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Motivating Question

How largeis theautomorphismgroup of a variety?
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The answer reveals an interesting trichotomy.

LetC be a smooth plane curve of degreed.

If d ≤ 2, thenC = P1 andAut(P1) = PGL2(C).

Symmetries of Varieties – p. 2



Motivating Question

How largeis theautomorphismgroup of a variety?

The answer reveals an interesting trichotomy.

LetC be a smooth plane curve of degreed.

If d ≤ 2, thenC = P1 andAut(P1) = PGL2(C).

Infinite, but thedimensionis three.
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The answer reveals an interesting trichotomy.

LetC be a smooth plane curve of degreed.

If d ≤ 2, thenC = P1 andAut(P1) = PGL2(C).

Infinite, but thedimensionis three.

If d = 3, thenC is an elliptic curve.C acts on itself
by translation, andAut(C) is a finite extension ofC.
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Motivating Question

How largeis theautomorphismgroup of a variety?

The answer reveals an interesting trichotomy.

LetC be a smooth plane curve of degreed.

If d ≤ 2, thenC = P1 andAut(P1) = PGL2(C).

Infinite, but thedimensionis three.

If d = 3, thenC is an elliptic curve.C acts on itself
by translation, andAut(C) is a finite extension ofC.

The dimension ofAut(C) is one.
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Motivating Question

How largeis theautomorphismgroup of a variety?

The answer reveals an interesting trichotomy.

LetC be a smooth plane curve of degreed.

If d ≤ 2, thenC = P1 andAut(P1) = PGL2(C).

Infinite, but thedimensionis three.

If d = 3, thenC is an elliptic curve.C acts on itself
by translation, andAut(C) is a finite extension ofC.

The dimension ofAut(C) is one.

More generally,Aut(Pn) = PGLn+1(C), of
dimension(n+ 1)2 − 1 andAut(A) is a finite
extension of itself, sodimAut(A) = dimA.
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Plane curves ofd ≥ 4

Theorem:If C is a smooth plane curve of degree
d ≥ 4 thenAut(C) is finite. The maximum is
achieved by
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Plane curves ofd ≥ 4

Theorem:If C is a smooth plane curve of degree
d ≥ 4 thenAut(C) is finite. The maximum is
achieved by

• TheFermat curveC = (xd + yd + zd = 0).
|Aut(C)| = 6d2, d 6= 4, 6.
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Plane curves ofd ≥ 4

Theorem:If C is a smooth plane curve of degree
d ≥ 4 thenAut(C) is finite. The maximum is
achieved by

• TheFermat curveC = (xd + yd + zd = 0).
|Aut(C)| = 6d2, d 6= 4, 6.

• TheKlein quarticC = (x3y + y3z + z3x = 0).
Aut(C) = PGL3(F2). |Aut(C)| = 168.
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Plane curves ofd ≥ 4

Theorem:If C is a smooth plane curve of degree
d ≥ 4 thenAut(C) is finite. The maximum is
achieved by

• TheFermat curveC = (xd + yd + zd = 0).
|Aut(C)| = 6d2, d 6= 4, 6.

• TheKlein quarticC = (x3y + y3z + z3x = 0).
Aut(C) = PGL3(F2). |Aut(C)| = 168.

• TheWiman sexticC, given by

10x3y3+9(x5+ y5)z− 45x2y2z2− 135xyz4+27z6.

Aut(C) = A6. |Aut(C)| = 360.
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Rational surfaces

Recall the classification of rational surfaces which
are Mori fibre spaces.
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Rational surfaces

Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, orS is aP1-bundle overP1,
S = Fn = P(OP1 ⊕OP1(n)).
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Rational surfaces

Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, orS is aP1-bundle overP1,
S = Fn = P(OP1 ⊕OP1(n)).

Aut(Fn) is an extension ofAut(P1) by matrices of
the form

(

f g

0 h

)

wheref andh are scalars, andg is a polynomial of
degreen. (Note thatn = 0 is a special case).
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Rational surfaces

Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, orS is aP1-bundle overP1,
S = Fn = P(OP1 ⊕OP1(n)).

