Symmetries of Varieties

James M^cKernan

MIT

Symmetries of Varieties – p. 1

Motivating Question

How large is the automorphism group of a variety?

How large is the automorphism group of a variety?The answer reveals an interesting trichotomy.

How large is the automorphism group of a variety?
The answer reveals an interesting trichotomy.
Let C be a smooth plane curve of degree d.

How large is the automorphism group of a variety?
The answer reveals an interesting trichotomy.
Let C be a smooth plane curve of degree d.
If d ≤ 2, then C = P¹ and Aut(P¹) = PGL₂(C).

How large is the automorphism group of a variety?
The answer reveals an interesting trichotomy.
Let C be a smooth plane curve of degree d.
If d ≤ 2, then C = P¹ and Aut(P¹) = PGL₂(C).
Infinite, but the dimension is three.

How large is the automorphism group of a variety?
The answer reveals an interesting trichotomy.
Let C be a smooth plane curve of degree d.
If d ≤ 2, then C = P¹ and Aut(P¹) = PGL₂(ℂ).
Infinite, but the dimension is three.
If d = 3, then C is an elliptic curve. C acts on itself by translation, and Aut(C) is a finite extension of C.

How large is the automorphism group of a variety? The answer reveals an interesting trichotomy. \blacksquare Let C be a smooth plane curve of degree d. If $d \leq 2$, then $C = \mathbb{P}^1$ and $\operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$. Infinite, but the dimension is three. If d = 3, then C is an elliptic curve. C acts on itself by translation, and Aut(C) is a finite extension of C. **The dimension of** Aut(C) is one.

How large is the automorphism group of a variety? The answer reveals an interesting trichotomy. \blacksquare Let C be a smooth plane curve of degree d. If $d \leq 2$, then $C = \mathbb{P}^1$ and $\operatorname{Aut}(\mathbb{P}^1) = \operatorname{PGL}_2(\mathbb{C})$. **Infinite**, but the dimension is three. If d = 3, then C is an elliptic curve. C acts on itself by translation, and Aut(C) is a finite extension of C. **The dimension of** Aut(C) is one. • More generally, $\operatorname{Aut}(\mathbb{P}^n) = \operatorname{PGL}_{n+1}(\mathbb{C})$, of dimension $(n+1)^2 - 1$ and Aut(A) is a finite extension of itself, so $\dim \operatorname{Aut}(A) = \dim A$.

• The Fermat curve $C = (x^d + y^d + z^d = 0)$. $|\operatorname{Aut}(C)| = 6d^2, d \neq 4, 6.$

- The Fermat curve $C = (x^d + y^d + z^d = 0)$. $|\operatorname{Aut}(C)| = 6d^2, d \neq 4, 6.$
- The Klein quartic $C = (x^3y + y^3z + z^3x = 0)$. Aut $(C) = PGL_3(\mathbb{F}_2)$. |Aut(C)| = 168.

- The Fermat curve $C = (x^d + y^d + z^d = 0).$ $|\operatorname{Aut}(C)| = 6d^2, d \neq 4, 6.$
- The Klein quartic $C = (x^3y + y^3z + z^3x = 0)$. Aut $(C) = PGL_3(\mathbb{F}_2)$. |Aut(C)| = 168.
- The Wiman sextic C, given by

 $10x^{3}y^{3} + 9(x^{5} + y^{5})z - 45x^{2}y^{2}z^{2} - 135xyz^{4} + 27z^{6}.$

 $Aut(C) = A_6. |Aut(C)| = 360.$

Rational surfaces

Recall the classification of rational surfaces which are Mori fibre spaces.

Either $S = \mathbb{P}^2$, or S is a \mathbb{P}^1 -bundle over \mathbb{P}^1 , $S = \mathbb{F}_n = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)).$

Either $S = \mathbb{P}^2$, or S is a \mathbb{P}^1 -bundle over \mathbb{P}^1 , $S = \mathbb{F}_n = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)).$

Aut (\mathbb{F}_n) is an extension of $\operatorname{Aut}(\mathbb{P}^1)$ by matrices of the form

 $\begin{pmatrix} f & g \\ 0 & h \end{pmatrix}$

where f and h are scalars, and g is a polynomial of degree n. (Note that n = 0 is a special case).

