Classical Enumerative Geometry and Quantum Cohomology

James M^cKernan

UCSB

Classical Enumerative Geometry and Quantum Cohomology - p.1

Amazing Equation

It is the purpose of this talk to convince the listener that the following formula is truly amazing. end

$$\begin{split} N_{d}(a,b,c) &= \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a-1\\b_{1}+b_{2}=b\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}^{2}d_{2}^{2} \binom{a-3}{a_{1}-1} - d_{1}^{3}d_{2} \binom{a-3}{a_{1}} \right] \binom{b}{b_{1}} \binom{c}{c_{1}} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a\\b_{1}+b_{2}=b-1\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}^{2}d_{2}\binom{a-3}{a_{1}-1} - d_{1}^{3}\binom{a-3}{a_{1}} \right] \binom{b}{b_{1}b_{2}1} \binom{c}{c_{1}} \\ &+ 4 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}b_{2}2} \binom{c}{c_{1}} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}} \binom{c}{c_{1}c_{2}1} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}} \binom{c}{c_{1}c_{2}1} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}} \binom{c}{c_{1}c_{2}1} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}} \binom{c}{c_{1}c_{2}1} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}} \binom{c}{c_{1}c_{2}1} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}+a_{2}=a+1\\b_{1}+b_{2}=b-2\\c_{1}+c_{2}=c}} N_{d_{1}}(a_{1},b_{1},c_{1})N_{d_{2}}(a_{2},b_{2},c_{2}) \left[d_{1}d_{2}\binom{a-3}{a_{1}-2} - d_{1}^{2}\binom{a-3}{a_{1}-1} \right] \binom{b}{b_{1}} \binom{c}{c_{1}c_{1}} \\ &+ 2 \cdot \sum_{\substack{d_{1}+d_{2}=d\\a_{1}$$

Projective Space

 $\square \mathbb{P}^n$ is the set of lines in \mathbb{C}^{n+1} .

Projective Space

• \mathbb{P}^n is the set of lines in \mathbb{C}^{n+1} .

Suppose n = 1. Pick $p = (x, y) \in \mathbb{C}^2$. The line through p is represented by its slope, that is the ratio z = y/x.

Projective Space

• \mathbb{P}^n is the set of lines in \mathbb{C}^{n+1} .

- Suppose n = 1. Pick $p = (x, y) \in \mathbb{C}^2$. The line through p is represented by its slope, that is the ratio z = y/x.
- We get the classical Riemann sphere, ℂ compactified by adding a point at infinity.

Aut $(\mathbb{P}^1) = \frac{az+b}{cz+d}$, the group of Möbius transformations.

Aut $(\mathbb{P}^1) = \frac{az+b}{cz+d}$, the group of Möbius transformations.

Suppose we are given four points p, q, r and s. Then there is a unique Möbius transformation, sending $p \longrightarrow 0, q \longrightarrow 1, r \longrightarrow \infty$.

Aut $(\mathbb{P}^1) = \frac{az+b}{cz+d}$, the group of Möbius transformations.

- Suppose we are given four points p, q, r and s. Then there is a unique Möbius transformation, sending $p \longrightarrow 0, q \longrightarrow 1, r \longrightarrow \infty$.
- The image $s \longrightarrow \lambda \in \mathbb{C} \{0, 1\}$ is called the cross-ratio.

Aut $(\mathbb{P}^1) = \frac{az+b}{cz+d}$, the group of Möbius transformations.

- Suppose we are given four points p, q, r and s. Then there is a unique Möbius transformation, sending $p \longrightarrow 0, q \longrightarrow 1, r \longrightarrow \infty$.
- The image $s \longrightarrow \lambda \in \mathbb{C} \{0, 1\}$ is called the cross-ratio.

link. In fact

$$\lambda = \frac{(r-q)(p-s)}{(p-q)(r-s)}.$$

Our definition of \mathbb{P}^n has some interesting consequences.