Aut(Fn) is an extension ofAut(P1) by matrices of
the form

(

f g

0 h

)

wheref andh are scalars, andg is a polynomial of
degreen. (Note thatn = 0 is a special case).

So the dimension is3 + 1 + 1 + n+ 1− 1 = n+ 5.
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Rational surfaces

Recall the classification of rational surfaces which
are Mori fibre spaces.

EitherS = P2, orS is aP1-bundle overP1,
S = Fn = P(OP1 ⊕OP1(n)).

Aut(Fn) is an extension ofAut(P1) by matrices of
the form

(

f g

0 h

)

wheref andh are scalars, andg is a polynomial of
degreen. (Note thatn = 0 is a special case).

So the dimension is3 + 1 + 1 + n+ 1− 1 = n+ 5.

Check:F1 = Blp P
2, dimAut(F1) = 8− 2 = 6.
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Birational automorphisms

If X is a quasi-projective variety, the set of all
birational mapsX 99K X is a groupBir(X).
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If X is a quasi-projective variety, the set of all
birational mapsX 99K X is a groupBir(X).

Bir(P2) is infinite dimensional; if we pick
f : P2

99K Fn, thenf−1Aut(Fn)f ⊂ Bir(P2).
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If X is a quasi-projective variety, the set of all
birational mapsX 99K X is a groupBir(X).

Bir(P2) is infinite dimensional; if we pick
f : P2

99K Fn, thenf−1Aut(Fn)f ⊂ Bir(P2).

One of the most interesting elements ofBir(P2) is
the involution

σ : [x : y : z] 99K [1/x : 1/y : 1/z].
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Birational automorphisms

If X is a quasi-projective variety, the set of all
birational mapsX 99K X is a groupBir(X).

Bir(P2) is infinite dimensional; if we pick
f : P2

99K Fn, thenf−1Aut(Fn)f ⊂ Bir(P2).

One of the most interesting elements ofBir(P2) is
the involution

σ : [x : y : z] 99K [1/x : 1/y : 1/z].

Noether’s Theorem:Bir(P2) is generated by
PGL2(C) andσ.
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Factoring Birational maps

Theorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

Symmetries of Varieties – p. 6



Factoring Birational maps

Theorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

Sarkisov linksare elementary maps between Mori
fibre spaces.

Symmetries of Varieties – p. 6
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Theorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

Sarkisov linksare elementary maps between Mori
fibre spaces.

There are four types of links.
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Factoring Birational maps

Theorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

Sarkisov linksare elementary maps between Mori
fibre spaces.

There are four types of links.

It is a fun exercise to factorσ into a product of
Sarkisov links.
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Factoring Birational maps

Theorem:Every birational map between two Mori
fibre spaces is a product of Sarkisov links.

Sarkisov linksare elementary maps between Mori
fibre spaces.

There are four types of links.

It is a fun exercise to factorσ into a product of
Sarkisov links.

One can use this factorisation to prove Noether’s
theorem.
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Birational automorphisms of P3

We have already seen thatBir(P3) is very large.
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Birational automorphisms of P3

We have already seen thatBir(P3) is very large.

If f is a polynomial of degreed in x, y andz, the
birational mapφ : P3

99K P3,

[x : y : z : t] −→ [x(td+f) : y(td+f) : z(td+f) : tf ],

blows down the cone overC = (f = 0).
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Birational automorphisms of P3

We have already seen thatBir(P3) is very large.

If f is a polynomial of degreed in x, y andz, the
birational mapφ : P3

99K P3,

[x : y : z : t] −→ [x(td+f) : y(td+f) : z(td+f) : tf ],

blows down the cone overC = (f = 0).

So ifR is any set of generators ofBir(P3), then
⋃

g∈N

Mg ⊂ R,

so that any generating set is infinite dimensional.
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What went wrong?

Suppose thatπ : X −→ Z is a Mori fibre space,
whereX is a rational threefold.
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What went wrong?

Suppose thatπ : X −→ Z is a Mori fibre space,
whereX is a rational threefold.

If f : P3
99K X is birational (a product of Sarkisov

links), then

f Aut(X/Z)f−1 ⊂ Bir(P3).
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Suppose thatπ : X −→ Z is a Mori fibre space,
whereX is a rational threefold.