Either $S = \mathbb{P}^2$, or S is a \mathbb{P}^1 -bundle over \mathbb{P}^1 , $S = \mathbb{F}_n = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)).$

Aut (\mathbb{F}_n) is an extension of $\operatorname{Aut}(\mathbb{P}^1)$ by matrices of the form

 $\begin{pmatrix} f & g \\ 0 & h \end{pmatrix}$

where f and h are scalars, and g is a polynomial of degree n. (Note that n = 0 is a special case).

So the dimension is 3 + 1 + 1 + n + 1 - 1 = n + 5.

Either $S = \mathbb{P}^2$, or S is a \mathbb{P}^1 -bundle over \mathbb{P}^1 , $S = \mathbb{F}_n = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n)).$

Aut (\mathbb{F}_n) is an extension of $\operatorname{Aut}(\mathbb{P}^1)$ by matrices of the form

 $\begin{pmatrix} f & g \\ 0 & h \end{pmatrix}$

where f and h are scalars, and g is a polynomial of degree n. (Note that n = 0 is a special case).

So the dimension is 3 + 1 + 1 + n + 1 - 1 = n + 5.
Check: F₁ = Bl_p P², dim Aut(F₁) = 8 - 2 = 6.

Symmetries of Varieties -p.4

If X is a quasi-projective variety, the set of all birational maps $X \rightarrow X$ is a group Bir(X).

If X is a quasi-projective variety, the set of all birational maps $X \dashrightarrow X$ is a group Bir(X).

Bir (\mathbb{P}^2) is infinite dimensional; if we pick $f: \mathbb{P}^2 \dashrightarrow \mathbb{F}_n$, then $f^{-1} \operatorname{Aut}(\mathbb{F}_n) f \subset \operatorname{Bir}(\mathbb{P}^2)$.

- If X is a quasi-projective variety, the set of all birational maps $X \dashrightarrow X$ is a group Bir(X).
- Bir (\mathbb{P}^2) is infinite dimensional; if we pick $f: \mathbb{P}^2 \dashrightarrow \mathbb{F}_n$, then $f^{-1} \operatorname{Aut}(\mathbb{F}_n) f \subset \operatorname{Bir}(\mathbb{P}^2)$.

One of the most interesting elements of $Bir(\mathbb{P}^2)$ is the involution

$$\sigma \colon [x:y:z] \dashrightarrow [1/x:1/y:1/z].$$

- If X is a quasi-projective variety, the set of all birational maps $X \rightarrow X$ is a group Bir(X).
- Bir (\mathbb{P}^2) is infinite dimensional; if we pick $f: \mathbb{P}^2 \dashrightarrow \mathbb{F}_n$, then $f^{-1} \operatorname{Aut}(\mathbb{F}_n) f \subset \operatorname{Bir}(\mathbb{P}^2)$.
- One of the most interesting elements of $Bir(\mathbb{P}^2)$ is the involution

$$\sigma \colon [x:y:z] \dashrightarrow [1/x:1/y:1/z].$$

Noether's Theorem: $Bir(\mathbb{P}^2)$ is generated by $PGL_2(\mathbb{C})$ and σ .

Theorem: Every birational map between two Mori fibre spaces is a product of Sarkisov links.

Theorem: Every birational map between two Mori fibre spaces is a product of Sarkisov links.

Sarkisov links are elementary maps between Mori fibre spaces.

- Theorem: Every birational map between two Mori fibre spaces is a product of Sarkisov links.
- Sarkisov links are elementary maps between Mori fibre spaces.
- **There are four types of links.**

- Theorem: Every birational map between two Mori fibre spaces is a product of Sarkisov links.
- Sarkisov links are elementary maps between Mori fibre spaces.
- **There are four types of links.**
- It is a fun exercise to factor σ into a product of Sarkisov links.

- Theorem: Every birational map between two Mori fibre spaces is a product of Sarkisov links.
- Sarkisov links are elementary maps between Mori fibre spaces.
- **There are four types of links.**
- It is a fun exercise to factor σ into a product of Sarkisov links.
- One can use this factorisation to prove Noether's theorem.

Birational automorphisms of \mathbb{P}^3

• We have already seen that $Bir(\mathbb{P}^3)$ is very large.

