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1. Introduction

We work over an algebraically closed field of characteristic zero. ACC
stands for the ascending chain condition whilst DCC stands for the
descending chain condition.

Suppose that (X,∆) is a log canonical pair and M ≥ 0 is R-Cartier.
The log canonical threshold of M with respect to (X,∆) is

lct(X,∆;M) = sup{ t ∈ R | (X,∆ + tM) is log canonical }.

Let T = Tn(I) denote the set of log canonical pairs (X,∆), where X
is a variety of dimension n and the coefficients of ∆ belong to a set
I ⊂ [0, 1]. Set

LCTn(I, J) = { lct(X,∆;M) | (X,∆) ∈ Tn(I) },

where the coefficients of M belong to a subset J of the positive real
numbers.

Theorem 1.1 (ACC for the log canonical threshold). Fix a positive
integer n, I ⊂ [0, 1] and a subset J of the positive real numbers.

If I and J satisfy the DCC then LCTn(I, J) satisfies the ACC.

(1.1) was conjectured by Shokurov [33], see also [22] and [24]. When
the dimension is three, [22] proves that 1 is not an accumulation point
from below and (1.1) follows from the results of [3]. More recently (1.1)
was proved for complete intersections [10] and even when X belongs to
a bounded family, [11].

The log canonical threshold is an interesting invariant of the pair
(X,∆) and the divisor M which is a measure of the complexity of the
singularities of the triple (X,∆;M). It has made many appearances in
many different forms, especially in the case of hypersurfaces, see [24],
[25] and [34]. The ACC for the log canonical threshold plays a role
in inductive approaches to higher dimensional geometry. For example,
after [6], we have the following application of (1.1):

Corollary 1.2. Assume termination of flips for Q-factorial kawamata
log terminal pairs in dimension n− 1.

Let (X,∆) be a kawamata log terminal pair where X is a Q-factorial
projective variety of dimension n. If KX + ∆ is numerically equivalent
to a divisor D ≥ 0 then any sequence of (KX + ∆)-flips terminates.
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(1.1) is a consequence of the following theorem, which was conjec-
tured by Alexeev [3] and Kollár [22]:

Theorem 1.3. Fix a positive integer n and a set I ⊂ [0, 1] which
satisfies the DCC. Let D be the set of log canonical pairs (X,∆) such
that the dimension of X is n and the coefficients of ∆ belong to I.

Then there is a constant δ > 0 and a positive integer m with the
following properties:

(1) the set
{ vol(X,KX + ∆) | (X,∆) ∈ D },

also satisfies the DCC.

Further, if (X,∆) ∈ D and KX + ∆ is big, then

(2) vol(X,KX + ∆) ≥ δ, and
(3) φm(KX+∆) is birational.

Note that, by convention, φm(KX+∆) = φbm(KX+∆)c. (1.3) was proved
for surfaces in [3]. (1.3) is a generalisation of [15, 1.3], which deals with
the case that (X,∆) is the quotient of a smooth projective variety Y
of general type by its automorphism group.

One of the original motivations for (1.3) is to prove the boundedness
of the moduli functor for canonically polarised varieties, see [26]. We
plan to pursue this application of (1.3) in a forthcoming paper.

To state more results it is convenient to give a simple reformulation
of (1.1):

Theorem 1.4. Fix a positive integer n and a set I ⊂ [0, 1], which
satisfies the DCC.

Then there is a finite subset I0 ⊂ I with the following properties:
If (X,∆) is a log pair such that

(1) X is a variety of dimension n,
(2) (X,∆) is log canonical,
(3) the coefficients of ∆ belong to I, and
(4) there is a non kawamata log terminal centre Z ⊂ X which is

contained in every component of ∆,

then the coefficients of ∆ belong to I0.

(1.4) follows, cf. [33], [27, §18], almost immediately from the exis-
tence of divisorial log terminal modifications and from:

Theorem 1.5. Fix a positive integer n and a set I ⊂ [0, 1], which
satisfies the DCC.

Then there is a finite subset I0 ⊂ I with the following properties:
If (X,∆) is a log pair such that

3



(1) X is a projective variety of dimension n,
(2) (X,∆) is log canonical,
(3) the coefficients of ∆ belong to I, and
(4) KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

We use finiteness of log canonical models to prove a boundedness
result for log pairs:

Theorem 1.6. Fix a positive integer n and two real numbers δ and
ε > 0.

