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= Let C be a smooth plane curve of degrée

wlf d < 2,thenC = P! andAut(P') = PGLy(C).
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w If d = 3, thenC' Is an elliptic curve C acts on itself
py translation, and\ut(C') is a finite extension of".

Svmmetries of Varieties — p. 2



Aotivating Question

= How largels theautomorphisngroup of a variety?
= The answer reveals an interesting trichotomy.

= Let C be a smooth plane curve of degrée

wlf d < 2,thenC = P! andAut(P') = PGLy(C).

= Infinite, but thedimensions three.

w If d = 3, thenC' Is an elliptic curve C acts on itself
py translation, and\ut(C') is a finite extension of".

= The dimension ofAut(C) is one.
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How IS the group of a variety?
The answer reveals an interesting trichotomy.
_et C' be a smooth plane curve of degrée

f d <2, thenC = P! andAut(P') = PGLy(C).
nfinite, but the IS three.

f d =3, thenC'Is an elliptic curve (' acts on itself
py translation, and\ut(C') is a finite extension of".

The dimension ofAut(C') is one.

More generallyAut(P") = PGL,,,1(C), of
dimension(n + 1)* — 1 andAut(A) is a finite
extension of itself, sdim Aut(A) = dim A.
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2lane curves ofd > 4

» [heoremif C'Is a smooth plane curve of degree
d > 4 thenAut(C) is finite. The maximum is
achieved by
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2lane curves ofd > 4

» [heoremif C'Is a smooth plane curve of degree
d > 4 thenAut(C) is finite. The maximum is
achieved by

e The C=(z'+y"+27=0).
| Aut(O)| = 6d?, d # 4, 6.
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lane curves ofd > 4

» [heoremif C'Is a smooth plane curve of degree
d > 4 thenAut(C) is finite. The maximum is
achieved by

e The C=(z'+y"+27=0).
[ Aut(C)] = 642 d # 4, 6.
» The C = (zy +y3z + z°z = 0).

Aut(C) = PGLy(Fy). | Aut(C)| = 168.
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lane curves ofd > 4

» [heoremif C'Is a smooth plane curve of degree
d > 4 thenAut(C) is finite. The maximum is
achieved by

e The C=(z'+y"+27=0).
| Aut(C)| = 6d?, d # 4, 6.

» The C = (zy +y3z + z°z = 0).
Aut(C) = PGL3(Fs). | Aut(C)| = 168.

e The C, given by

102°y° + 9(x® + 9°) 2 — 452°y*2° — 135xy2* + 272°.
Aut(C) = Ag. | Aut(C)| = 360.
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ational surfaces

m Recall the classification of rational surfaces which
are Mori fibre spaces.
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m Recall the classification of rational surfaces which
are Mori fibre spaces.

= EitherS = IP?, or S is alP!-bundle oveiP!,
S=1F, = P(Opl B Opr (n))
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Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, or S is aPP!-bundle ovei®!,
ol — Fn - P(Opl D Opl (n))

Aut(TF,,) is an extension ofAut(P') by matrices of

the form
J g
0 h

where f andh are scalars, anglis a polynomial of
degreen. (Note thatn = 0 Is a special case).
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Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, or S is aPP!-bundle ovei®!,
ol — Fn - P(Opl D Opl (n))

Aut(TF,,) is an extension ofAut(P') by matrices of

the form
J g
0 h

where f andh are scalars, anglis a polynomial of
degreen. (Note thatn = 0 Is a special case).

Sothedimensioni8+1+14+n+1—1=n-+5.
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Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, or S is aPP!-bundle ovei®!,
ol — Fn - P(Opl D Opl (n))

Aut(TF,,) is an extension ofAut(P') by matrices of

the form
J g
0 h

where f andh are scalars, anglis a polynomial of
degreen. (Note thatn = 0 Is a special case).

So the dimensioni8+1+1+n+1—1=mn+5.
Check:F; = Bl, P%, dim Aut(F;) =8 — 2 = 6.
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Sirational automorphisms

= If X Is a quasi-projective variety, the set of all
birational mapsX --» X is a groupBir(X).
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pirational mapsX --» X is a groupBir(X).

= Bir(PP?) is infinite dimensional; if we pick
f:P? -—» F,, thenf~! Aut(F,) f C Bir(PP?).

= One of the most interesting elementsRif (IP?) is
the involution

o:lx:iy:zl-—»[1/x:1/y:1/z].
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Sirational automorphisms

= If X Is a quasi-projective variety, the set of all
pirational mapsX --» X is a groupBir(X).

