(Y, \mathcal{O}_Y(\lfloor m(K_Y + \Gamma) \rfloor))$$

where $K_Y + \Gamma$ is kawamata log terminal and big.

Finite generation of canonical rings I - p.6

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a smooth projective variety. Then the canonical ring

$$R(X, K_X) = \bigoplus_{m \in \mathbb{N}} H^0(X, \mathcal{O}_X(mK_X)),$$

is finitely generated.

Proof. Fujino and Mori proved that if $f: X \rightarrow Y$ is the litaka fibration then

$$R(X, K_X) = R(Y, K_Y + \Gamma) = \bigoplus_{m \in \mathbb{N}} H^0(Y, \mathcal{O}_Y(\lfloor m(K_Y + \Gamma) \rfloor))$$

where $K_Y + \Gamma$ is kawamata log terminal and big. But then (Y, Γ) has a log canonical model.

Theorem C

To see what sort of MMP we can run, it will be useful to state a rough version of part of the induction to prove the main theorem:

Theorem C

To see what sort of MMP we can run, it will be useful to state a rough version of part of the induction to prove the main theorem:

Theorem. Let X be a projective variety. Fix an ample divisor A. Fix divisors $\Delta_1, \Delta_2, \ldots, \Delta_k$. The set

{ $Y \mid (Y, \Gamma)$ is a log terminal model of $K_X + A + \Delta$, where $\Delta = \sum a_i \Delta_i, K_X + A + \Delta$ is kawamata log terminal }, is finite.

Theorem C

To see what sort of MMP we can run, it will be useful to state a rough version of part of the induction to prove the main theorem:

Theorem. Let X be a projective variety. Fix an ample divisor A. Fix divisors $\Delta_1, \Delta_2, \ldots, \Delta_k$. The set

{ $Y \mid (Y, \Gamma)$ is a log terminal model of $K_X + A + \Delta$, where $\Delta = \sum a_i \Delta_i, K_X + A + \Delta$ is kawamata log terminal },

is finite. For the induction, we will need a version of this result in the relative setting. Start with a log smooth pair (X, Δ) , when is pseudo-effective and a divisor H such $K_X + \Delta + H$ is nef.

P with scaling@

Start with a log smooth pair (X, Δ), when is pseudo-effective and a divisor H such K_X + Δ + H is nef.
P with scaling@
t = inf{ s ∈ ℝ | K_X + Δ + sH is

Start with a log smooth pair (X, Δ), when is pseudo-effective and a divisor H such K_X + Δ + H is nef.
P with scaling @ t = inf{s ∈ ℝ | K_X + Δ + sH is
If t = 0, then STOP (K_X + Δ is nef).

 \blacksquare Start with a log smooth pair (X, Δ) , whe is pseudo-effective and a divisor H such $K_X + \Delta + H$ is nef. $t = \inf\{s \in \mathbb{R} \mid K_X + \Delta + sH \text{ is }\}$ **P** with scaling@ If t = 0, then STOP ($K_X + \Delta$ is nef). • Otherwise there is a $(K_X + \Delta)$ -negative ray R such that $(K_X + \Delta + tH) \cdot R = 0$

 \blacksquare Start with a log smooth pair (X, Δ) , whe is pseudo-effective and a divisor H such $K_X + \Delta + H$ is nef. $t = \inf\{s \in \mathbb{R} \mid K_X + \Delta + sH \text{ is }\}$ P with scaling@ If t = 0, then STOP ($K_X + \Delta$ is nef). • Otherwise there is a $(K_X + \Delta)$ -negative ray R such that $(K_X + \Delta + tH) \cdot R = 0$ Let $\pi: X \longrightarrow Z$ be the associated contra

Start with a log smooth pair (X, Δ) , whe is pseudo-effective and a divisor H such $K_X + \Delta + H$ is nef. $t = \inf\{s \in \mathbb{R} \mid K_X + \Delta + sH \text{ is }\}$ P with scaling@ If t = 0, then STOP ($K_X + \Delta$ is nef). • Otherwise there is a $(K_X + \Delta)$ -negative ray R such that $(K_X + \Delta + tH) \cdot R = 0$ Let $\pi \colon X \longrightarrow Z$ be the associated contra • π is divisorial. Replace X by Z and return

