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The space of n-forms

Suppose that we are interested in classifying smooth
projective varieties X of dimension n up to
birational isomorphism.

It turns out that a fundamental invariant of a smooth
projective variety X is the space of global
holomorphic n-forms ω.

Locally, in coords z1, z2, . . . , zn, a global n-form ω
is of the form f(z)dz1 ∧ dz2 ∧ dz3 . . . dzn, where
f(z) is a holomorphic function of the coordinates.

If we choose another coordinate system, then f(z)
changes according to the Jacobian rule. A
pluricanonical n-form of weight m is something that
transforms to the mth power of the Jacobian.
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The canonical divisor

A divisor is a formal linear combination of
codimension one subvarieties.

The canonical divisor KX is formed by picking any
meromorphic n-form ω, and then one takes the
zeroes minus the poles of f(z) to get a divisor.

It turns out that the canonical divisor captures a lot
of the geometry of X .

The space of all holomorphic n-forms is denoted
H0(X,OX(KX)).

The space of all holomorphic pluricanonical n-forms
of weight m is denoted H0(X,OX(mKX)).
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The canonical ring

One can put all of these spaces together to get a graded
ring, called the canonical ring:

R(X, KX) =
⊕

m∈N

H0(X,OX(mKX)).

Theorem. [Birkar, Cascini, Hacon,-; Siu] Let X be a
smooth projective variety.
Then the canonical ring R(X, KX) is a finitely generated
C-algebra.
I would like to spend the rest of the talk giving some idea
of how one might prove this result and perhaps more
importantly why one might be interested in the canonical
ring.
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Curves

Suppose that X is a curve. There are three cases.

X = P1, the Riemann sphere.

In this case dz
z

is a global meromorphic 1-form with
a pole at zero p and infinity q. Thus KP1 = −p− q.

There are then no global holomorphic 1-forms on P1

(any meromorphic 1-form has at least two poles).

Thus the canonical ring

R(P1, KP1) =
⊕

Rm = C,

is concentrated in degree zero, and it is surely
finitely generated.
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Elliptic Curve

X = E = C/Λ is an elliptic curve (a complex
torus), the quotient of C by a two dimensional lattice
Z2 ' Λ ⊂ C. Any such curve can be represented as
a smooth plane cubic.

In this case there is a global nowhere vanishing
holomorphic 1-form ω. Indeed just descend dz from
C. Thus KE = 0 (ω has no zeroes or poles).

The canonical ring

R(E, KE) =
⊕

H0(E,OE(mKE)) =
⊕

C,

and this is generated in degree one by ω.
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Curves of genus at least two

X = C is a curve of genus g ≥ 2.

In this case there are lots of global holomorphic
1-forms ω, and even more pluricanonical forms.

In fact ω has 2g − 2 > 0 zeroes.

Thus KC =
∑2g−2

i=1 pi and by Riemann-Roch the
vector space

H0(C,OC(mKC)),

has dimension
h0(C,OC(mKC)) = (2m − 1)g + (1 − 2m).

In this example it is now not so obvious why the
canonical ring is finitely generated.
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Generalities on graded rings

Given a graded ring R and a positive integer d the
graded ring

R(d) =
⊕

Rmd.

is called a truncation of R.

R(d) is finitely generated iff R is finitely generated.

Let X ⊂ Pn be a projective variety, and let I be the
homogeneous ideal of polynomials vanishing on X .

The homogeneous coordinate ring C[X] of X is the
quotient C[X0, X1, . . . , Xn]/I .

Clearly C[X] is a graded ring, which is a finitely
generated C-algebra.
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Canonical embedding

Let C be a curve of genus at least two, with
canonical ring R = R(C, KC).

Riemann proved that there is an embedding
f : C −→ P5g−5 such that R(3) = C[C].

In particular, putting all this together, we have
shown that the canonical ring of any curve is finitely
generated.

In fact 3KC = f ∗H for any hyperplane H in P5g−5.

That is to get the canonical divisor of C, just
intersect C with a hyperplane and divide by three.

In fact, more often than not, there is an embedding
of C into Pg, such that R = C[C].
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Summary

To prove that the canonical ring of a curve is finitely
generated, there are three cases. P1 (easy), an elliptic
curve (a little harder) and curves of genus at least
two (hardest case).

In the hardest case, we have to exhibit an embedding
of C into projective space, and realise the canonical
ring as a coordinate ring.

Hopefully it is becoming clearer that to prove finite
generation, one needs to understand the geometry of
X .

Further the geometry of X is closely related to the
behaviour of the canonical divisor and the canonical
ring.
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Surfaces

Now consider the case of surfaces.

Zariski proved that h0(X,OX(mKX)) is a
polynomial f(m) in m of degree at most two, up to
a bounded function (which is in fact periodic).

The degree of f is called the Kodaira dimension.