Let D be a set of log pairs (X,∆) such that

• X is a projective variety of dimension n,
• KX + ∆ is ample,
• the coefficients of ∆ are at least δ, and
• the total log discrepancy of (X,∆) is greater than ε.

If D is log birationally bounded then D is a bounded family.

Log birationally bounded is defined in (3.5.1). We use (1.5) and (1.6)
to prove some boundedness results about Fano varieties.

Corollary 1.7. Fix a positive integer n, a real number ε > 0 and a set
I ⊂ [0, 1] which satisfies the DCC.

Let D be the set of all log pairs (X,∆), where

• X is a projective variety of dimension n,
• the coefficients of ∆ belong to I,
• the total log discrepancy of (X,∆) is greater than ε,
• KX + ∆ is numerically trivial, and
• −KX is ample.

Then D forms a bounded family.

As a consequence we are able to prove a result on the boundedness
of Fano varieties which was conjectured by Batyrev (cf. [9]):

Corollary 1.8. Fix two positive integers n and r.
Let D be the set of all kawamata log terminal pairs (X,∆), where

X is a projective variety of dimension n and −r(KX + ∆) is an ample
Cartier divisor.

Then D forms a bounded family.

Definition 1.9. Let (X,∆) be a log canonical pair, where X is pro-
jective of dimension n and −(KX + ∆) is ample. The Fano index of
(X,∆) is the largest real number r such that we can write

−(KX + ∆) ∼R rH,
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where H is a Cartier divisor.
Fix a set I ⊂ [0, 1] and a positive integer n. Let D be the set of log

canonical pairs (X,∆), where X is projective of dimension n, −(KX +
∆) is ample and the coefficients of ∆ belong to I.

The set

R = Rn(I) = { r ∈ R | r is the Fano index of (X,∆) ∈ D },
is called the Fano spectrum of D.

Corollary 1.10. Fix a set I ⊂ [0, 1] and a positive integer n.
If I satisfies the DCC then the Fano spectrum satisfies the ACC.

(1.10) was proved in dimension 2 in [1] and for R∩ [n− 2,∞) in [2].
Now given any set which satisfies the ACC it is natural to try to iden-

tify the accumulation points. (1.1) implies that LCTn(I) = LCTn(I,N)
satisfies the ACC. Kollár, cf. [24], [32], [20], conjectured that the accu-
mulation points in dimension n are log canonical thresholds in dimen-
sion n− 1:

Theorem 1.11. If 1 is the only accumulation point of I ⊂ [0, 1] and
I = I+ then the accumulation points of LCTn(I) are LCTn−1(I)−{ 1 }.
In particular, if I ⊂ Q then the accumulation points of LCTn(I) are
rational numbers.

See §3.4 for the definition of I+. (1.11) was proved if X is smooth
in [20]. Note that in terms of inductive arguments it is quite useful
to identify the accumulation points, especially to know that they are
rational.

Finally, recall:

Conjecture 1.12 (Borisov-Alexeev-Borisov). Fix a positive integer n
and a positive real number ε > 0.

Let D be the set of all projective varieties X of dimension n such
that there is a divisor ∆ where (X,∆) has log discrepancy at least ε
and −(KX + ∆) is ample.

Then D forms a bounded family.

Note that (1.1), (1.4), (1.5), (1.2) and (1.11) are known to follow
from (1.12), (cf. [32]). Instead we use birational boundedness of log
pairs of general type cf. (1.3) to prove these results.

2. Description of the proof

Theorem A (ACC for the log canonical threshold). Fix a positive
integer n and a set I ⊂ [0, 1], which satisfies the DCC.

Then there is a finite subset I0 ⊂ I with the following property:
If (X,∆) is a log pair such that
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(1) X is a variety of dimension n,
(2) (X,∆) is log canonical,
(3) the coefficients of ∆ belong to I, and
(4) there is a non kawamata log terminal centre Z ⊂ X which is

contained in every component of ∆,

then the coefficients of ∆ belong to I0.

Theorem B (Upper bounds for the volume). Let n ∈ N and let I ⊂
[0, 1) be a set which satisfies the DCC. Let D be the set of kawamata log
terminal pairs (X,∆), where X is projective of dimension n, KX + ∆
is numerically trivial and the coefficients of ∆ belong to I.

Then the set

{ vol(X,∆) | (X,∆) ∈ D },
is bounded from above.

Theorem C (Birational boundedness). Fix a positive integer n and a
set I ⊂ [0, 1], which satisfies the DCC. Let B be the set of log canonical
pairs (X,∆), where X is projective of dimension n, KX + ∆ is big and
the coefficients of ∆ belong to I.