If f : P3
99K X is birational (a product of Sarkisov

links), then

f Aut(X/Z)f−1 ⊂ Bir(P3).

The problem is that there are very many Mori fibres.

• If Z is a point thenX is a Fano variety of Picard
number one.
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What went wrong?

Suppose thatπ : X −→ Z is a Mori fibre space,
whereX is a rational threefold.

If f : P3
99K X is birational (a product of Sarkisov

links), then

f Aut(X/Z)f−1 ⊂ Bir(P3).

The problem is that there are very many Mori fibres.

• If Z is a point thenX is a Fano variety of Picard
number one.

• If Z is a curve, thenπ is a family of del Pezzo
surfaces.
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What went wrong?

Suppose thatπ : X −→ Z is a Mori fibre space,
whereX is a rational threefold.

If f : P3
99K X is birational (a product of Sarkisov

links), then

f Aut(X/Z)f−1 ⊂ Bir(P3).

The problem is that there are very many Mori fibres.

• If Z is a point thenX is a Fano variety of Picard
number one.

• If Z is a curve, thenπ is a family of del Pezzo
surfaces.

• If Z is a surface, thenπ is a conic bundle.
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Quartic Threefolds

Theorem:If X ⊂ P4 is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P4) is finite.
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Theorem:If X ⊂ P4 is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P4) is finite.

Theorem:Suppose thatX ⊂ P4 is a smooth quartic
threefold andπ : Y −→ Z is any other Mori fibre space.
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Quartic Threefolds

Theorem:If X ⊂ P4 is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P4) is finite.

Theorem:Suppose thatX ⊂ P4 is a smooth quartic
threefold andπ : Y −→ Z is any other Mori fibre space.
If φ : X 99K Y is a birational map thenφ is an
isomorphism.
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Bir(X) = Aut(X) = Aut(X,P4) is finite.

Theorem:Suppose thatX ⊂ P4 is a smooth quartic
threefold andπ : Y −→ Z is any other Mori fibre space.
If φ : X 99K Y is a birational map thenφ is an
isomorphism.

In particularY is a quartic threefold.
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Quartic Threefolds

Theorem:If X ⊂ P4 is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P4) is finite.

Theorem:Suppose thatX ⊂ P4 is a smooth quartic
threefold andπ : Y −→ Z is any other Mori fibre space.
If φ : X 99K Y is a birational map thenφ is an
isomorphism.

In particularY is a quartic threefold.

Question:If X is a general quartic, isX unirational?
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Finite generation

If X is a smooth projective variety, thenAut(X) is a
group scheme. In particular a topological group.
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Finite generation

If X is a smooth projective variety, thenAut(X) is a
group scheme. In particular a topological group.

LetAut0(X) be the connected component of the
identity. If X is not ruled thenAut0(X) is an
abelian variety of dimensionq(X) = h1(X,OX).
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group scheme. In particular a topological group.

LetAut0(X) be the connected component of the
identity. If X is not ruled thenAut0(X) is an
abelian variety of dimensionq(X) = h1(X,OX).

Call the quotientAut(X)/Aut0(X) thediscrete
partof the automorphism group.
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Finite generation

If X is a smooth projective variety, thenAut(X) is a
group scheme. In particular a topological group.

LetAut0(X) be the connected component of the
identity. If X is not ruled thenAut0(X) is an
abelian variety of dimensionq(X) = h1(X,OX).

Call the quotientAut(X)/Aut0(X) thediscrete
partof the automorphism group.

Question:Is the discrete part finitely generated?

The case whenq = 0 is probably the most
interesting (e.gX is rationally connected orX is
birational to Calabi-Yau).
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Finite generation

If X is a smooth projective variety, thenAut(X) is a
group scheme. In particular a topological group.

LetAut0(X) be the connected component of the
identity. If X is not ruled thenAut0(X) is an
abelian variety of dimensionq(X) = h1(X,OX).

Call the quotientAut(X)/Aut0(X) thediscrete
partof the automorphism group.

Question:Is the discrete part finitely generated?