= Bir(PP?) is infinite dimensional; if we pick
f:P? --» T, thenf~! Aut(F,)f C Bir(P?).

= One of the most interesting elementsRif (IP?) is
the involution

o:lx:iy:zl-—»[1/x:1/y:1/z].

= Noether's TheoremBir(IP?) is generated by
PGL,(C) ando.
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-actoring Birational maps

= | heorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.
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-actoring Birational maps

= | heorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

m are elementary maps between Mori
fibre spaces.

= There are four types of links.
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-actoring Birational maps

= | heorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

m are elementary maps between Mori
fibre spaces.

= There are four types of links.

= It Is a fun exercise to factar into a product of
Sarkisov links.
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-actoring Birational maps

= | heorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

m are elementary maps between Mori
fibre spaces.

= There are four types of links.

= It Is a fun exercise to factar into a product of
Sarkisov links.

= One can use this factorisation to prove Noether’s
theorem.

Svmmetries of Varieties — np. 6
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irational automorphisms of P*

= We have already seen thir(IP?) is very large.

» If f1s a polynomial of degreé in z, y andz, the
birational mapp: P --» P3,

2y oz t] — [p(t ) syt ) L2t S) s S,

blows down the cone over = (f = 0).
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irational automorphisms of P*

= We have already seen thir(IP?) is very large.

» If f1s a polynomial of degreé in z, y andz, the
birational mapp: P --» P3,

Ty 2o t] — [t f) cy(E ) s 2@+ S) st

plows down the cone over = (f = 0).
= So if R is any set of generators 8fir(IP?), then

| J M, CR,
geN

so that any generating set is infinite dimensional.
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\hat went wrong?

m Suppose that: X — Z iIs a Mori fibre space,
whereX Is a rational threefold.
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links), then

fAut(X/2)f* c Bir(P?).
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whereX Is a rational threefold.

wIf f: P’ --s X is birational (a product of Sarkisov
links), then

fAut(X/2)f* c Bir(P?).

= The problem is that there are very many Mori fibres.
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Suppose that: X — Z I1s a Mori fibre space,
whereX Is a rational threefold.

If f: P? --s X is birational (a product of Sarkisov
links), then

fAut(X/2)f* c Bir(P?).

The problem is that there are very many Mori fibres.

e If ZIs a point thenX Is a Fano variety of Picard
number one.
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Suppose that: X — Z I1s a Mori fibre space,
whereX Is a rational threefold.

If f: P? --s X is birational (a product of Sarkisov
links), then

fAut(X/2)f* c Bir(P?).

The problem is that there are very many Mori fibres.

e If ZIs a point thenX Is a Fano variety of Picard
number one.

e If ZIs acurve, them Is a family of del Pezzo
surfaces.
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Suppose that: X — Z I1s a Mori fibre space,
whereX Is a rational threefold.

If f: P? --s X is birational (a product of Sarkisov
links), then

fAut(X/2)f* c Bir(P?).

The problem is that there are very many Mori fibres.

If Z Is a point thenX Is a Fano variety of Picard
number one.

If Z Is a curve, themr Is a family of del Pezzo
surfaces.

If 7 Is a surface, then Is a conic bundle.
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Juartic Threefolds

Theorem:If X c P*is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P?) is finite.
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Juartic Threefolds
Theorem:If X c P*is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P?) is finite.

Theorem:Suppose thak c P* is a smooth quartic
threefold andr: Y — Z Is any other Mori fibre space.

If »: X --» Y Is a birational map then is an
Isomorphism.

In particularY” is a quartic threefold.
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If X c P*is asmooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P?) is finite.

Suppose thaX c P* is a smooth quartic
threefold andr: Y — Z Is any other Mori fibre space.

If »: X --» Y Is a birational map then is an
Isomorphism.

In particularY” is a quartic threefold.

If X Is a general quartic, IX unirational?
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Inité generation

= If X is a smooth projective variety, thequt(X) is a
group scheme. In particular a topological group.
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If X is a smooth projective variety, thémit(X) is a
group scheme. In particular a topological group.

Let Aut”(X) be the connected component of the
identity. If X is not ruled themut’(X) is an
abelian variety of dimensiop( X ) = h'(X, Ox).
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If X is a smooth projective variety, thémit(X) is a
group scheme. In particular a topological group.

Let Aut”(X) be the connected component of the
identity. If X is not ruled themut’(X) is an
abelian variety of dimensiop( X ) = h'(X, Ox).