Birational automorphisms of \mathbb{P}^3

We have already seen that Bir(P³) is very large.
If f is a polynomial of degree d in x, y and z, the birational map φ: P³ --→ P³,

$$[x: y: z: t] \longrightarrow [x(t^d+f): y(t^d+f): z(t^d+f): tf],$$

blows down the cone over $C = (f = 0).$

Birational automorphisms of \mathbb{P}^3

We have already seen that Bir(P³) is very large.
If f is a polynomial of degree d in x, y and z, the birational map φ: P³ --→ P³,
[x: y: z:t] → [x(t^d+f): y(t^d+f): z(t^d+f): tf],
blows down the cone over C = (f = 0).
So if R is any set of generators of Bir(P³), then

$$\bigcup_{g\in\mathbb{N}}\mathcal{M}_g\subset R,$$

so that any generating set is infinite dimensional.

If $f: \mathbb{P}^3 \dashrightarrow X$ is birational (a product of Sarkisov links), then

 $f \operatorname{Aut}(X/Z) f^{-1} \subset \operatorname{Bir}(\mathbb{P}^3).$

If $f: \mathbb{P}^3 \dashrightarrow X$ is birational (a product of Sarkisov links), then

 $f \operatorname{Aut}(X/Z) f^{-1} \subset \operatorname{Bir}(\mathbb{P}^3).$

The problem is that there are very many Mori fibres.

If $f: \mathbb{P}^3 \dashrightarrow X$ is birational (a product of Sarkisov links), then

$$f \operatorname{Aut}(X/Z) f^{-1} \subset \operatorname{Bir}(\mathbb{P}^3).$$

The problem is that there are very many Mori fibres.

• If Z is a point then X is a Fano variety of Picard number one.

If $f: \mathbb{P}^3 \dashrightarrow X$ is birational (a product of Sarkisov links), then

 $f \operatorname{Aut}(X/Z) f^{-1} \subset \operatorname{Bir}(\mathbb{P}^3).$

The problem is that there are very many Mori fibres.

- If Z is a point then X is a Fano variety of Picard number one.
- If Z is a curve, then π is a family of del Pezzo surfaces.

If $f: \mathbb{P}^3 \dashrightarrow X$ is birational (a product of Sarkisov links), then

 $f \operatorname{Aut}(X/Z) f^{-1} \subset \operatorname{Bir}(\mathbb{P}^3).$

The problem is that there are very many Mori fibres.

- If Z is a point then X is a Fano variety of Picard number one.
- If Z is a curve, then π is a family of del Pezzo surfaces.
- If Z is a surface, then π is a conic bundle.
Theorem: Suppose that $X \subset \mathbb{P}^4$ is a smooth quartic threefold and $\pi \colon Y \longrightarrow Z$ is any other Mori fibre space.

Theorem: Suppose that $X \subset \mathbb{P}^4$ is a smooth quartic threefold and $\pi: Y \longrightarrow Z$ is any other Mori fibre space. If $\phi: X \dashrightarrow Y$ is a birational map then ϕ is an isomorphism.

Theorem: Suppose that $X \subset \mathbb{P}^4$ is a smooth quartic threefold and $\pi: Y \longrightarrow Z$ is any other Mori fibre space. If $\phi: X \dashrightarrow Y$ is a birational map then ϕ is an isomorphism.

In particular Y is a quartic threefold.

Theorem: Suppose that $X \subset \mathbb{P}^4$ is a smooth quartic threefold and $\pi: Y \longrightarrow Z$ is any other Mori fibre space. If $\phi: X \dashrightarrow Y$ is a birational map then ϕ is an isomorphism.

In particular Y is a quartic threefold.

Question: If X is a general quartic, is X unirational?

Finite generation

If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a topological group.

- If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a topological group.
- Let $\operatorname{Aut}^0(X)$ be the connected component of the identity. If X is not ruled then $\operatorname{Aut}^0(X)$ is an abelian variety of dimension $q(X) = h^1(X, \mathcal{O}_X)$.

- If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a topological group.
- Let $\operatorname{Aut}^0(X)$ be the connected component of the identity. If X is not ruled then $\operatorname{Aut}^0(X)$ is an abelian variety of dimension $q(X) = h^1(X, \mathcal{O}_X)$.
- Call the quotient $Aut(X) / Aut^0(X)$ the discrete part of the automorphism group.