The case whenq = 0 is probably the most
interesting (e.gX is rationally connected orX is
birational to Calabi-Yau).
Even the case of rational surfaces is unresolved.
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Finiteness of minimal models

If X is a smooth projective variety, recall that a
birational mapf : X 99K Y is aminimal modelif
f−1 does not contract any divisors,KY is nef andY
hasQ-factorial terminal singularities.
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hasQ-factorial terminal singularities.

Minimal models are not unique, but any two are
connected by a sequence of flops.
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birational mapf : X 99K Y is aminimal modelif
f−1 does not contract any divisors,KY is nef andY
hasQ-factorial terminal singularities.

Minimal models are not unique, but any two are
connected by a sequence of flops.

Question:DoesX have only finitely many minimal
models, up to the action ofBir(X)?
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Finiteness of minimal models

If X is a smooth projective variety, recall that a
birational mapf : X 99K Y is aminimal modelif
f−1 does not contract any divisors,KY is nef andY
hasQ-factorial terminal singularities.

Minimal models are not unique, but any two are
connected by a sequence of flops.

Question:DoesX have only finitely many minimal
models, up to the action ofBir(X)?

There are highly non-trivial examples of threefolds
and fourfolds, which suggest that this question is
quite subtle and interesting.
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Finiteness of minimal models

If X is a smooth projective variety, recall that a
birational mapf : X 99K Y is aminimal modelif
f−1 does not contract any divisors,KY is nef andY
hasQ-factorial terminal singularities.

Minimal models are not unique, but any two are
connected by a sequence of flops.

Question:DoesX have only finitely many minimal
models, up to the action ofBir(X)?

There are highly non-trivial examples of threefolds
and fourfolds, which suggest that this question is
quite subtle and interesting.

The case whenX is of general type is in BCHM.
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Curves of genusg ≥ 2

Theorem:If C is a smooth curve of genusg ≥ 2, then
|Aut(C)| ≤ 42(2g − 2).
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Curves of genusg ≥ 2

Theorem:If C is a smooth curve of genusg ≥ 2, then
|Aut(C)| ≤ 42(2g − 2).
Proof:G = Aut(C) is finite. Let

π : C −→ B = C/G,

be the quotient map.
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Curves of genusg ≥ 2

Theorem:If C is a smooth curve of genusg ≥ 2, then
|Aut(C)| ≤ 42(2g − 2).
Proof:G = Aut(C) is finite. Let

π : C −→ B = C/G,

be the quotient map.
Riemann-Hurwitz:

KC = π∗(KB +∆),

where

∆ =
∑

b∈B

rb − 1

rb
b.
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The degree

Taking the degree of both sides we get

2g − 2 = |G| deg(KB +∆).
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The degree

Taking the degree of both sides we get

2g − 2 = |G| deg(KB +∆).

Let δ = deg(KB +∆) > 0. Then

|G| =
1

δ
(2g − 2) and δ = 2h− 2 +

k
∑

i=1

ri − 1

ri
.
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The degree

Taking the degree of both sides we get

2g − 2 = |G| deg(KB +∆).

Let δ = deg(KB +∆) > 0. Then

|G| =
1

δ
(2g − 2) and δ = 2h− 2 +

k
∑

i=1

ri − 1

ri
.

Objective:Boundδ from below.
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The degree

Taking the degree of both sides we get

2g − 2 = |G| deg(KB +∆).

Let δ = deg(KB +∆) > 0. Then

|G| =
1

δ
(2g − 2) and δ = 2h− 2 +

k
∑

i=1

ri − 1

ri
.

Objective:Boundδ from below.

Case by case analysis.
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When do we get equality?

For which generag, can we findC such that
|Aut(C)| = 42(2g − 2)?
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For which generag, can we findC such that
|Aut(C)| = 42(2g − 2)?

The Klein quartic has genus3 and168 = 42 · 4.
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When do we get equality?

For which generag, can we findC such that
|Aut(C)| = 42(2g − 2)?

The Klein quartic has genus3 and168 = 42 · 4.

There are infinitely manyg s.t. we get equality and
infinitely manyg s.t. |Aut(C)| ≤ 8(g + 1).
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When do we get equality?

For which generag, can we findC such that
|Aut(C)| = 42(2g − 2)?