Call the quotient\ut(X)/ Aut’(X) the
of the automorphism group.
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If X is a smooth projective variety, thémit(X) is a
group scheme. In particular a topological group.

Let Aut”(X) be the connected component of the
identity. If X is not ruled themut’(X) is an
abelian variety of dimensiop( X ) = h'(X, Ox).

Call the quotient\ut(X)/ Aut’(X) the
of the automorphism group.

Is the discrete part finitely generated?
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If X is a smooth projective variety, thémit(X) is a
group scheme. In particular a topological group.

Let Aut”(X) be the connected component of the

identity. If X is not ruled themut’(X) is an
abelian variety of dimensiogp( X ) = h'(X, Ox).
Call the quotienfAut(X )/ Aut’(X) the
of the automorphism group.
Is the discrete part finitely generated?

The case when = 0 is probably the most
Interesting (e.gX Is rationally connected ok Is
birational to Calabi-Yau).
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If X is a smooth projective variety, thémit(X) is a
group scheme. In particular a topological group.

Let Aut”(X) be the connected component of the
identity. If X is not ruled themut’(X) is an
abelian variety of dimensiop( X ) = h'(X, Ox).

Call the quotient\ut(X)/ Aut’(X) the
of the automorphism group.

Is the discrete part finitely generated?

The case when = 0 is probably the most
Interesting (e.gX Is rationally connected ok Is
birational to Calabi-Yau).

Even the case of rational surfaces is unresolved.

Svymmetries of VVarieties — p. 10



lniteness of minimal models

= If X Is a smooth projective variety, recall that a
birational mapf: X --» Y isa If

f~! does not contract any divisorEy is nef andY’
hasQ-factorial terminal singularities.
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hasQ-factorial terminal singularities.

= Minimal models are not unique, but any two are
connected by a sequence of flops.
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connected by a sequence of flops.

DoesX have only finitely many minimal
models, up to the action @fir(X)?
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If X Is a smooth projective variety, recall that a
birational mapf: X --» Y isa If
f~! does not contract any divisorEy is nef andY’
hasQ-factorial terminal singularities.

Minimal models are not unique, but any two are
connected by a sequence of flops.

DoesX have only finitely many minimal
models, up to the action @fir(X)?

There are highly non-trivial examples of threefolds
and fourfolds, which suggest that this question is
guite subtle and interesting.
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If X Is a smooth projective variety, recall that a
birational mapf: X --» Y isa If
f~! does not contract any divisorEy is nef andY’
hasQ-factorial terminal singularities.

Minimal models are not unique, but any two are
connected by a sequence of flops.

DoesX have only finitely many minimal
models, up to the action @fir(X)?

There are highly non-trivial examples of threefolds
and fourfolds, which suggest that this question is
guite subtle and interesting.

The case whelX Is of general type is in BCHM.

Svymmetries of VVarieties — p. 11



urves of genusg > 2

Theorem:f C'Is a smooth curve of genys> 2, then
| Aut(C)| < 42(2g — 2).
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urves of genusg > 2

Theorem:f C'Is a smooth curve of genys> 2, then
| Aut(C)| < 42(2g — 2).
Prool: G = Aut(C) is finite. Let

. C — B=C/G,

be the quotient map.

Svymmetries of VVarieties — p. 12



urves of genusg > 2

Theorem:f C'Is a smooth curve of genys> 2, then
| Aut(C)| < 42(2g — 2).
Prool: G = Aut(C) is finite. Let

. C — B=C/G,

be the quotient map.
Riemann-Hurwitz:

Ko = W*(KB —I—A),

where

Tb—l
A=) - b.
beB
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ne degree

Taking the degree of both sides we get
29 — 2 = |G| deg(Kp + A).
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ne degree

Taking the degree of both sides we get
29 — 2 = |G| deg(Kp + A).
Letd = deg(Kp+ A) > 0. Then

— 1
G| = 1(2g—2) and 5_2h—2+z:rZ .

1=1 I
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ne degree

Taking the degree of both sides we get
29 — 2 = |G| deg(Kp + A).
Letd = deg(Kp+ A) > 0. Then

— 1
G| = 1(2g—2) and 5_2h—2+zjrZ .

1=1 I

Objective:Boundo from below.
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ne degree

Taking the degree of both sides we get
29 — 2 = |G| deg(Kp + A).
Letd = deg(Kp+ A) > 0. Then

— 1
G| = 1(2g—2) and 5_2h—2+z:rZ .

1=1 T
Objective:Boundo from below.

Case by case analysis.
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\/hen do we get equality?