- If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a topological group.
- Let $\operatorname{Aut}^0(X)$ be the connected component of the identity. If X is not ruled then $\operatorname{Aut}^0(X)$ is an abelian variety of dimension $q(X) = h^1(X, \mathcal{O}_X)$.
- Call the quotient $Aut(X) / Aut^0(X)$ the discrete part of the automorphism group.
- Question: Is the discrete part finitely generated?

- If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a topological group.
- Let $\operatorname{Aut}^0(X)$ be the connected component of the identity. If X is not ruled then $\operatorname{Aut}^0(X)$ is an abelian variety of dimension $q(X) = h^1(X, \mathcal{O}_X)$.
- Call the quotient $\operatorname{Aut}(X) / \operatorname{Aut}^0(X)$ the discrete part of the automorphism group.
- Question: Is the discrete part finitely generated?
- The case when q = 0 is probably the most interesting (e.g X is rationally connected or X is birational to Calabi-Yau).

- If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a topological group.
- Let $\operatorname{Aut}^0(X)$ be the connected component of the identity. If X is not ruled then $\operatorname{Aut}^0(X)$ is an abelian variety of dimension $q(X) = h^1(X, \mathcal{O}_X)$.
- Call the quotient $Aut(X) / Aut^0(X)$ the discrete part of the automorphism group.
- Question: Is the discrete part finitely generated?
- The case when q = 0 is probably the most interesting (e.g X is rationally connected or X is birational to Calabi-Yau).
- **Even the case of rational surfaces is unresolved.**

If X is a smooth projective variety, recall that a birational map f: X → Y is a minimal model if f⁻¹ does not contract any divisors, K_Y is nef and Y has Q-factorial terminal singularities.

- If X is a smooth projective variety, recall that a birational map f: X → Y is a minimal model if f⁻¹ does not contract any divisors, K_Y is nef and Y has Q-factorial terminal singularities.
- Minimal models are not unique, but any two are connected by a sequence of flops.

- If X is a smooth projective variety, recall that a birational map f: X → Y is a minimal model if f⁻¹ does not contract any divisors, K_Y is nef and Y has Q-factorial terminal singularities.
- Minimal models are not unique, but any two are connected by a sequence of flops.
- Question: Does X have only finitely many minimal models, up to the action of Bir(X)?

- If X is a smooth projective variety, recall that a birational map f: X → Y is a minimal model if f⁻¹ does not contract any divisors, K_Y is nef and Y has Q-factorial terminal singularities.
- Minimal models are not unique, but any two are connected by a sequence of flops.
- Question: Does X have only finitely many minimal models, up to the action of Bir(X)?
- There are highly non-trivial examples of threefolds and fourfolds, which suggest that this question is quite subtle and interesting.

- If X is a smooth projective variety, recall that a birational map f: X → Y is a minimal model if f⁻¹ does not contract any divisors, K_Y is nef and Y has Q-factorial terminal singularities.
- Minimal models are not unique, but any two are connected by a sequence of flops.
- Question: Does X have only finitely many minimal models, up to the action of Bir(X)?
- There are highly non-trivial examples of threefolds and fourfolds, which suggest that this question is quite subtle and interesting.
- The case when X is of general type is in BCHM.

Curves of genus $g \ge 2$

Theorem: If C is a smooth curve of genus $g \ge 2$, then $|\operatorname{Aut}(C)| \le 42(2g-2)$.

Curves of genus $g \ge 2$

Theorem: If C is a smooth curve of genus $g \ge 2$, then $|\operatorname{Aut}(C)| \le 42(2g-2)$. Proof: $G = \operatorname{Aut}(C)$ is finite. Let

$$\pi\colon C \longrightarrow B = C/G,$$

be the quotient map.