As with the case of curves, if the Kodaira dimension
is zero (or −∞), there is not much to prove.

There are thus two interesting cases.

• The Kodaira dimension is one, or

• The Kodaira dimension is two.
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Kodaira dimension one

Suppose that X = S = C × E, where E is an
elliptic curve. As KE is the trivial divisor,

R(S, KS) = R(C, KC),

which as we have seen is finitely generated.

It is too much to expect that S is always a product.

In general, there is a morphism f : S −→ C to a
curve C, where the general fibre is an elliptic curve.

Kodaira proved that, after suitably modifying S,

KS = f ∗(KC + ∆),

where ∆ is a divisor with positive rational coeffs.
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Kodaira’s formula

The divisor ∆ measures how far S is from being a
product (components of ∆ arise both from the
singular fibres and from the fact that the elliptic
curves need not be isomorphic, according to a
formulation due to Fujita)

Thus

R(S, KS) = R(C, KC + ∆)

=
⊕

m∈N

H0(C,OC(xm(KC + ∆)y)).

where the rounddown is taken componentwise.

Finite generation then follows, as before.
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Kodaira dimension two

Zariski exhibited divisors D of Kodaira dimension
two on a smooth surface S (in fact simply P2 blown
up in twelve general points), such that the ring
R(S, D) is not finitely generated.

This case is therefore much more subtle.

In fact, based on Zariski’s example, Fujita gave
examples of smooth complex manifolds of
dimension four whose canonical ring is not finitely
generated.

The key point is to use the fact that X is projective
and to exhibit the canonical ring as a coordinate
ring, under some embedding.
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Nef divisors

If we can find a map f : X −→ Pk such that
D = f ∗H , where H is a hyperplane, then we say
that D is semiample. In this case R(X, D) = C[X],
up to truncation, and so R(X, D) is finitely
generated.

Given a curve C ⊂ Pn then H · C > 0.

Thus if D = f ∗H is semiample then D is nef, that is
D · C ≥ 0 (we get equality iff C is contracted by f ).

The converse is far from being true in general. E.g.
divisors of degree zero on elliptic curves which are
not torsion.
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Base point free Theorem

Let X be a projective variety. Say that KX is big and X
is of general type, if the Kodaira dimension of KX is
equal to the dimension of X .

Theorem (Kawamata, Shokurov). Let X be a smooth
projective variety.
If KX is nef and big then KX is semiample.

In particular if KX is big and nef then R(X, KX) is

finitely generated.
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Base point theorem II

Let X be a variety and let ∆ be a divisor. We say that the
pair (X, ∆) is kawamata log terminal, if KX + ∆ is
Q-Cartier, the coefficients of ∆ lie between zero and one,
and this continues to hold on any resolution.

Then the base point free theorem applies to KX + ∆ if it
is big and nef. In fact it applies even if ∆ is big.

Without going into technical details, it is very important

that the coefficients of ∆ are all less than one.
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Kodaira’s formula revisited

Applying the ideas of Iitaka’s program, we have:
Theorem (Fujino, Mori). Let X be a smooth projective
variety.
Then there is a kawamata log terminal pair (Y, Γ) such
that

R(X, KX) = R(Y, KY + Γ),

where KY + Γ is big.

If we knew that KY + Γ were nef, then we could apply
the base point free theorem and we would be done.

Summary: we may assume that KX (or more generally

KX + ∆) is big and the whole problem turns on making

KX (or KX + ∆) nef.
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An interesting rational map

Let C2 −→ C be the map (x, y) −→ y/x.
Geometrically we take the line connecting the origin
to (x, y) and assign the slope.

This map is not defined along the y-axis.

Easy fix, replace C by P1 = C ∪ {∞}.

This map is still not defined at the origin. In fact
there is no easy way to fix this

Zen type question: what is the slope of the line
connecting the origin to the origin?
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The blow up

Let Γ ⊂ C2 × P1 be the closure of the graph of this
rational map.

If coordinates on C2 are (x, y) and on P1 are [S : T ],
then the equation for Γ is xT = yS.

Let p : Γ −→ C2 be the first projection.

Then p−1(x, y) is a unique point, unless
(x, y) = (0, 0), when we get a copy of P1.

Thus the map p is an isomorphism outside the
origin, but it replaces the origin by a whole copy E
of P1. E is called the exceptional divisor.
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General case

Given any smooth surface S, we can always pick
local coordinates (x, y) about any point, and we can
then always blow up the point p, f : T −→ S, using
these local coordinates.

f is an isomorphism outside p but the inverse image
E of p is a copy of P1.

For example, let S = C2/Λ, where Z4 ' Λ ⊂ C2 is
a lattice. Then S is a compact algebraic group, an
abelian variety.

But if f : T −→ S is the blow up of S at the identity,
then T is no longer an algebraic group. Indeed S
contains no copies of P1, so that T is not even
homogeneous.
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Mori’s program

We want to undo the action of a blow up. That is we
want to replace T by S. How do we spot exceptional
divisors E?