Our definition of \mathbb{P}^n has some interesting consequences. In fact these two curves

Our definition of \mathbb{P}^n has some interesting consequences. In fact these two curves

intersect at two points

Our definition of \mathbb{P}^n has some interesting consequences. In fact these two curves

intersect at two points and these two lines

Our definition of \mathbb{P}^n has some interesting consequences. In fact these two curves

intersect at two points and these two lines

meet at a point.

Our definition of \mathbb{P}^n has some interesting consequences. In fact these two curves

intersect at two points and these two lines

meet at a point.Principle of Continuity The number of intersection points is an invariant of a continuous family of curves.

Bézout's Theorem

Theorem. (*Bezout's Theorem*) Given two plane curves C and D defined by polynomials F and G of degree d and e, then

 $#C \cap D = de.$

Theorem. (*Bezout's Theorem*) Given two plane curves C and D defined by polynomials F and G of degree d and e, then

 $#C \cap D = de.$

Indeed the result is obviously true when our two curves are the union of d and e lines

Theorem. (*Bezout's Theorem*) Given two plane curves C and D defined by polynomials F and G of degree d and e, then

 $#C \cap D = de.$

Indeed the result is obviously true when our two curves are the union of d and e lines

Proof. Let F_{∞} and G_{∞} be the product of linear forms. Then $F + tF_{\infty}$ and $G + tG_{\infty}$ define continuous families and when $t = \infty$, the answer is obviously de.

The degree

The degree d of a variety $X^k \subset \mathbb{P}^n$ is the number of points $X \cap \Lambda$, where Λ is a general linear subspace of dimension n - k.

The degree

The degree d of a variety $X^k \subset \mathbb{P}^n$ is the number of points $X \cap \Lambda$, where Λ is a general linear subspace of dimension n - k.

Bézout's Theorem: If we have *n* hypersurfaces X_1, X_2, \ldots, X_n of degrees d_1, d_2, \ldots, d_n , then the number of common intersection points is

 $d_1d_2\ldots d_n$.

The degree

The degree d of a variety $X^k \subset \mathbb{P}^n$ is the number of points $X \cap \Lambda$, where Λ is a general linear subspace of dimension n - k.

Bézout's Theorem: If we have *n* hypersurfaces X_1, X_2, \ldots, X_n of degrees d_1, d_2, \ldots, d_n , then the number of common intersection points is

 $d_1d_2\ldots d_n$.

Indeed, the same proof applies.

Conics in \mathbb{P}^2

A conic is given as the zero locus of

 $aX^{2} + bY^{2} + cZ^{2} + dXY + eYZ + fXZ,$ where $[a:b:c:d:e:f] \in \mathbb{P}^{5}.$

Conics in \mathbb{P}^2

A conic is given as the zero locus of

 $aX^{2} + bY^{2} + cZ^{2} + dXY + eYZ + fXZ,$

where $[a:b:c:d:e:f] \in \mathbb{P}^5$.

How many conics pass through five points, p_1 , p_2 , p_3 , p_4 and p_5 ?

Conics in \mathbb{P}^2

A conic is given as the zero locus of

 $aX^2 + bY^2 + cZ^2 + dXY + eYZ + fXZ,$

where $[a:b:c:d:e:f] \in \mathbb{P}^5$.

- How many conics pass through five points, p_1 , p_2 , p_3 , p_4 and p_5 ?
- The condition that a conic contains a point p is a linear condition on the coefficients.

Correspondence

So we have a correspondence between

 $\{ C \mid C \text{ contains } p_i \}$ and $H_i \subset \mathbb{P}^5$, where H_i is a hyperplane. So we have a correspondence between

 $\{ C \mid C \text{ contains } p_i \}$ and $H_i \subset \mathbb{P}^5$,

where H_i is a hyperplane.

Thus the set of conics passing through five points, corresponds to the intersection of five hyperplanes. So we have a correspondence between

 $\{ C \mid C \text{ contains } p_i \}$ and $H_i \subset \mathbb{P}^5$,

where H_i is a hyperplane.

Thus the set of conics passing through five points, corresponds to the intersection of five hyperplanes.
So the answer is one.