The Klein quartic has genus3 and168 = 42 · 4.

There are infinitely manyg s.t. we get equality and
infinitely manyg s.t. |Aut(C)| ≤ 8(g + 1).

Note that this question is entirely topological. Can
we find a topological cover ramified over0, 1 and∞
to order2, 3 and7?
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When do we get equality?

For which generag, can we findC such that
|Aut(C)| = 42(2g − 2)?

The Klein quartic has genus3 and168 = 42 · 4.

There are infinitely manyg s.t. we get equality and
infinitely manyg s.t. |Aut(C)| ≤ 8(g + 1).

Note that this question is entirely topological. Can
we find a topological cover ramified over0, 1 and∞
to order2, 3 and7?

Can we find an appropriate representation on the
free group on two letters?
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When do we get equality?

For which generag, can we findC such that
|Aut(C)| = 42(2g − 2)?

The Klein quartic has genus3 and168 = 42 · 4.

There are infinitely manyg s.t. we get equality and
infinitely manyg s.t. |Aut(C)| ≤ 8(g + 1).

Note that this question is entirely topological. Can
we find a topological cover ramified over0, 1 and∞
to order2, 3 and7?

Can we find an appropriate representation on the
free group on two letters?

Question:Is the Wiman sextic the curve with the
maximum number of automorphisms, amongst all
smooth curves of genus10? Symmetries of Varieties – p. 14



Higher dimensions

Definition: Thevolumeof a divisorD on a variety
X is

vol(X,D) = lim sup
m→∞

n!h0(X,mD)

mn
.
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If D is nef thenvol(X,D) = Dn.
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Higher dimensions

Definition: Thevolumeof a divisorD on a variety
X is

vol(X,D) = lim sup
m→∞

n!h0(X,mD)

mn
.

If D is nef thenvol(X,D) = Dn.

D is big if and only ifvol(X,D) > 0.

Theorem:Fix n. There is a constantc such that ifX
is a smooth projective variety of general type, then
|Bir(X)| ≤ c · vol(X,KX).
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Higher dimensions

Definition: Thevolumeof a divisorD on a variety
X is

vol(X,D) = lim sup
m→∞

n!h0(X,mD)

mn
.

If D is nef thenvol(X,D) = Dn.

D is big if and only ifvol(X,D) > 0.

Theorem:Fix n. There is a constantc such that ifX
is a smooth projective variety of general type, then
|Bir(X)| ≤ c · vol(X,KX).

If X = C is a smooth curve, thenC is of general
type if and only ifg ≥ 2 andvol(C,KC) = 2g − 2.
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Optimal value for c?

n = 1, c = 42.
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Optimal value for c?

n = 1, c = 42.

n = 2, c = (42)2. TakeS = C × C, whereC
achieves maximum.KS = p∗KC + q∗KC is ample,
vol(S,KS) = 2(2g − 2)2 and
|Aut(S)| = (42)22(2g − 2)2.
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Symmetries of Varieties – p. 16



Optimal value for c?

n = 1, c = 42.
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vol(S,KS) = 2(2g − 2)2 and
|Aut(S)| = (42)22(2g − 2)2.
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No, letX = (Xd
0 +Xd
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Optimal value for c?

n = 1, c = 42.

n = 2, c = (42)2. TakeS = C × C, whereC
achieves maximum.KS = p∗KC + q∗KC is ample,
vol(S,KS) = 2(2g − 2)2 and
|Aut(S)| = (42)22(2g − 2)2.

Stupid Question:Is c = (42)n?

No, letX = (Xd
0 +Xd

1 + · · ·+Xd
n+1 = 0) ⊂ Pn+1.

KX = (d− n− 2)H, ample if and only if
d ≥ n+ 3. Taked = n+ 3.
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Optimal value for c?

n = 1, c = 42.

n = 2, c = (42)2. TakeS = C × C, whereC
achieves maximum.KS = p∗KC + q∗KC is ample,
vol(S,KS) = 2(2g − 2)2 and
|Aut(S)| = (42)22(2g − 2)2.

Stupid Question:Is c = (42)n?

No, letX = (Xd
0 +Xd

1 + · · ·+Xd
n+1 = 0) ⊂ Pn+1.