Then there is a positive integer m such that φm(KX+∆) is birational,
for every (X,∆) ∈ B.

Theorem D (ACC for numerically trivial pairs). Fix a positive integer
n and a set I ⊂ [0, 1], which satisfies the DCC.

Then there is a finite subset I0 ⊂ I with the following property:
If (X,∆) is a log pair such that

(1) X is projective of dimension n,
(2) the coefficients of ∆ belong to I,
(3) (X,∆) is log canonical, and
(4) KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

The proof of Theorem A, Theorem B, Theorem C, and Theorem D
proceeds by induction:

• Theorem Dn−1 implies Theorem An, cf. (5.3).
• Theorem Dn−1 and Theorem An−1 imply Theorem Bn, cf. (6.2).
• Theorem Cn−1, Theorem An−1, and Theorem Bn imply Theo-

rem Cn, cf. (7.4).
• Theorem Dn−1 and Theorem Cn implies Theorem Dn, cf. (8.1).

2.1. Sketch of the proof. The basic idea of the proof of (1.1) goes
back to Shokurov and we start by explaining this.
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Consider the following simple family of plane curve singularities,

C = (ya + xb = 0) ⊂ C2,

where a and b are two positive integers. A priori, to calculate the log
discrepancy c, one should take a log resolution of the pair (X = C2, C),
write down the log discrepancy of every exceptional divisor Ei with
respect to the pair (X, tC) as a function of t and then find out the
largest value c of t for which all of these log discrepancies are non-
negative. However there is an easier way. We know that when t = c
there is at least one divisor of log discrepancy zero (and every other
divisor has non-negative log discrepancy). Let π : Y −→ X extract
just this divisor. To construct π we simply contract all other divisors
on the log resolution.

Almost by definition we can write

KY + E + cD = π∗(KX + cC),

where E is the exceptional divisor and D is the strict transform of C.
Restrict both sides of this equation to E. As the RHS is a pullback,
we get a numerically trivial divisor.

To compute the LHS we apply adjunction. E is a copy of P1. One
slightly delicate issue is that Y is singular along E and the adjunction
formula has to take account of this. In fact Y −→ X is precisely
the weighted blow up of X = C2, with weights (a, b), in the given
coordinates x, y. There are two singular points p and q of Y along C,
of index a and b, and D intersects C transversally at another point r.
If we apply adjunction we get

(KY + E + cD)|E = KE +

(
a− 1

a

)
p+

(
b− 1

b

)
q + cr.

As (KY +E+cD)|E is numerically trivial we have (KY +E+cD)·E = 0
so that

−2 +
a− 1

a
+
b− 1

b
+ c = 0,

and so

c =
1

a
+

1

b
.

Now let us consider the general case. As with the example above the
first step is to extract divisors of log discrepancy zero, π : Y −→ X.
To construct π we mimic the argument above; pick a log resolution for
the pair (X,∆ + C) and contract every divisor whose log discrepancy
is not zero. The fact that we can do this in all dimensions follows
from the MMP (minimal model program), see (3.3.1) and π is called a
divisorially log terminal modification.
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The next step is the same, restrict to the general fibre of some divisor
of log discrepancy zero, see (5.1). There are similar formulae for the
coefficients of the restricted divisor, see (4.1). In this way, we reduce
the problem from a local one in dimension n to a global problem in
dimension n− 1, see §5. This explains how to go from Theorem Dn−1

to Theorem An, see the proof of (5.3).
The global problem involves log canonical pairs (X,∆), where X is

projective and KX + ∆ is numerically trivial. One reason that the
dimension one case is easy is that there is only one possibility for X,
X must be isomorphic to P1. In higher dimensions it is not hard,
running the MMP again, to reduce to the case where X has Picard
number one, so that at least X is a Fano variety and ∆ is ample.
In this case we perturb ∆ by increasing one of its coefficients to get a
kawamata log terminal pair (X,Λ) such that KX+Λ is ample. We then
exploit the fact that some fixed multiple m(KX + Λ) of KX + Λ gives a
birational map φm(KX+Λ). By definition this means that φbm(KX+Λ)c is
a birational map, which in particular means that KX + Λbmc (see (3.1)
for the definition of Λbmc) is big . This forces ∆ ≤ Λbmc which implies
that there are lots of gaps. This explains how to go from Theorem Cn

to Theorem Dn, see the proof of (8.1).
It is clear then that the main thing to prove is that if (X,∆) is a

kawamata log terminal pair, KX + ∆ is big and the coefficients of ∆
belong to a DCC set then some fixed multiple of KX + ∆, gives a bi-
rational map φm(KX+∆). Following some ideas of Tsuji, we developed
a fairly general method to prove such a result in [15], see (3.5.2) and
(3.5.5). We use the technique of cutting non kawamata log terminal
centres as developed in [5], see [24]. The main issue is to find a bound-
ary on the non kawamata log terminal centre so that we can run an
induction.