How many lines in \mathbb{P}^3 meet four given lines?

Lines in \mathbb{P}^3

How many lines in \mathbb{P}^3 meet four given lines? Schubert Calculus: Let

- $= g_l$ represent the condition to meet a line,
- $\blacksquare g_P$ be the condition to meet a point, and
- $\blacksquare g_{\pi}$ be the condition to meet a plane.

Lines in \mathbb{P}^3

How many lines in \mathbb{P}^3 meet four given lines? Schubert Calculus: Let

g_l represent the condition to meet a line, *g_P* be the condition to meet a point, and *g_π* be the condition to meet a plane.
I claim

 $g_l^2 = g_P + g_\pi.$

Lines in \mathbb{P}^3

How many lines in \mathbb{P}^3 meet four given lines? Schubert Calculus: Let

g_l represent the condition to meet a line, *g_P* be the condition to meet a point, and *g_π* be the condition to meet a plane.
I claim

$$g_l^2 = g_P + g_\pi.$$

Indeed, fix two lines l and m, degenerate them until they are concurrent, and use the principle of continuity.

A little Algebra

So

$$g_l^4 = (g_P + g_\pi)^2$$

= $g_P^2 + 2g_P g_\pi + g_\pi^2$
= $1 + 2 \cdot 0 + 1 = 2$

A little Algebra

So

$$g_l^4 = (g_P + g_\pi)^2$$

= $g_P^2 + 2g_P g_\pi + g_\pi^2$
= $1 + 2 \cdot 0 + 1 = 2$

In fact we are working in the cohomology ring.

A little Algebra

So

$$g_l^4 = (g_P + g_\pi)^2$$

= $g_P^2 + 2g_P g_\pi + g_\pi^2$
= $1 + 2 \cdot 0 + 1 = 2$

In fact we are working in the cohomology ring.

$$H^*(\mathbb{P}^2) = \frac{\mathbb{Z}[x]}{\langle x^3 \rangle}$$

where x is the class of a line, and $C \sim dx$ and $D \sim ex$, so that $C \cdot D = dex^2 = de$.

A classical Problem

How many conics tangent to five given conics?

A classical Problem

How many conics tangent to five given conics?
Fact: The set of conics tangent to a given conic corresponds to a hypersurface of degree 6, so by Bézout the answer ought to be 6⁵.
A classical Problem

How many conics tangent to five given conics?
Fact: The set of conics tangent to a given conic corresponds to a hypersurface of degree 6, so by Bézout the answer ought to be 6⁵.

■ Wrong!

A classical Problem

- How many conics tangent to five given conics?
- Fact: The set of conics tangent to a given conic corresponds to a hypersurface of degree 6, so by Bézout the answer ought to be 6⁵.

■ Wrong!

Conics tangent to five lines? The set of conics tangent to one line corresponds to a hypersurface of degree two. Bézout predicts the answer is 2⁵. But the actual answer is 1.

• $\hat{\mathbb{P}}^2$ is the dual space to \mathbb{P}^2 . It consists of the set of lines in \mathbb{P}^2 .

- $\hat{\mathbb{P}}^2$ is the dual space to \mathbb{P}^2 . It consists of the set of lines in \mathbb{P}^2 .
- Given a conic C in \mathbb{P}^2 , we associate a dual conic \hat{C} in $\hat{\mathbb{P}}^2$, simply by sending a point of p of C to its tangent line, a point of $\hat{\mathbb{P}}^2$.

- $\hat{\mathbb{P}}^2$ is the dual space to \mathbb{P}^2 . It consists of the set of lines in \mathbb{P}^2 .
- Given a conic C in \mathbb{P}^2 , we associate a dual conic \hat{C} in $\hat{\mathbb{P}}^2$, simply by sending a point of p of C to its tangent line, a point of $\hat{\mathbb{P}}^2$.
- So the number of conics tangent to five given lines, is equal, by duality, to the number of conics through five given points which, as we have seen, is one.