= For which generg, can we find_' such that
| Aut(C)| = 42(2g — 2)?
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= For which generg, can we find_' such that
| Aut(C)| = 42(2g — 2)?
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= There are infinitely many s.t. we get equality and
infinitely manyg s.t. | Aut(C)| < 8(g + 1).
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For which generg, can we findC' such that
| Aut(C)| = 42(2g — 2)?
The Klein quartic has genusand168 = 42 - 4.

There are infinitely many s.t. we get equality and
infinitely manyg s.t. | Aut(C)| < 8(g + 1).

Note that this question is entirely topological. Can
we find a topological cover ramified ovey1 andoo
to order2, 3 and7?
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For which generg, can we findC' such that
| Aut(C)| = 42(2g — 2)?
The Klein quartic has genusand168 = 42 - 4.

There are infinitely many s.t. we get equality and
infinitely manyg s.t. | Aut(C)| < 8(g + 1).

Note that this question is entirely topological. Can
we find a topological cover ramified ovey1 andoo

to order2, 3 and7?

Can we find an appropriate representation on the
free group on two letters?
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For which generg, can we findC' such that
| Aut(C)| = 42(2g — 2)?
The Klein quartic has genusand168 = 42 - 4.

There are infinitely many s.t. we get equality and
infinitely manyg s.t. | Aut(C)| < 8(g + 1).

Note that this question is entirely topological. Can
we find a topological cover ramified ovey1 andoo
to order2, 3 and7?

Can we find an appropriate representation on the
free group on two letters?

Is the Wiman sextic the curve with the
maximum number of automorphisms, amongst all
SmOOth Curves Of genl‘]@? Svymmetries of VVarieties — p. 14



ligher dimensions

m Definition: The of a divisorD on a variety
X IS

W(X, mD
Vol(X,D):limsupn (X, m )

n
m—00 T
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w If Dis nefthenvol(X, D) = D".
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X IS
WX, mD
vol(X, D) = limsupn (X, m )
m— 00 m'"

w If Dis nefthenvol(X, D) = D".
= D is big if and only ifvol( X, D) > 0.

= [heorem:Fix n. There Is a constartsuch that itX
IS a smooth projective variety of general type, then

[Bir(X)| < ¢ - vol(X, Ky).
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ligher dimensions

m Definition: The of a divisorD on a variety
X IS
WX, mD
vol(X, D) = limsupn (X, m )
m— 00 m'"

w If Dis nefthenvol(X, D) = D".
= D is big if and only ifvol( X, D) > 0.

= [heorem:Fix n. There Is a constartsuch that itX
IS a smooth projective variety of general type, then

[Bir(X)| < ¢ - vol(X, Ky).

= If X = C'Is asmooth curve, thefi is of general
type if and only ifg > 2 andvol(C, K¢) = 2g — 2.

Svymmetries of VVarieties — p. 15
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Jptimal value for ¢?

mn=1,c=42.

mn=2,c= (42)% TakeS = C x C, whereC
achieves maximumks = p* K¢ + ¢* K¢ 1s ample,
vol(S, Kg) = 2(2g — 2)? and
| Aut(S)] = (42)%2(2g — 2)2.
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mn=2,c= (42)% TakeS = C x C, whereC
achieves maximumks = p* K¢ + ¢* K¢ 1s ample,
vol(S, Kg) = 2(2g — 2)? and
| Aut(S)] = (42)%2(2g — 2)2.

m Stupid Questionls ¢ = (42)"?
= No, letX = (X{+ X{+---+ X%, =0) Cc P
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Jptimal value for ¢?

mn—=1,c=42.

mn=2,c= (42)% TakeS = C x C, whereC
achieves maximumik's = p* K¢ + ¢* K¢ Is ample,
vol(S, Kg) = 2(2g — 2)? and
| Aut(S)] = (42)%2(2g — 2)2.

m Stupid Questionls ¢ = (42)"?

= No, letX = (X{+ X{+---+ X%, =0) Cc P

m Kx = (d—n—2)H, ample if and only if
d>n-+ 3. Taked = n + 3.

w | Aut(X)| = (n + 3)""*(n + 2)! and
vol(X, Kx) = (n+ 3), ratiois(n + 3)""(n + 2)!
which beatg42)" (n = 5 will do).
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Review of finite simple groups
wLetV =I%. Thereis a sesquilinear pairing
VxV-—Fp gvenby ) ab;

wherez = 24, so thatt = z¢ = z.

= The natural group i§/,,,(¢), the unitary group fixing
this pairing.