 \blacksquare Start with a log smooth pair (X, Δ) , whe is pseudo-effective and a divisor H such $K_X + \Delta + H$ is nef. $t = \inf\{s \in \mathbb{R} \mid K_X + \Delta + sH \text{ is }\}$ P with scaling@ If t = 0, then STOP ($K_X + \Delta$ is nef). • Otherwise there is a $(K_X + \Delta)$ -negative ray R such that $(K_X + \Delta + tH) \cdot R = 0$ Let $\pi \colon X \longrightarrow Z$ be the associated contra • π is divisorial. Replace X by Z and return • π is small. Replace X by the flip and ret

Note that we never get a Mori fibre space, as we are assuming that $K_X + \Delta$ is pseudo-effective.

Note that we never get a Mori fibre space, as we are assuming that $K_X + \Delta$ is pseudo-effective.

We will know the flip exists by induction.

- Note that we never get a Mori fibre space, as we are assuming that $K_X + \Delta$ is pseudo-effective.
- We will know the flip exists by induction.
- The key point is that at each step, $K_X + \Delta + tH$ is nef.

- Note that we never get a Mori fibre space, as we are assuming that $K_X + \Delta$ is pseudo-effective.
- We will know the flip exists by induction.
- The key point is that at each step, $K_X + \Delta + tH$ is nef.
- Thus we have a sequence of log terminal models, with the same supporting divisor (the support of Δ and H).

- Note that we never get a Mori fibre space, as we are assuming that $K_X + \Delta$ is pseudo-effective.
- We will know the flip exists by induction.
- The key point is that at each step, $K_X + \Delta + tH$ is nef.
- Thus we have a sequence of log terminal models, with the same supporting divisor (the support of Δ and H).
- Thus the MMP with scaling terminates by Theorem C.

Minimal models

It is not true that minimal models are unique. But we do have:

It is not true that minimal models are unique. But we do have:

Corollary. Let X be a smooth projective variety of general type. Then

- 1. X has only finitely many minimal models.
- 2. Any two minimal models are connected by a *sequence of flops*.

It is not true that minimal models are unique. But we do have:

Corollary. Let X be a smooth projective variety of general type. Then

- *1.* X has only finitely many minimal models.
- 2. Any two minimal models are connected by a sequence of flops.

We can also say something if K_X is not pseudo-effective:

It is not true that minimal models are unique. But we do have:

Corollary. Let X be a smooth projective variety of general type. Then

- *1.* X has only finitely many minimal models.
- 2. Any two minimal models are connected by a sequence of flops.

We can also say something if K_X is not pseudo-effective:

Corollary. Let X be a smooth projective variety. If K_X is not pseudo-effective then there is a K_X -negative map $\phi: X \dashrightarrow Y$ and $f: Y \longrightarrow Z$ a Mori fibre space.

Mori fi bre spaces

Proof. Pick H very ample smooth such that $K_X + H$ is ample. Let

$c = \inf\{t \in \mathbb{R} \mid K_X + tH \text{ is pseudo-effective }\}.$

Proof. Pick H very ample smooth such that $K_X + H$ is ample. Let

 $c = \inf\{t \in \mathbb{R} \mid K_X + tH \text{ is pseudo-effective }\}.$

Then 0 < c < 1, so that $K_X + \Delta = K_X + cH$ is kawamata log terminal, and $K_X + \Delta$ is not big. Let $\phi: X \dashrightarrow Y$ be a log terminal model. Then ϕ is K_X -negative as it is $(K_X + \Delta)$ -negative and Δ is ample. **Proof.** Pick H very ample smooth such that $K_X + H$ is ample. Let

 $c = \inf\{t \in \mathbb{R} \mid K_X + tH \text{ is pseudo-effective }\}.$

Then 0 < c < 1, so that $K_X + \Delta = K_X + cH$ is kawamata log terminal, and $K_X + \Delta$ is not big. Let $\phi: X \dashrightarrow Y$ be a log terminal model. Then ϕ is K_X -negative as it is $(K_X + \Delta)$ -negative and Δ is ample. As $K_Y + \Gamma$ is nef, by the base point free theorem, there is a morphism $f: Y \longrightarrow Z$ such that $K_Y + \Gamma = f^*H$, Hample. Now run a $(K_X + \Delta)$ -MMP/Z, with scaling of some ample divisor.