- $\hat{\mathbb{P}}^2$ is the dual space to \mathbb{P}^2 . It consists of the set of lines in \mathbb{P}^2 .
- Given a conic C in P², we associate a dual conic C
 in P², simply by sending a point of p of C to its
 tangent line, a point of P².
- So the number of conics tangent to five given lines, is equal, by duality, to the number of conics through five given points which, as we have seen, is one.
- (Hwk) What is wrong?

Physics

Here is a typical Feynmann diagram.

Feynmann diagrams are used to encode the complicated interactions which particles undergo.

String Theory

One of the ideas of string theory, is that a string is the basic object and not particles. Replacing a point by a string, means replacing a line by a tube and our Feynmann diagram becomes:

Points at Infinity

Now take this picture and extend the tubes to infinity. Adding the points at infinity is topologically equivalent to adding caps.

Back to the Riemann sphere

Topologically, the resulting surface is a sphere.

Back to the Riemann sphere

Topologically, the resulting surface is a sphere.
So now we have the Riemann sphere, that is a copy of P¹, with four marked points.

Back to the Riemann sphere

- **Topologically, the resulting surface is a sphere.**
- So now we have the Riemann sphere, that is a copy of \mathbb{P}^1 , with four marked points.
- More generally, we will get a Riemann surface, together with a collection of marked points.

Note that plane curves of degree d correspond to polynomials of degree d, modulo scalars, which in turn corresponds to a \mathbb{P}^N , for some N.

- Note that plane curves of degree d correspond to polynomials of degree d, modulo scalars, which in turn corresponds to a \mathbb{P}^N , for some N.
- For example, if d = 1 we get N = 2 (in fact $\hat{\mathbb{P}}^2$) and if d = 2, we get N = 5, \mathbb{P}^5 .

- Note that plane curves of degree d correspond to polynomials of degree d, modulo scalars, which in turn corresponds to a \mathbb{P}^N , for some N.
- For example, if d = 1 we get N = 2 (in fact $\hat{\mathbb{P}}^2$) and if d = 2, we get N = 5, \mathbb{P}^5 .
- Some plane curves are rational, that is to say there is a map $\mathbb{P}^1 \longrightarrow \mathbb{P}^2$, $[S:T] \longrightarrow [F:G:H]$, where F, G and H are polynomials of degree d, in S and T.

- Note that plane curves of degree d correspond to polynomials of degree d, modulo scalars, which in turn corresponds to a \mathbb{P}^N , for some N.
- For example, if d = 1 we get N = 2 (in fact $\hat{\mathbb{P}}^2$) and if d = 2, we get N = 5, \mathbb{P}^5 .
- Some plane curves are rational, that is to say there is a map $\mathbb{P}^1 \longrightarrow \mathbb{P}^2$, $[S:T] \longrightarrow [F:G:H]$, where F, G and H are polynomials of degree d, in S and T.
- Let $X \subset \mathbb{P}^N$, be the locus of these rational curves. Basic question: what is the degree of $X \subset \mathbb{P}^N$?

Call this degree N_d . Classically this number is known as the grade.

Call this degree N_d . Classically this number is known as the grade.

• $N_1 = 1$. Indeed $X_1 = \mathbb{P}^2$, as every line is rational. Similarly every conic is rational, so $X_2 = \mathbb{P}^5$ and $N_2 = 1$.

- Call this degree N_d . Classically this number is known as the grade.
- $N_1 = 1$. Indeed $X_1 = \mathbb{P}^2$, as every line is rational. Similarly every conic is rational, so $X_2 = \mathbb{P}^5$ and $N_2 = 1$.
- In general to calculate the degree of X_d we need to cut by hyperplanes. As the dimension of X_d is 3d 1, we want to cut by 3d 1 hyperplanes.