Theorem: If C is a smooth curve of genus $g \ge 2$, then $|\operatorname{Aut}(C)| \le 42(2g-2)$. Proof: $G = \operatorname{Aut}(C)$ is finite. Let

 $\pi\colon C\longrightarrow B=C/G,$

be the quotient map. Riemann-Hurwitz:

$$K_C = \pi^*(K_B + \Delta),$$

where

$$\Delta = \sum_{b \in B} \frac{r_b - 1}{r_b} b$$

Taking the degree of both sides we get

$$2g - 2 = |G| \deg(K_B + \Delta).$$

Taking the degree of both sides we get

$$2g - 2 = |G| \deg(K_B + \Delta).$$

Let $\delta = \deg(K_B + \Delta) > 0$. Then

$$|G| = \frac{1}{\delta}(2g-2)$$
 and $\delta = 2h - 2 + \sum_{i=1}^{k} \frac{r_i - 1}{r_i}.$

Taking the degree of both sides we get

$$2g - 2 = |G| \deg(K_B + \Delta).$$

Let $\delta = \deg(K_B + \Delta) > 0$. Then

$$|G| = \frac{1}{\delta}(2g - 2)$$
 and $\delta = 2h - 2 + \sum_{i=1}^{k} \frac{r_i - 1}{r_i}$.

Objective: Bound δ from below.

Taking the degree of both sides we get

$$2g - 2 = |G| \deg(K_B + \Delta).$$

Let $\delta = \deg(K_B + \Delta) > 0$. Then

$$|G| = \frac{1}{\delta}(2g - 2)$$
 and $\delta = 2h - 2 + \sum_{i=1}^{k} \frac{r_i - 1}{r_i}.$

Objective: Bound δ from below.

Case by case analysis.

For which genera g, can we find C such that $|\operatorname{Aut}(C)| = 42(2g-2)?$

For which genera g, can we find C such that $|\operatorname{Aut}(C)| = 42(2g-2)?$

• The Klein quartic has genus 3 and $168 = 42 \cdot 4$.

For which genera g, can we find C such that $|\operatorname{Aut}(C)| = 42(2g-2)?$

• The Klein quartic has genus 3 and $168 = 42 \cdot 4$.

There are infinitely many g s.t. we get equality and infinitely many g s.t. $|\operatorname{Aut}(C)| \le 8(g+1)$.

- For which genera g, can we find C such that $|\operatorname{Aut}(C)| = 42(2g-2)?$
- The Klein quartic has genus 3 and $168 = 42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t. $|\operatorname{Aut}(C)| \le 8(g+1)$.
- Note that this question is entirely topological. Can we find a topological cover ramified over 0, 1 and ∞ to order 2, 3 and 7?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)| = 42(2g-2)?$
- The Klein quartic has genus 3 and $168 = 42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t. $|\operatorname{Aut}(C)| \le 8(g+1)$.
- Note that this question is entirely topological. Can we find a topological cover ramified over 0, 1 and ∞ to order 2, 3 and 7?
- Can we find an appropriate representation on the free group on two letters?

- For which genera g, can we find C such that $|\operatorname{Aut}(C)| = 42(2g-2)?$
- The Klein quartic has genus 3 and $168 = 42 \cdot 4$.
- There are infinitely many g s.t. we get equality and infinitely many g s.t. $|\operatorname{Aut}(C)| \le 8(g+1)$.
- Note that this question is entirely topological. Can we find a topological cover ramified over 0, 1 and ∞ to order 2, 3 and 7?
- Can we find an appropriate representation on the free group on two letters?
- Question: Is the Wiman sextic the curve with the maximum number of automorphisms, amongst all smooth curves of genus 10?
 Symmetries of Varieties - p. 14

Definition: The volume of a divisor D on a variety X is

$$\operatorname{vol}(X, D) = \limsup_{m \to \infty} \frac{n! h^0(X, mD)}{m^n}$$

Definition: The volume of a divisor D on a variety X is

$$\operatorname{vol}(X, D) = \limsup_{m \to \infty} \frac{n! h^0(X, mD)}{m^n}$$

If D is nef then $vol(X, D) = D^n$.

Definition: The volume of a divisor D on a variety X is

$$\operatorname{vol}(X, D) = \limsup_{m \to \infty} \frac{n! h^0(X, mD)}{m^n}$$

If D is nef then vol(X, D) = Dⁿ.
D is big if and only if vol(X, D) > 0.

Definition: The volume of a divisor D on a variety X is

$$\operatorname{vol}(X, D) = \limsup_{m \to \infty} \frac{n! h^0(X, mD)}{m^n}$$

If D is nef then vol(X, D) = Dⁿ.
D is big if and only if vol(X, D) > 0.
Theorem: Fix n. There is a constant c such that if X is a smooth projective variety of general type, then |Bir(X)| ≤ c · vol(X, K_X).

