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Amazing Equation

It is the purpose of this talk to convince the listener that the
following formula is truly amazing. end
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Projective Space

P
n is the set of lines in C

n+1.

Suppose n = 1. Pick p = (x, y) ∈ C
2. The line

through p is represented by its slope, that is the ratio
z = y/x.

We get the classical Riemann sphere, C

compactified by adding a point at infinity.

z ∈ C ∪ {∞}
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Automorphisms of P
1

Aut(P1) = az+b
cz+d

, the group of Möbius
transformations.

Suppose we are given four points p, q, r and s. Then
there is a unique Möbius transformation, sending
p −→ 0, q −→ 1, r −→ ∞.

The image s −→ λ ∈ C − {0, 1} is called the
cross-ratio.

link. In fact

λ =
(r − q)(p − s)

(p − q)(r − s)
.
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Some Consequences

Our definition of P
n has some interesting consequences.

In fact these two curves

intersect at two points
and these two lines

meet at a point.

Principle of Continuity The number of intersection points

is an invariant of a continuous family of curves.
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Bézout’s Theorem

Theorem. (Bezout’s Theorem) Given two plane curves C
and D defined by polynomials F and G of degree d and
e, then

#C ∩ D = de.

Indeed the result is obviously true
when our two curves are the union
of d and e lines

Proof. Let F∞ and G∞ be the product of linear forms.
Then F + tF∞ and G + tG∞ define continuous families
and when t = ∞, the answer is obviously de.
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The degree

The degree d of a variety Xk ⊂ P
n is the number of

points X ∩ Λ, where Λ is a general linear subspace
of dimension n − k.

Bézout’s Theorem: If we have n hypersurfaces
X1, X2, . . . , Xn of degrees d1, d2, . . . , dn, then the
number of common intersection points is

d1d2 . . . dn.

Indeed, the same proof applies.
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Conics in P
2

A conic is given as the zero locus of

aX2 + bY 2 + cZ2 + dXY + eY Z + fXZ,

where [a : b : c : d : e : f ] ∈ P
5.

How many conics pass through five points, p1, p2,
p3, p4 and p5?

The condition that a conic contains a point p is a
linear condition on the coefficients.
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Correspondence

So we have a correspondence between

{C |C contains pi } and Hi ⊂ P
5,

where Hi is a hyperplane.

Thus the set of conics passing through five points,
corresponds to the intersection of five hyperplanes.

So the answer is one.
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Lines in P
3

How many lines in P
3 meet four given lines?

Schubert Calculus: Let

gl represent the condition to meet a line,

gP be the condition to meet a point, and

gπ be the condition to meet a plane.

I claim
g2

l = gP + gπ.

Indeed, fix two lines l and m, degenerate them until they

are concurrent, and use the principle of continuity.
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A little Algebra

So

g4

l = (gP + gπ)
2

= g2

P + 2gPgπ + g2

π

= 1 + 2 · 0 + 1 = 2.

In fact we are working in the cohomology ring.

H∗(P2) =
Z[x]

〈x3〉

where x is the class of a line, and C ∼ dx and D ∼ ex,
so that C · D = dex2 = de.
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A classical Problem

How many conics tangent to five given conics?

Fact: The set of conics tangent to a given conic
corresponds to a hypersurface of degree 6, so by
Bézout the answer ought to be 65.

Wrong!

Conics tangent to five lines? The set of conics
tangent to one line corresponds to a hypersurface of
degree two. Bézout predicts the answer is 25. But
the actual answer is 1.
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Use duality

P̂
2 is the dual space to P

2. It consists of the set of
lines in P

2.

Given a conic C in P
2, we associate a dual conic Ĉ

in P̂
2, simply by sending a point of p of C to its

tangent line, a point of P̂
2.

So the number of conics tangent to five given lines,
is equal, by duality, to the number of conics through
five given points which, as we have seen, is one.

(Hwk) What is wrong?
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Physics

Here is a typical Feynmann diagram.

Feynmann diagrams are used to encode the complicated

interactions which particles undergo.
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String Theory

One of the ideas of string theory, is that a string is the
basic object and not particles. Replacing a point by a
string, means replacing a line by a tube and our
Feynmann diagram becomes:
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Points at Infinity

Now take this picture and extend the tubes to infinity.
Adding the points at infinity is topologically equivalent
to adding caps.

p

q

r

s
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Back to the Riemann sphere

Topologically, the resulting surface is a sphere.

So now we have the Riemann sphere, that is a copy
of P

1, with four marked points.

More generally, we will get a Riemann surface,
together with a collection of marked points.
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Rational curves in P
2

Note that plane curves of degree d correspond to
polynomials of degree d, modulo scalars, which in
turn corresponds to a P

N , for some N .

For example, if d = 1 we get N = 2 (in fact P̂
2) and

if d = 2, we get N = 5, P
5.