- Call this degree N_d . Classically this number is known as the grade.
- $N_1 = 1$. Indeed $X_1 = \mathbb{P}^2$, as every line is rational. Similarly every conic is rational, so $X_2 = \mathbb{P}^5$ and $N_2 = 1$.
- In general to calculate the degree of X_d we need to cut by hyperplanes. As the dimension of X_d is 3d 1, we want to cut by 3d 1 hyperplanes.
- Now imposing the condition that a curve passes through a point is one linear condition. So we want to count the number of rational curves of degree dthat pass through 3d - 1 points.

Fix 3d - 2 points $p_1, p_2, \ldots, p_{3d-2}$ in \mathbb{P}^2 . Then we get a 1-dimensional family of rational curves C_t of degree d, which contain these points.

Fix 3d - 2 points $p_1, p_2, \ldots, p_{3d-2}$ in \mathbb{P}^2 . Then we get a 1-dimensional family of rational curves C_t of degree d, which contain these points.

Pick two auxiliary lines l_1 and l_2 and set $p_{3d-1} = l_1 \cap l_2$.

Fix 3d - 2 points $p_1, p_2, \ldots, p_{3d-2}$ in \mathbb{P}^2 . Then we get a 1-dimensional family of rational curves C_t of degree d, which contain these points.

- Pick two auxiliary lines l_1 and l_2 and set $p_{3d-1} = l_1 \cap l_2$.
- Pick four points of C_t , $p = p_1$, $q = p_2$, r a point of l_1 and s a point of l_2 .

Fix 3d - 2 points $p_1, p_2, \ldots, p_{3d-2}$ in \mathbb{P}^2 . Then we get a 1-dimensional family of rational curves C_t of degree d, which contain these points.

- Pick two auxiliary lines l_1 and l_2 and set $p_{3d-1} = l_1 \cap l_2$.
- Pick four points of C_t , $p = p_1$, $q = p_2$, r a point of l_1 and s a point of l_2 .
- Observe that C_t passes through iff r = s.

Note that there is a map $B \longrightarrow \mathbb{P}^1$ which assigns to a point $t \in B$, the cross-ratio of the four points p, q, r and s.

Note that there is a map $B \longrightarrow \mathbb{P}^1$ which assigns to a point $t \in B$, the cross-ratio of the four points p, q, r and s.

Note that the cross-ratio is infinity if r = s.

- Note that there is a map $B \longrightarrow \mathbb{P}^1$ which assigns to a point $t \in B$, the cross-ratio of the four points p, q, r and s.
- Note that the cross-ratio is infinity if r = s.
- By the principle of continuity, the number of times the cross-ratio is zero, is equal to the number of times the cross-ratio is infinity.

- Note that there is a map $B \longrightarrow \mathbb{P}^1$ which assigns to a point $t \in B$, the cross-ratio of the four points p, q, r and s.
- Note that the cross-ratio is infinity if r = s.
- By the principle of continuity, the number of times the cross-ratio is zero, is equal to the number of times the cross-ratio is infinity.
- So, when is the cross-ratio zero, and when is it infinity? cross-ratio

- Note that there is a map $B \longrightarrow \mathbb{P}^1$ which assigns to a point $t \in B$, the cross-ratio of the four points p, q, r and s.
- Note that the cross-ratio is infinity if r = s.
- By the principle of continuity, the number of times the cross-ratio is zero, is equal to the number of times the cross-ratio is infinity.
- So, when is the cross-ratio zero, and when is it infinity? cross-ratio
- It is zero when p = s or r = q and it is infinity if r = s or p = q.

Picture of family C_t

Classical Enumerative Geometry and Quantum Cohomology – p.23

Bubbling off

From the previous picture, it would seem that p = rand q = r can occur.

Bubbling off

From the previous picture, it would seem that p = rand q = r can occur.

But looking at this picture, picture, in fact it would seem this cannot occur (and nor can p = q).

Bubbling off

From the previous picture, it would seem that p = rand q = r can occur.

- But looking at this picture, picture, in fact it would seem this cannot occur (and nor can p = q).
- In fact what is happening, is that a copy of \mathbb{P}^1 is bubbling off. C_t is forced to break into two curves, one of degree d_1 and d_2 , where $d = d_1 + d_2$.