Definition: The volume of a divisor D on a variety X is

$$\operatorname{vol}(X, D) = \limsup_{m \to \infty} \frac{n! h^0(X, mD)}{m^n}$$

- If D is nef then $vol(X, D) = D^n$.
- $\square D$ is big if and only if vol(X, D) > 0.

Theorem: Fix n. There is a constant c such that if X is a smooth projective variety of general type, then $|\operatorname{Bir}(X)| \leq c \cdot \operatorname{vol}(X, K_X).$

If X = C is a smooth curve, then C is of general type if and only if $g \ge 2$ and $vol(C, K_C) = 2g - 2$.

Optimal value for c?

$$n = 1, c = 42.$$

Optimal value for c?

$$n = 1, c = 42.$$

• $n = 2, c = (42)^2$. Take $S = C \times C$, where C achieves maximum. $K_S = p^* K_C + q^* K_C$ is ample, $\operatorname{vol}(S, K_S) = 2(2g - 2)^2$ and $|\operatorname{Aut}(S)| = (42)^2 2(2g - 2)^2$.
$$n = 1, c = 42.$$

• $n = 2, c = (42)^2$. Take $S = C \times C$, where C achieves maximum. $K_S = p^* K_C + q^* K_C$ is ample, $\operatorname{vol}(S, K_S) = 2(2g - 2)^2$ and $|\operatorname{Aut}(S)| = (42)^2 2(2g - 2)^2$.

Stupid Question: Is $c = (42)^n$?

$$n = 1, c = 42.$$

• $n = 2, c = (42)^2$. Take $S = C \times C$, where C achieves maximum. $K_S = p^* K_C + q^* K_C$ is ample, $\operatorname{vol}(S, K_S) = 2(2g - 2)^2$ and $|\operatorname{Aut}(S)| = (42)^2 2(2g - 2)^2$.

Stupid Question: Is $c = (42)^n$?

No, let $X = (X_0^d + X_1^d + \dots + X_{n+1}^d = 0) \subset \mathbb{P}^{n+1}$.

$$n = 1, c = 42.$$

• $n = 2, c = (42)^2$. Take $S = C \times C$, where C achieves maximum. $K_S = p^* K_C + q^* K_C$ is ample, $\operatorname{vol}(S, K_S) = 2(2g - 2)^2$ and $|\operatorname{Aut}(S)| = (42)^2 2(2g - 2)^2$.

Stupid Question: Is $c = (42)^n$?

No, let $X = (X_0^d + X_1^d + \dots + X_{n+1}^d = 0) \subset \mathbb{P}^{n+1}$.

■ $K_X = (d - n - 2)H$, ample if and only if $d \ge n + 3$. Take d = n + 3.

$$n = 1, c = 42.$$

 $\blacksquare n = 2, c = (42)^2$. Take $S = C \times C$, where C achieves maximum. $K_S = p^* K_C + q^* K_C$ is ample, $vol(S, K_S) = 2(2q-2)^2$ and $|\operatorname{Aut}(S)| = (42)^2 2(2q-2)^2.$

Stupid Question: Is $c = (42)^n$?

No, let
$$X = (X_0^d + X_1^d + \dots + X_{n+1}^d = 0) \subset \mathbb{P}^{n+1}$$
.

 $K_X = (d - n - 2)H$, ample if and only if d > n + 3. Take d = n + 3.

 $|\operatorname{Aut}(X)| = (n+3)^{n+2}(n+2)!$ and $vol(X, K_X) = (n+3)$, ratio is $(n+3)^{n+1}(n+2)!$ which beats $(42)^n$ (n = 5 will do).

Symmetries of Varieties – p. 16

Let $V = \mathbb{F}_{a^2}^m$. There is a sesquilinear pairing

 $V \times V \longrightarrow \mathbb{F}_{q^2}$ given by $\sum a_i \overline{b}_i$,

where $\bar{x} = x^q$, so that $\bar{\bar{x}} = x^{q^2} = x$.

Let $V = \mathbb{F}_{a^2}^m$. There is a sesquilinear pairing

 $V \times V \longrightarrow \mathbb{F}_{q^2}$ given by $a_i \overline{b}_i$,

where $\bar{x} = x^q$, so that $\bar{\bar{x}} = x^{q^2} = x$.