Some plane curves are rational, that is to say there is
a map P

1 −→ P
2, [S : T ] −→ [F : G : H], where F ,

G and H are polynomials of degree d, in S and T .

Let X ⊂ P
N , be the locus of these rational curves.

Basic question: what is the degree of X ⊂ P
N?
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The Grade

Call this degree Nd. Classically this number is
known as the grade.

N1 = 1. Indeed X1 = P
2, as every line is rational.

Similarly every conic is rational, so X2 = P
5 and

N2 = 1.

In general to calculate the degree of Xd we need to
cut by hyperplanes. As the dimension of Xd is
3d − 1, we want to cut by 3d − 1 hyperplanes.

Now imposing the condition that a curve passes
through a point is one linear condition. So we want
to count the number of rational curves of degree d
that pass through 3d − 1 points.
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An argument due to Kontsevich

Fix 3d − 2 points p1, p2, . . . , p3d−2 in P
2. Then we

get a 1-dimensional family of rational curves Ct of
degree d, which contain these points.

Pick two auxiliary lines l1 and l2 and set
p3d−1 = l1 ∩ l2.

Pick four points of Ct, p = p1, q = p2, r a point of l1
and s a point of l2.

Observe that Ct passes through iff r = s.
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and s a point of l2.

Observe that Ct passes through iff r = s.
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Picture

Here is a picture of what is going on back :

r

s

Ct

p=p1

q=p2
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Keeping track of the cross-ratio

Note that there is a map B −→ P
1 which assigns to

a point t ∈ B, the cross-ratio of the four points p, q,
r and s.

Note that the cross-ratio is infinity if r = s.

By the principle of continuity, the number of times
the cross-ratio is zero, is equal to the number of
times the cross-ratio is infinity.

So, when is the cross-ratio zero, and when is it
infinity? cross-ratio

It is zero when p = s or r = q and it is infinity if
r = s or p = q.
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Picture of family Ct

p
q

r

B
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Bubbling off

From the previous picture, it would seem that p = r
and q = r can occur.

But looking at this picture, picture , in fact it would
seem this cannot occur (and nor can p = q).

In fact what is happening, is that a copy of P
1 is

bubbling off. Ct is forced to break into two curves,
one of degree d1 and d2, where d = d1 + d2.
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Singular fibre

q

p

p

q

r
s
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Choices

d1 and d2.

C1 passes through 3d1 − 1 points. Choose these
points 3d1 − 1 points, from amongst 3d − 1 − 3
points.

Choose which nodes to smooth.

Choose two curves C1 and C2 through given points.

Choose the points r and s.
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Recursive Formula

Putting all this together we get

Nd =
∑

d1+d2=d

Nd1
Nd2

[

d2

1d
2

2

(

3d − 4

3d1 − 1

)

− d3

1d2

(

3d − 4

3d1 − 2

)]

,

where N1 = 1 and N2 = 1.
In fact N3 = 12, . . . .
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Quantum Cohomology

Set up a ring to count these objects,

QH∗(P2) =
Z[x]

〈x3 = q〉
.

This is the (small) quantum cohomology ring.

We have a new product, a deformation of the old
product. Instead of counting number of intersection
points, it counts the number of rational curves
meeting given cycles (ie Gromov-Witten invariants).

Recursion formula corresponds to associativity of
quantum product.
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Tangency condition

For example, set Nd(a, b, c) to be the number of
curves of degree d through a general points, tangent
to b lines, and tangent to c lines, at specified general
points.

Formula .

In particular, we derive N2(0, 5, 0) = 3264, the
correct answer to the question, how many conics
tangent to five given lines?

Classical Enumerative Geometry and Quantum Cohomology – p.29



Tangency condition

For example, set Nd(a, b, c) to be the number of
curves of degree d through a general points, tangent
to b lines, and tangent to c lines, at specified general
points.

Formula .

In particular, we derive N2(0, 5, 0) = 3264, the
correct answer to the question, how many conics
tangent to five given lines?

Classical Enumerative Geometry and Quantum Cohomology – p.29



Tangency condition

For example, set Nd(a, b, c) to be the number of
curves of degree d through a general points, tangent
to b lines, and tangent to c lines, at specified general
points.

Formula .

In particular, we derive N2(0, 5, 0) = 3264, the
correct answer to the question, how many conics
tangent to five given lines?

Classical Enumerative Geometry and Quantum Cohomology – p.29



Further Work

Theorem. (Beauville, Yau-Zaslow) Let S be a general
K3 surface in P

g. Then the number n(g) of rational
curves on S which are hyperplane sections is equal to

∞
∑

g=1

n(g)qg =
q

q
∏∞

n=1
(1 − qn)24

.

provided every such curve is nodal.

Theorem. (Xi Chen) Let S be a general K3 surface in
P

n, such that OS(1) is not a multiple of another line
bundle.
Then every rational curve which is a hyperplane section
is nodal.
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