If we compute in local coordinates then

KT = f ∗KS + E.

As E · E = −1, KT · E = −1. E is called a
−1-curve.

Note that KT is not nef and we are looking for
curves E such that KT · E < 0.
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Minimal model program: surfaces

Start with a smooth projective surface S.

Is KS nef? If yes, then STOP.

If not then there is a map f : S −→ Z contracting
curves C such that −KS · C < 0, and there are three
cases:

• Fano variety Z is a point and S = P2. STOP.

• Mori fibre space Z is a curve and the fibres of f are
copies of P1. STOP.

• Z is a surface. f is a blow up, so that f contracts a
copy E of P1 to a point p. Replace S by Z and go
back to (2).
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Notes on the MMP

As with any algorithm, it is important to know that
the MMP terminates. In the case of surfaces this is
clear, since every time we contract a curve the
second betti number drops by one (we replace a
copy of S2 by a point).

Note that if π : T −→ S is a blow up, then the
pluricanonical forms of S and T may be naturally
identified. Thus the canonical rings of S and T are
naturally isomorphic.
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The minimal model program

Start with a smooth projective variety X .

Is KX nef? If yes, then STOP (minimal model).

If not then by the base point free theorem, there is a
map f : X −→ Z contracting curves C such that
−KX · C < 0, and there are two cases:

Mori fibre space dim Z < dim X , the fibres F of f
are Fano varieties, −KF is ample. STOP.

dim Z = dim X . There are two cases.

• The exceptional locus is a divisor. Replace X by Z
and go back to (2).

• The exceptional locus has codimension at least two.
We cannot replace X by Z as Z is too singular.
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New operation

Instead of contracting C, we try to replace X by another
birational model X+, X 99K X+, such that
π+ : X+ −→ Y is KX+-ample.

X
φ

- X+

@
@

@
@

@
@

@

π

R 	�
�

�
�

�
�

�

π+

Z.
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Flips

This operation is called a flip.

Even supposing we can perform a flip, how do know
that this process terminates?

It is clear that we cannot keep contracting divisors,
but why could there not be an infinite sequence of
flips?
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Brief History of the MMP

The steps of the MMP were developed in the
eighties, by Kawamata, Kollár, Mori, Reid,
Shokurov and many others.

Mori proved the existence of flips in dimension
three, and recently Shokurov proved existence of
flips in dimension four.

Alexeev, Hacon, Kawamata and Shokurov proved
termination of flips in dimensions three and four.
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Existence and termination

Theorem. [Hacon,-] Flips exist.

Theorem. [Birkar,Cascini,Hacon,-] Let X be a smooth
projective variety, such that KX is big.
Then the MMP with scaling terminates. In particular X
has a minimal model.

Theorem. [Birkar,Cascini,Hacon,-] Let X be a smooth
projective variety. If KX · C < 0 for some covering
family of curves, then X is birational to a Mori fibre
space π : Y −→ Z.
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Existence of flips

Suppose that we are given π : X −→ Z a small
contraction, −KX is ample over Z. Our aim is to
construct the flip π+ : X+ −→ Z of π.

The existence of the flip is local, so that we may
assume that Z = Spec A is affine.

In fact it suffices to prove that the canonical ring

R(X, KX) =
⊕

m∈N

H0(X,OX(mKX)),

is a finitely generated A-algebra.
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Reduction to pl-flips

Shokurov proved that to prove the existence of
KX-flips, it suffices to prove the existence of flips
for KX + S + B, where S has coefficient one.

The key point is that

(KX + S + B)|S = KS + C,

so that we have the start of an induction.

In fact there is a natural restriction map,

H0(X,OX(m(KX+S+B))) −→ H0(S,OS(m(KS+C))).

Let RS be the restricted algebra in R(S, KS + C),
the direct sum of all the images.
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Lifting sections

It is easy to see that R(X, KX + S + B) is finitely
generated iff RS is finitely generated.

If the natural restriction maps are surjective, then
RS = R(S, KS + C) and we would be done by
induction.

In fact it is a very natural question to ask which
sections can one lift. Fortunately Siu, using ideas
from PDE’s (multiplier ideal sheaves) and then
Kawamata gave some important partial answers to
this question.

Thus we are able to prove that enough sections lift,
to show that RS is finitely generated.
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Limiting algebras

In fact we show that in every degree, one can find a
divisor Θm on some fixed higher model of S, such
that

RS =
⊕

m∈N

H0(S,OS(mk(KS + Θm))).

Θ• forms a convex sequence. Let Θ = lim Θm.

Then we can prove, using ideas of Shokurov
(saturation and Diophantine approximation) that
Θ = Θm is constant.

But then RS =
⊕

m∈N H0(S,OS(mk(KS + Θ)) and
we are done.
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