The natural group is U_m(q), the unitary group fixing this pairing.

Let $V = \mathbb{F}_{a^2}^m$. There is a sesquilinear pairing

 $V \times V \longrightarrow \mathbb{F}_{q^2}$ given by $a_i \overline{b}_i$,

where $\bar{x} = x^q$, so that $\bar{\bar{x}} = x^{q^2} = x$.

- **The** natural group is $U_m(q)$, the unitary group fixing this pairing.
- $\Box U_m(q)$ fixes the null cone,

$$\sum a_i^{q+1} = 0.$$

Let $V = \mathbb{F}_{a^2}^m$. There is a sesquilinear pairing

 $V \times V \longrightarrow \mathbb{F}_{q^2}$ given by $a_i \overline{b}_i$,

where $\bar{x} = x^q$, so that $\bar{\bar{x}} = x^{q^2} = x$.

- **The** natural group is $U_m(q)$, the unitary group fixing this pairing.
- $\Box U_m(q)$ fixes the null cone,

$$\sum a_i^{q+1} = 0.$$

 $\Box U_m(q)$ is simple, one of the groups of Lie type.

Characteristic p?

• $\operatorname{Aut}(X) = U_{n+2}(q)$, X the Fermat of degree q + 1.

Aut
$$(X) = U_{n+2}(q)$$
, X the Fermat of degree $q+1$
 $|U_{n+2}(q)| = \frac{1}{(n+2, q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2} (q^i - (-1)^i).$

• Aut $(X) = U_{n+2}(q)$, X the Fermat of degree q + 1. • $|U_{n+2}(q)| = \frac{1}{(n+2,q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2} (q^i - (-1)^i)$. • Roughly like q^{α} , $\alpha = \binom{n+2}{2} + \binom{n+3}{2} - 1$. • Aut $(X) = U_{n+2}(q)$, X the Fermat of degree q + 1. • $|U_{n+2}(q)| = \frac{1}{(n+2,q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2} (q^i - (-1)^i)$. • Roughly like q^{α} , $\alpha = \binom{n+2}{2} + \binom{n+3}{2} - 1$.

Volume goes like q^{n+1} .

• $\operatorname{Aut}(X) = U_{n+2}(q)$, X the Fermat of degree q + 1.

$$|U_{n+2}(q)| = \frac{1}{(n+2,q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2} (q^i - (-1)^i).$$

$$(n+2) \quad (n+3)$$

Roughly like
$$q^{\alpha}$$
, $\alpha = \binom{n+2}{2} + \binom{n+3}{2} - 1$.

Volume goes like q^{n+1} . $n = 1, g \sim q^2, |\operatorname{Aut}(C)| \sim q^8. |\operatorname{Aut}(C)| \leq c \cdot g^4.$ • $\operatorname{Aut}(X) = U_{n+2}(q)$, X the Fermat of degree q + 1.

$$|U_{n+2}(q)| = \frac{1}{(n+2,q+1)} q^{\binom{n+2}{2}} \prod_{i=2}^{n+2} (q^i - (-1)^i).$$

Roughly like
$$q^{\alpha}$$
, $\alpha = \binom{n+2}{2} + \binom{n+3}{2} - 1$.

Volume goes like qⁿ⁺¹.
n = 1, g ~ q², |Aut(C)| ~ q⁸. |Aut(C)| ≤ c · g⁴.
Question Are there constants c, d such that

 $|\operatorname{Bir}(X)| \le c \operatorname{vol}(X, K_X)^d.$

Same strategy as before. Change models so that $G = \operatorname{Aut}(Y) = \operatorname{Bir}(Y)$. *G* is finite. If $\pi \colon Y \longrightarrow X = Y/G$ is the quotient map, then $K_Y = \pi^*(K_X + \Delta)$. Same strategy as before. Change models so that $G = \operatorname{Aut}(Y) = \operatorname{Bir}(Y)$. *G* is finite. If $\pi: Y \longrightarrow X = Y/G$ is the quotient map, then $K_Y = \pi^*(K_X + \Delta)$.