• Motivation Let X be a smooth projective threefold. Pick two curves C and D which intersect in a node at $x \in X$.

- Motivation Let X be a smooth projective threefold. Pick two curves C and D which intersect in a node at $x \in X$.
- Let Y_1 be the blow up of X along C then D.

- Motivation Let X be a smooth projective threefold. Pick two curves C and D which intersect in a node at $x \in X$.
- Let Y_1 be the blow up of X along C then D.
- Let Y_2 be the blow up of X along D then C.

- Motivation Let X be a smooth projective threefold. Pick two curves C and D which intersect in a node at $x \in X$.
- Let Y_1 be the blow up of X along C then D.
- Let Y_2 be the blow up of X along D then C.
- Then $Y_1 \neq Y_2$ (or better the natural rational map is not an isomorphism).

- Motivation Let X be a smooth projective threefold. Pick two curves C and D which intersect in a node at $x \in X$.
- Let Y_1 be the blow up of X along C then D.
- Let Y_2 be the blow up of X along D then C.
- Then $Y_1 \neq Y_2$ (or better the natural rational map is not an isomorphism).
- In fact they are connected by a flop.

Now suppose that C and D intersect in two points x and y.

- Now suppose that C and D intersect in two points x and y.
- Then at both points we have a choice as to which curve to blow up first.

- Now suppose that C and D intersect in two points x and y.
- Then at both points we have a choice as to which curve to blow up first.
- In the category of algebraic spaces, we can find a morphism $f: Y \longrightarrow X$, which realises different choices at x and y.

- Now suppose that C and D intersect in two points x and y.
- Then at both points we have a choice as to which curve to blow up first.
- In the category of algebraic spaces, we can find a morphism $f: Y \longrightarrow X$, which realises different choices at x and y.
- It is easy to see that Y is not a projective variety.

- Now suppose that C and D intersect in two points x and y.
- Then at both points we have a choice as to which curve to blow up first.
- In the category of algebraic spaces, we can find a morphism $f: Y \longrightarrow X$, which realises different choices at x and y.
- It is easy to see that Y is not a projective variety.
- Is this always the case? Ie if Y is an algebraic space which is not projective, then does Y have to contain a rational curve?

Theorem. Let $\pi: X \longrightarrow U$ be a proper morphism of normal algebraic spaces. Suppose that $K_X + \Delta$ is kawamata log terminal and X is analytically Q-factorial. If X does not contain any rational curves contracted by π , then π is a log terminal model. In particular

Theorem. Let $\pi: X \longrightarrow U$ be a proper morphism of normal algebraic spaces. Suppose that $K_X + \Delta$ is kawamata log terminal and X is analytically Q-factorial. If X does not contain any rational curves contracted by π , then π is a log terminal model. In particular

 π is projective.

Theorem. Let $\pi: X \longrightarrow U$ be a proper morphism of normal algebraic spaces. Suppose that $K_X + \Delta$ is kawamata log terminal and X is analytically Q-factorial. If X does not contain any rational curves contracted by π , then π is a log terminal model. In particular

 π is projective.

 $\blacksquare K_X + \Delta$ is nef over U.

Theorem. Let $\pi: X \longrightarrow U$ be a proper morphism of normal algebraic spaces. Suppose that $K_X + \Delta$ is kawamata log terminal and X is analytically \mathbb{Q} -factorial. If X does not contain any rational curves contracted by π , then π is a log terminal model. In particular

 π is projective.

 $K_X + \Delta$ is nef over U.

We prove this in the special case that U is a point.

Let $f: Y \longrightarrow X$ be a projective resolution of X. We may write

$$K_Y + \Gamma' = f^*(K_X + \Delta) + E.$$

Let $\Gamma = \Gamma' + \epsilon F$, where F is the full exceptional locus.

