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Motivating Conjecture

Let us start with a well-known motivating:

Conjecture. Let X be a smooth projective variety.
Then either

1. H0(X,OX(mKX)) 6= 0 for some m > 0, or

2. X is covered by rational curves.

One approach to this conjecture:
Find a nice birational representative Y of X .
Definition. Let π : X −→ U be a projective morphism of
normal varieties, and let φ : X 99K Y be a birational
map over U , whose inverse does not contract any
divisors. Let D be an R-Cartier divisor on X .
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Negativity

We say that φ is D-negative

if φ∗D = D′ is R-Cartier,
and for some resolution

W

	�
�

�
�

�
�

�

p

@
@

@
@

@
@

@

q

R
X

φ
- Y

p∗D = q∗D′ + E, where E ≥ 0 E contains the transform
of every divisor exceptional for X 99K Y . Key Point:

H0(X,OX(xmDy)) ' H0(Y,OY (xmD′
y)), ∀m ≥ 0.
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Log terminal model

Definition. Let π : X −→ U be a proper morphism of
normal varieties. Let (X, ∆) be a kawamata log terminal
pair. A log terminal model for KX + ∆ over U is a
(KX + ∆)-negative rational map φ : X 99K Y over U ,
where Y −→ U is projective, Y is Q-factorial and
KY + Γ = KY + φ∗∆ is nef.

Theorem. [Birkar, Cascini, Hacon, -] Let π : X −→ U
be a proper morphism of normal varieties.
If KX + ∆ is π-pseudo-effective and ∆ is big over U ,
then KX + ∆ has a log terminal model over U .
I would like to spend most of the rest of the talk drawing
some conclusions from the main theorem.
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Minimal and Canonical models

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a
smooth projective variety of general type. Then

1. X has a minimal model,

2. X has a canonical model.

Proof. Pick k such that B ∈ |kKX | 6= ∅. Then
KX + ∆ = KX + εB, is klt for ε > 0 sufficiently small.
But a log terminal model for KX + ∆ is the same as a
minimal model for X . Hence (1).
(1) and the base point free theorem imply (2).

A similar proof works when KX +∆ is big and kawamata

log terminal.
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Finite generation

Corollary. [Birkar, Cascini, Hacon, -; Siu] Let X be a
smooth projective variety. Then the canonical ring

R(X, KX) =
⊕

m∈N

H0(X,OX(mKX)),

is finitely generated.

Proof. Fujino and Mori proved that if f : X 99K Y is the
Iitaka fibration then

R(X, KX) = R(Y, KY +Γ) =
⊕

m∈N

H0(Y,OY (xm(KY +Γ)y)).

where KY + Γ is kawamata log terminal and big. But
then (Y, Γ) has a log canonical model.
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Theorem C

To see what sort of MMP we can run, it will be useful to
state a rough version of part of the induction to prove the
main theorem:

Theorem. Let X be a projective variety. Fix an ample
divisor A. Fix divisors ∆1, ∆2, . . . , ∆k.
The set

{Y | (Y, Γ) is a log terminal model of KX + A + ∆, where

∆ =
∑

ai∆i, KX + A + ∆ is kawamata log terminal },

is finite.
For the induction, we will need a version of this result in
the relative setting.
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P with scaling@

Start with a log smooth pair (X, ∆), where KX + ∆
is pseudo-effective and a divisor H such that
KX + ∆ + H is nef.

t = inf{ s ∈ R |KX + ∆ + sH is nef }.

If t = 0, then STOP (KX + ∆ is nef).

Otherwise there is a (KX + ∆)-negative extremal
ray R such that (KX + ∆ + tH) · R = 0.

Let π : X −→ Z be the associated contraction.

• π is divisorial. Replace X by Z and return to (2).

• π is small. Replace X by the flip and return to (2).
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Termination of MMP with scaling

Note that we never get a Mori fibre space, as we are
assuming that KX + ∆ is pseudo-effective.

We will know the flip exists by induction.

The key point is that at each step, KX + ∆ + tH is
nef.

Thus we have a sequence of log terminal models,
with the same supporting divisor (the support of ∆
and H).
Thus the MMP with scaling terminates by Theorem
C.
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Minimal models

It is not true that minimal models are unique. But we do
have:

Corollary. Let X be a smooth projective variety of
general type. Then

1. X has only finitely many minimal models.

2. Any two minimal models are connected by a
sequence of flops.

We can also say something if KX is not pseudo-effective:

Corollary. Let X be a smooth projective variety.
If KX is not pseudo-effective then there is a KX-negative
map φ : X 99K Y and f : Y −→ Z a Mori fibre space.
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Mori fibre spaces

Proof. Pick H very ample smooth such that KX + H is
ample.
Let

c = inf{ t ∈ R |KX + tH is pseudo-effective }.