 $vol(Y, K_Y) = |G| vol(X, K_X + \Delta).$

Same strategy as before. Change models so that $G = \operatorname{Aut}(Y) = \operatorname{Bir}(Y)$. *G* is finite. If $\pi \colon Y \longrightarrow X = Y/G$ is the quotient map, then $K_Y = \pi^*(K_X + \Delta)$.

 $\bullet \operatorname{vol}(Y, K_Y) = |G| \operatorname{vol}(X, K_X + \Delta).$

• Objective: Bound $vol(X, K_X + \Delta)$ from below.

Same strategy as before. Change models so that G = Aut(Y) = Bir(Y). G is finite. If π: Y → X = Y/G is the quotient map, then K_Y = π*(K_X + Δ).
vol(Y, K_Y) = |G| vol(X, K_X + Δ).
Objective: Bound vol(X, K_X + Δ) from below.
(X, Δ) = (P², 1/2L₁ + 2/3L₂ + 6/7L₃ + 42/43L₄).

Same strategy as before. Change models so that $G = \operatorname{Aut}(Y) = \operatorname{Bir}(Y)$. G is finite. If $\pi: Y \longrightarrow X = Y/G$ is the quotient map, then $K_Y = \pi^* (K_X + \Delta).$ $\operatorname{vol}(Y, K_Y) = |G| \operatorname{vol}(X, K_X + \Delta).$ **Objective:** Bound $vol(X, K_X + \Delta)$ from below. $= (X, \Delta) = (\overline{\mathbb{P}^2, 1/2L_1 + 2/3L_2 + 6/7L_3 + 42/43L_4}).$ $K_X + \Delta = (1/2 + 2/3 + 6/7 + 42/43 - 3)L =$ $1/(42 \cdot 43)L$, which is ample.

Same strategy as before. Change models so that $G = \operatorname{Aut}(Y) = \operatorname{Bir}(Y)$. G is finite. If $\pi: Y \longrightarrow X = Y/G$ is the quotient map, then $K_Y = \pi^* (K_X + \Delta).$ $\operatorname{vol}(Y, K_Y) = |G| \operatorname{vol}(X, K_X + \Delta).$ **Objective:** Bound $vol(X, K_X + \Delta)$ from below. $= (X, \Delta) = (\overline{\mathbb{P}^2, 1/2L_1 + 2/3L_2 + 6/7L_3 + 42/43L_4}).$ $K_X + \Delta = (1/2 + 2/3 + 6/7 + 42/43 - 3)L =$ $1/(42 \cdot 43)L$, which is ample. $\mathbf{vol}(X, K_X + \Delta) = 1/(42^2 \cdot 43^2).$

Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.

- Definition: Let D be a divisor on a normal projective variety X.
- $H^0(X, D) = \{ f \mid (f) + D \ge 0 \}.$

- Definition: Let D be a divisor on a normal projective variety X.
- $H^0(X, D) = \{ f \mid (f) + D \ge 0 \}.$

Theorem: There is a positive integer r such that

 $\phi_{m(K_X+\Delta)}\colon X \dashrightarrow \mathbb{P}(H^0(X, m(K_X+\Delta))^*) = \mathbb{P}^N,$

is birational onto its image W, for all $m \ge r$.

- Definition: Let D be a divisor on a normal projective variety X.
- $H^0(X, D) = \{ f \mid (f) + D \ge 0 \}.$

Theorem: There is a positive integer r such that

$$\phi_{m(K_X+\Delta)}\colon X \dashrightarrow \mathbb{P}(H^0(X, m(K_X+\Delta))^*) = \mathbb{P}^N,$$

is birational onto its image W, for all $m \ge r$.

 $\operatorname{vol}(X, r(K_X + \Delta)) \ge \operatorname{vol}(W, H) = 1$, so that

- Definition: Let D be a divisor on a normal projective variety X.
- $H^0(X, D) = \{ f \mid (f) + D \ge 0 \}.$

Theorem: There is a positive integer r such that

$$\phi_{m(K_X+\Delta)}\colon X \dashrightarrow \mathbb{P}(H^0(X, m(K_X+\Delta))^*) = \mathbb{P}^N,$$

is birational onto its image W, for all $m \ge r$.

 $\operatorname{vol}(X, r(K_X + \Delta)) \ge \operatorname{vol}(W, H) = 1$, so that $\operatorname{vol}(X, K_X + \Delta) \ge 1/r^n$.