KX = (d− n− 2)H, ample if and only if
d ≥ n+ 3. Taked = n+ 3.

|Aut(X)| = (n+ 3)n+2(n+ 2)! and
vol(X,KX) = (n+ 3), ratio is(n+ 3)n+1(n+ 2)!
which beats(42)n (n = 5 will do).
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Review of finite simple groups

Let V = Fm
q2. There is a sesquilinear pairing

V × V −→ Fq2 given by
∑

aib̄i,

wherex̄ = xq, so that̄̄x = xq
2

= x.
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Review of finite simple groups

Let V = Fm
q2. There is a sesquilinear pairing

V × V −→ Fq2 given by
∑

aib̄i,

wherex̄ = xq, so that̄̄x = xq
2

= x.

The natural group isUm(q), the unitary group fixing
this pairing.

Um(q) fixes the null cone,
∑

aq+1
i = 0.

Um(q) is simple, one of the groups of Lie type.
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Characteristic p?

Aut(X) = Un+2(q), X the Fermat of degreeq + 1.

Symmetries of Varieties – p. 18



Characteristic p?

Aut(X) = Un+2(q), X the Fermat of degreeq + 1.

|Un+2(q)| =
1

(n+ 2, q + 1)
q(

n+2

2 )
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∏

i=2

(qi − (−1)i).
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Characteristic p?

Aut(X) = Un+2(q), X the Fermat of degreeq + 1.

|Un+2(q)| =
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n+2
∏
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(qi − (−1)i).

Roughly likeqα, α =
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+
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− 1.

Volume goes likeqn+1.

n = 1, g ∼ q2, |Aut(C)| ∼ q8. |Aut(C)| ≤ c · g4.
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Characteristic p?

Aut(X) = Un+2(q), X the Fermat of degreeq + 1.

|Un+2(q)| =
1

(n+ 2, q + 1)
q(

n+2

2 )
n+2
∏

i=2

(qi − (−1)i).

Roughly likeqα, α =

(

n+ 2

2

)

+

(

n+ 3

2

)

− 1.

Volume goes likeqn+1.

n = 1, g ∼ q2, |Aut(C)| ∼ q8. |Aut(C)| ≤ c · g4.

QuestionAre there constantsc, d such that

|Bir(X)| ≤ c vol(X,KX)
d.
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Proof of Theorem

Same strategy as before. Change models so that
G = Aut(Y ) = Bir(Y ). G is finite. If
π : Y −→ X = Y/G is the quotient map, then
KY = π∗(KX +∆).
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Proof of Theorem

Same strategy as before. Change models so that
G = Aut(Y ) = Bir(Y ). G is finite. If
π : Y −→ X = Y/G is the quotient map, then
KY = π∗(KX +∆).

vol(Y,KY ) = |G| vol(X,KX +∆).

Objective:Boundvol(X,KX +∆) from below.

(X,∆) = (P2, 1/2L1 + 2/3L2 + 6/7L3 + 42/43L4).

KX +∆ = (1/2 + 2/3 + 6/7 + 42/43− 3)L =
1/(42 · 43)L, which is ample.

vol(X,KX +∆) = 1/(422 · 432).

Symmetries of Varieties – p. 19



Birational boundedness

Definition: LetD be a divisor on a normal projective
varietyX.
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Definition: LetD be a divisor on a normal projective
varietyX.

H0(X,D) = { f | (f) +D ≥ 0 }.

Theorem:There is a positive integerr such that

φm(KX+∆) : X 99K P(H0(X,m(KX +∆))∗) = PN ,

is birational onto its imageW , for all m ≥ r.
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Birational boundedness

Definition: LetD be a divisor on a normal projective
varietyX.

H0(X,D) = { f | (f) +D ≥ 0 }.

Theorem:There is a positive integerr such that

φm(KX+∆) : X 99K P(H0(X,m(KX +∆))∗) = PN ,

is birational onto its imageW , for all m ≥ r.

vol(X, r(KX +∆)) ≥ vol(W,H) = 1, so that

vol(X,KX +∆) ≥ 1/rn.

Symmetries of Varieties – p. 20
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