There are two key hypotheses to apply (3.5.5). One of them requires
that the volume of KX +∆ restricted to appropriate non kawamata log
terminal centres is bounded from below. The other places a require-
ment on the coefficients of ∆ which is stronger than the DCC.

The first condition follows by induction on the dimension and a
strong version of Kawamata’s subadjunction formula, (4.2), which we
now explain. If (X,Λ) is a log pair and V is a non kawamata log ter-
minal centre such that (X,Λ) is log canonical at the generic point of
V , then one can write

(KX + Λ)|W = KW + Θb + J,

where W is the normalisation of V , Θb is the discriminant divisor and
J is the moduli part. Not much is known about the moduli part J
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beyond the fact that it is pseudo-effective. On the other hand Θb ≥ 0
behaves very well. If (X,Λ) is log canonical at the generic point of a
prime divisor B on W then the coefficient of B in Θb is at most one. In
fact there is a simple way to compute the coefficient of B involving the
log canonical threshold. By assumption there is a log canonical place,
that is, a valuation with centre V of log discrepancy zero. Then we can
find a divisorially log terminal modification g : Y −→ X such that the
centre of this log canonical place is a divisor S on Y . Note that there
is a commutative diagram

S - Y

W

f

?
- X.

g

?

If we pullback KX + ∆ to Y and restrict to S we get a divisor Φ′ on
S. Let

λ = sup{ t ∈ R | (S,Φ′ + tf ∗B) is log canonical over a

neighbourhood of the generic point of B },
be the log canonical threshold. Then the coefficient of B in Θb is 1−λ.

In practice we start with a divisor ∆ whose coefficients belong to I
such that (X,∆) is kawamata log terminal. We then find a divisor ∆0,
whose coefficients we have no control on, and V is a non kawamata log
terminal centre of (X,Λ = ∆ + ∆0). It follows that the coefficients of
Φ′ do not behave well and we have no control on the coefficients of Θb.

To circumvent this we simply mimic the same construction for (X,∆)
rather than (X,Λ). First we construct a divisor Φ on S whose coeffi-
cients of Φ belong to D(I), see (4.1). Then we construct a divisor Θ
whose coefficients automatically belong to the set

{ a | 1− a ∈ LCTn−1(D(I)) } ∪ { 1 }.
It is clear from the construction that Θb ≥ Θ, so that if we bound the
volume of KW +Θ from below we bound the volume of (KX+∆+∆0)|W
from below.

On the other hand, as part of the induction we assume that The-
orem An−1 holds. Hence LCTn−1(D(I)) satisfies the ACC and the
coefficients of Θ belong to a set which satisfies the DCC. The final
step is to observe that if we choose V to pass through a general point
then it belongs to a family which covers X. If we assume that V is
a general member of such a family then we can pullback KX + ∆ to
this family and restrict to V . It is straightforward to check that the
difference between KW + Θ and (KX + ∆)|W on a log resolution of the
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family is pseudo-effective (for example, if X and V are smooth then
this follows from the fact that the first chern class of the normal bundle
is pseudo-effective), so that if KX + ∆ is big then so is KW + Θ. In
this case we know the volume is bounded from below by induction.

We now explain the condition on the coefficients. To apply (3.5.5)
we require that either I is a finite set or

I = { r − 1

r
| r ∈ N }.

The first lemma, (7.2), simply assumes this condition on I and we
deduce the result in this case.

The key is then to reduce to the case when I is finite. Given any
positive integer p and a log pair (X,∆), let ∆bpc denote the largest
divisor less than ∆ such that p∆bpc is integral. Given I it suffices to
find a fixed positive integer p such that if we start with (X,∆) such
that KX + ∆ is big and the coefficients belong to I then KX + ∆bpc is
big, since the coefficients of ∆bpc belong to the finite set

{ i
p
| 1 ≤ i ≤ p }.