Then 0 < c < 1, so that KX + ∆ = KX + cH is
kawamata log terminal, and KX + ∆ is not big. Let
φ : X 99K Y be a log terminal model. Then φ is
KX-negative as it is (KX + ∆)-negative and ∆ is ample.
As KY + Γ is nef, by the base point free theorem, there is
a morphism f : Y −→ Z such that KY + Γ = f ∗H , H
ample. Now run a (KX + ∆)-MMP/Z, with scaling of
some ample divisor.

Finite generation of canonical rings I – p.11



Mori fibre spaces

Proof. Pick H very ample smooth such that KX + H is
ample.
Let

c = inf{ t ∈ R |KX + tH is pseudo-effective }.

Then 0 < c < 1, so that KX + ∆ = KX + cH is
kawamata log terminal, and KX + ∆ is not big. Let
φ : X 99K Y be a log terminal model. Then φ is
KX-negative as it is (KX + ∆)-negative and ∆ is ample.

As KY + Γ is nef, by the base point free theorem, there is
a morphism f : Y −→ Z such that KY + Γ = f ∗H , H
ample. Now run a (KX + ∆)-MMP/Z, with scaling of
some ample divisor.

Finite generation of canonical rings I – p.11



Mori fibre spaces

Proof. Pick H very ample smooth such that KX + H is
ample.
Let

c = inf{ t ∈ R |KX + tH is pseudo-effective }.

Then 0 < c < 1, so that KX + ∆ = KX + cH is
kawamata log terminal, and KX + ∆ is not big. Let
φ : X 99K Y be a log terminal model. Then φ is
KX-negative as it is (KX + ∆)-negative and ∆ is ample.
As KY + Γ is nef, by the base point free theorem, there is
a morphism f : Y −→ Z such that KY + Γ = f ∗H , H
ample. Now run a (KX + ∆)-MMP/Z, with scaling of
some ample divisor.

Finite generation of canonical rings I – p.11



Algebraic/Moishezon spaces

Motivation Let X be a smooth projective threefold.
Pick two curves C and D which intersect in a node
at x ∈ X .

• Let Y1 be the blow up of X along C then D.

• Let Y2 be the blow up of X along D then C.

Then Y1 6= Y2 (or better the natural rational map is
not an isomorphism).

In fact they are connected by a flop.
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An interesting algebraic space

Now suppose that C and D intersect in two points x
and y.

Then at both points we have a choice as to which
curve to blow up first.

In the category of algebraic spaces, we can find a
morphism f : Y −→ X , which realises different
choices at x and y.

It is easy to see that Y is not a projective variety.

Is this always the case? Ie if Y is an algebraic space
which is not projective, then does Y have to contain
a rational curve?
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Rational curves on algebraic spaces

Theorem. Let π : X −→ U be a proper morphism of
normal algebraic spaces. Suppose that KX + ∆ is
kawamata log terminal and X is analytically
Q-factorial.
If X does not contain any rational curves contracted by
π, then π is a log terminal model.
In particular

π is projective.

KX + ∆ is nef over U .

We prove this in the special case that U is a point.
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Proof

Let f : Y −→ X be a projective resolution of X . We
may write

KY + Γ′ = f ∗(KX + ∆) + E.

Let Γ = Γ′ + εF , where F is the full exceptional locus.

Pick an ample divisor H on Y . We run the
(KY + Γ)-MMP with scaling of H .
Since X does not contain any rational curves, this is
automatically a MMP over X . As Γ is big over X this
MMP must terminate (note that termination may be
checked locally in the étale topology.
So we may assume that KY + Γ is nef. But then E + εF
must be empty. Thus Y −→ X is small. As X is
Q-factorial, it follows that Y = X .
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Theorem A, B and C

Theorem. A Let X be a projective variety.
If KX + ∆ ∼R D ≥ 0, ∆ is big and KX + ∆ is
kawamata log terminal then KX + ∆ has a log terminal
model.

Theorem. B Let X be a projective variety.
If KX + ∆ is kawamata log terminal, ∆ is big and
KX + ∆ is pseudo-effective, then KX + ∆ ∼R D ≥ 0.
Theorem. C Let X be a projective variety. Fix an ample
divisor A. Fix divisors ∆1, ∆2, . . . , ∆k.
The following set is finite:

{Y | (Y, Γ) is a log terminal model of KX + A + ∆, where

∆ =
∑

ai∆i, KX + A + ∆ is kawamata log terminal }.
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Rough Sketch of Proof

Cn−1 implies An. The idea is to run a MMP with
scaling together with the ideas from special
termination.

An implies Bn. The proof mirrors Shokurov’s
non-vanishing result.

An and Bn imply Cn. Use the ideas from Shokurov’s
threefold log models paper. One key point is that
since we work with R-divisors we can apply
compactness.

Finally An, Bn and Cn imply existence of flips in
dimension n + 1. This uses ideas from Siu and
Kawamata on lifting sections and Shokurov on
saturated algebras.
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