Singular fibre

\bullet d_1 and d_2 .
• d_1 and d_2 .

C₁ passes through $3d_1 - 1$ points. Choose these points $3d_1 - 1$ points, from amongst 3d - 1 - 3 points.

• d_1 and d_2 .

C₁ passes through $3d_1 - 1$ points. Choose these points $3d_1 - 1$ points, from amongst 3d - 1 - 3 points.

Choose which nodes to smooth.

• d_1 and d_2 .

- C₁ passes through $3d_1 1$ points. Choose these points $3d_1 1$ points, from amongst 3d 1 3 points.
- **Choose which nodes to smooth.**
- **C**hoose two curves C_1 and C_2 through given points.

• d_1 and d_2 .

- C₁ passes through $3d_1 1$ points. Choose these points $3d_1 1$ points, from amongst 3d 1 3 points.
- Choose which nodes to smooth.
- **Choose two curves** C_1 and C_2 through given points.

Choose the points r and s.

Putting all this together we get

$$N_{d} = \sum_{d_{1}+d_{2}=d} N_{d_{1}}N_{d_{2}} \left[d_{1}^{2}d_{2}^{2} \binom{3d-4}{3d_{1}-1} - d_{1}^{3}d_{2} \binom{3d-4}{3d_{1}-2} \right],$$

where $N_1 = 1$ and $N_2 = 1$. In fact $N_3 = 12, ...$

Quantum Cohomology

Set up a ring to count these objects,

$$QH^*(\mathbb{P}^2) = \frac{\mathbb{Z}[x]}{\langle x^3 = q \rangle}$$

This is the (small) quantum cohomology ring.

Set up a ring to count these objects,

$$QH^*(\mathbb{P}^2) = \frac{\mathbb{Z}[x]}{\langle x^3 = q \rangle}$$

This is the (small) quantum cohomology ring.

We have a new product, a deformation of the old product. Instead of counting number of intersection points, it counts the number of rational curves meeting given cycles (ie Gromov-Witten invariants). Set up a ring to count these objects,

$$QH^*(\mathbb{P}^2) = \frac{\mathbb{Z}[x]}{\langle x^3 = q \rangle}$$

This is the (small) quantum cohomology ring.

- We have a new product, a deformation of the old product. Instead of counting number of intersection points, it counts the number of rational curves meeting given cycles (ie Gromov-Witten invariants).
- Recursion formula corresponds to associativity of quantum product.

Tangency condition

For example, set $N_d(a, b, c)$ to be the number of curves of degree d through a general points, tangent to b lines, and tangent to c lines, at specified general points.

Tangency condition

For example, set $N_d(a, b, c)$ to be the number of curves of degree d through a general points, tangent to b lines, and tangent to c lines, at specified general points.

Formula .

Tangency condition

For example, set $N_d(a, b, c)$ to be the number of curves of degree d through a general points, tangent to b lines, and tangent to c lines, at specified general points.

Formula .

In particular, we derive $N_2(0, 5, 0) = 3264$, the correct answer to the question, how many conics tangent to five given lines? **Theorem.** (Beauville, Yau-Zaslow) Let S be a general K3 surface in \mathbb{P}^g . Then the number n(g) of rational curves on S which are hyperplane sections is equal to

$$\sum_{g=1}^{\infty} n(g)q^g = \frac{q}{q \prod_{n=1}^{\infty} (1-q^n)^{24}}$$

provided every such curve is nodal.

Theorem. (Beauville, Yau-Zaslow) Let S be a general K3 surface in \mathbb{P}^g . Then the number n(g) of rational curves on S which are hyperplane sections is equal to

$$\sum_{g=1}^{\infty} n(g)q^g = \frac{q}{q \prod_{n=1}^{\infty} (1-q^n)^{24}}$$

provided every such curve is nodal.

Theorem. (Xi Chen) Let S be a general K3 surface in \mathbb{P}^n , such that $\mathcal{O}_S(1)$ is not a multiple of another line bundle.

Then every rational curve which is a hyperplane section is nodal.