Let $f: Y \longrightarrow X$ be a projective resolution of X. We may write

$$K_Y + \Gamma' = f^*(K_X + \Delta) + E.$$

Let $\Gamma = \Gamma' + \epsilon F$, where *F* is the full exceptional locus. Pick an ample divisor *H* on *Y*. We run the $(K_Y + \Gamma)$ -MMP with scaling of *H*.

Let $f: Y \longrightarrow X$ be a projective resolution of X. We may write

$$K_Y + \Gamma' = f^*(K_X + \Delta) + E.$$

Let $\Gamma = \Gamma' + \epsilon F$, where *F* is the full exceptional locus. Pick an ample divisor *H* on *Y*. We run the $(K_Y + \Gamma)$ -MMP with scaling of *H*. Since *X* does not contain any rational curves, this is automatically a MMP over *X*. As Γ is big over *X* this MMP must terminate (note that termination may be checked locally in the étale topology.

Let $f: Y \longrightarrow X$ be a projective resolution of X. We may write

$$K_Y + \Gamma' = f^*(K_X + \Delta) + E.$$

Let $\Gamma = \Gamma' + \epsilon F$, where F is the full exceptional locus. Pick an ample divisor H on Y. We run the $(K_Y + \Gamma)$ -MMP with scaling of H. Since X does not contain any rational curves, this is automatically a MMP over X. As Γ is big over X this MMP must terminate (note that termination may be checked locally in the étale topology. So we may assume that $K_Y + \Gamma$ is nef. But then $E + \epsilon F$ must be empty. Thus $Y \longrightarrow X$ is small. As X is \bigcirc -factorial, it follows that Y = X. Finite generation of canonical rings I – p.15

Theorem A, B and C

Theorem. A Let X be a projective variety. If $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$, Δ is big and $K_X + \Delta$ is kawamata log terminal then $K_X + \Delta$ has a log terminal model. **Theorem.** A Let X be a projective variety. If $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$, Δ is big and $K_X + \Delta$ is kawamata log terminal then $K_X + \Delta$ has a log terminal model.

Theorem. *B* Let *X* be a projective variety. If $K_X + \Delta$ is kawamata log terminal, Δ is big and $K_X + \Delta$ is pseudo-effective, then $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$. **Theorem.** A Let X be a projective variety. If $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$, Δ is big and $K_X + \Delta$ is kawamata log terminal then $K_X + \Delta$ has a log terminal model.

Theorem. B Let X be a projective variety. If $K_X + \Delta$ is kawamata log terminal, Δ is big and $K_X + \Delta$ is pseudo-effective, then $K_X + \Delta \sim_{\mathbb{R}} D \ge 0$. **Theorem.** C Let X be a projective variety. Fix an ample divisor A. Fix divisors $\Delta_1, \Delta_2, \ldots, \Delta_k$. The following set is finite:

 $\{Y \mid (Y, \Gamma) \text{ is a log terminal model of } K_X + A + \Delta, \text{ where} \\ \Delta = \sum_{i} a_i \Delta_i, K_X + A + \Delta \text{ is kawamata log terminal } \}.$

• C_{n-1} implies A_n . The idea is to run a MMP with scaling together with the ideas from special termination.

• C_{n-1} implies A_n . The idea is to run a MMP with scaling together with the ideas from special termination.

• A_n implies B_n . The proof mirrors Shokurov's non-vanishing result.

• C_{n-1} implies A_n . The idea is to run a MMP with scaling together with the ideas from special termination.

A_n implies B_n . The proof mirrors Shokurov's non-vanishing result.

• A_n and B_n imply C_n . Use the ideas from Shokurov's threefold log models paper. One key point is that since we work with \mathbb{R} -divisors we can apply compactness.

• C_{n-1} implies A_n . The idea is to run a MMP with scaling together with the ideas from special termination.

• A_n implies B_n . The proof mirrors Shokurov's non-vanishing result.

• A_n and B_n imply C_n . Use the ideas from Shokurov's threefold log models paper. One key point is that since we work with \mathbb{R} -divisors we can apply compactness.

Finally A_n, B_n and C_n imply existence of flips in dimension n + 1. This uses ideas from Siu and Kawamata on lifting sections and Shokurov on saturated algebras.