= U,,(q) fixes the null cone,

Z agﬂ = 0.

= U,,(q) is simple, one of the groups of Lie type.
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_haracteristic p?

m Aut(X) = U,,2(q), X the Fermat of degreg+ 1.
n-+2

2 U12(9) = —————q( [ (a" - (~1)").
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m Aut(X) = U,,2(q), X the Fermat of degreg+ 1.
n-+2

m |U,12(q)| = 1 )q(nﬂ ][ - (1)
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m Aut(X) = U,,2(q), X the Fermat of degreg+ 1.
n—+2

m |U,2(q)] = 1 )q(nﬂ [ - (1))

(n+2,q+1 -

2
= Roughly likeg®, o = (n 5 ) + (n 5 3) — 1.

= Volume goes like;" .
mn=19~q¢, |Aut(C)| ~ ¢ | Aut(C)| < c- g*.
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_haracteristic p?

m Aut(X) = U,,2(q), X the Fermat of degreg+ 1.
n—+2

m |U,2(q)] = 1 )q(nﬂ [ - (1))

(n+2,q+1 -

= Roughly likeg®, o = (n 5 2) + (n 5 3) — 1.

= Volume goes like;" .
mn=19~q¢, |Aut(C)| ~ ¢ | Aut(C)| < c- g*.
= QuestionAre there constants d such that

| Bir(X)| < evol(X, Kx)“.
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)roof of Theorem

m Same strategy as before. Change models so that
G = Aut(Y) = Bir(Y). G is finite. If
m: Y — X =Y/G is the quotient map, then
Ky = W*(KX -+ A)
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m Same strategy as before. Change models so that
G = Aut(Y) = Bir(Y). G is finite. If
m: Y — X =Y/G is the quotient map, then
Ky = W*(KX -+ A)

= VOl(Y, Ky) — ’G’ VO](X, KX T A)
= Objective:Boundvol( X, Kx + A) from below.
(X, A)=(P?,1/2L1+2/3Ly+6/7Ls+42/43Ly).
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m Same strategy as before. Change models so that
G = Aut(Y) = Bir(Y). G is finite. If
m: Y — X =Y/G is the quotient map, then
Ky = W*(KX -+ A)

= VOl(Y, Ky) — ’G’ VO](X, KX T A)
= Objective:Boundvol( X, Kx + A) from below.
m (X, A) = (]P)Q, 1/2L1 + 2/3L2 + 6/7L3 -+ 42/43L4).

m Ky +A=(1/24+2/346/7+42/43 —3)L =
1/(42 - 43) L, which is ample.
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)roof of Theorem

m Same strategy as before. Change models so that
G = Aut(Y) = Bir(Y). G is finite. If
m: Y — X =Y/G is the quotient map, then
Ky = W*(KX -+ A)

= VOl(Y, Ky) — ’G’ VO](X, KX T A)
= Objective:Boundvol( X, Kx + A) from below.
m (X, A) = (]P)Q, 1/2L1 + 2/3L2 + 6/7L3 -+ 42/43L4).

m Ky +A=(1/24+2/346/7+42/43 —3)L =
1/(42 - 43) L, which is ample.

mvol(X, Kx + A) = 1/(42% - 43%).

Svymmetries of VVarieties — p. 19



3irational boundedness

Definition: Let D be a divisor on a normal projective
variety X.
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3irational boundedness

Definition: Let D be a divisor on a normal projective
variety X.

HYX,D)={f|(f)+ D >0}
Iheorem:There Is a positive integetrsuch that
Om(rxsn): X ——» P(HY(X, m(Ky + A))") =P,

IS birational onto its imagé&/, for all m > r.
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3irational boundedness

Definition: Let D be a divisor on a normal projective
variety X.

H(X,D) ={f|(f)+D>0}.

Iheorem:There Is a positive integetrsuch that
Orn(icx+0): X --» P(H (X, m(Kx + A))*) = P,

IS birational onto its imagé&/, for all m > r.

vol(X,r(Kx + A)) > vol(W, H) = 1, so that
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3irational boundedness

Definition: Let D be a divisor on a normal projective
variety X.

H(X,D) ={f|(f)+D>0}.

Iheorem:There Is a positive integetrsuch that
Orn(icx+0): X --» P(H (X, m(Kx + A))*) = P,

IS birational onto its imagé&/, for all m > r.

vol(X,r(Kx + A)) > vol(W, H) = 1, so that
vol(X, Kx + A) > 1/r".

Svymmetries of VVarieties — p. 20
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