Let

λ = inf{ t ∈ R |KX + t∆ is big },
be the pseudo-effective threshold. A simple computation, (7.4), shows
that it suffices to bound λ away from one. Running the MMP we
reduce to the case when X has Picard number one. Since KX + λ∆ is
numerically trivial and kawamata log terminal, Theorem B implies that
the volume of ∆ is bounded away from one. Passing to a log resolution
we may assume that (X,D) has simple normal crossings where D is the
sum of the components of ∆. As KX+D is big then so is KX+ r−1

r
D for

any positive integer r which is sufficiently large. It follows that some
fixed multiple of KX + r−1

r
D gives a birational map, and (3.5.2) implies

that (X,D) belongs to log birationally bounded family. In this case, it
is easy to bound the pseudo-effective threshold λ away from one, see
(7.3). This explains how to go from Theorem Bn to Theorem Cn, cf.
(7.4).

We now explain the last implication. Suppose that (X,∆) is kawa-
mata log terminal and KX + ∆ is numerically trivial. If the volume
of ∆ is large then we may find a divisor Π numerically equivalent to a
small multiple of ∆ with large multiplicity at a general point, so that
(X,Π) is not kawamata log terminal. In particular we may find Φ arbi-
trarily close to ∆ such that (X,Φ) is not kawamata log terminal. The
key lemma is to show that this is impossible, (6.1). By assumption we
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may extract a divisor S of log discrepancy zero with respect to (X,Φ).
After we run the MMP we get down a log pair (Y, S+Γ) where Γ is the
strict transform of ∆ and both KY + S + Γ and −(KY + S + (1− ε)Γ)
are ample. Here ε > 0 is arbitrarily close to zero. If we restrict to S
and apply adjunction, it is easy to see that this contradicts either ACC
for the log canonical threshold or ACC for numerically trivial pairs.
This explains how to go from Theorem Dn−1 and Theorem An−1 to
Theorem Bn, cf. (6.2).

It is interesting to note that if (X,∆) is log canonical then there is
no bound on the volume of ∆:

Example 2.1.1. Let X be the weighted projective surface P(p, q, r),
where p, q and r are three positive integers and let ∆ be the sum of the
three coordinate lines. Then KX + ∆ ∼Q 0 and

vol(X,∆) =
(p+ q + r)2

pqr
.

But the set

{ (p+ q + r)2

pqr
| (p, q, r) ∈ N3 },

is dense in the positive real numbers, cf. [19, 22.5].

We now explain the proof of (1.11) which mirrors the proof of (1.1).
We are given a sequence of log pairs (X,∆) = (Xi,∆i) and we want
to identify the limit points of the log canonical thresholds. The first
step is to show that the set of log canonical thresholds is essentially
the same as the set of pseudo-effective thresholds. In §5 we showed
that every log canonical threshold in dimension n+ 1 is a numerically
trivial threshold in dimension n. To show the reverse inclusion, one
takes the cone (Y,Γ) over a log canonical pair (X,∆) where KX + ∆
is numerically trivial, (11.5).

In this way we are reduced to looking at log canonical pairs (X,∆)
such that KX + ∆ is numerically trivial. The basic idea is to generate
a component of coefficient one and apply adjunction. To this end, we
need to deal with the case where some coefficients of ∆ don’t necessarily
belong to I but instead they are increasing towards one, (11.7).

Running the MMP we reduce to the case of Picard number one, Case
A, Step 1 and Case B, Steps 3 and 5. We may also assume that the
non kawamata log terminal locus is a divisor. In particular −KX is
ample, any two components of ∆ intersect and we may assume that
the number of components of ∆ is constant, (11.6). If (X,∆) is not
kawamata log terminal then there is a component of coefficient one and
we are done, Case B, Step 2.
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The argument now splits into two cases. Case A deals with the case
that the coefficients of ∆ are bounded away from one. In this case if
the volume of ∆ is arbitrarily large then we can create a component of
coefficient one and we reduce to the other case, Case B. Otherwise (1.6)
implies that (X,∆) belongs to a bounded family, which contradicts the
fact that the coefficients of ∆ are not constant.

So we may assume we are in Case B, namely that some of the coef-
ficients of the components of ∆ are approaching one. We decompose
∆ as A + B + C where the coefficients of A are approaching one, the
coefficients of B are fixed, and we are trying to identify the limit of the
coefficients of C. Using the fact that the Picard number of X is one, we
may increase the coefficients of A to one and decrease the coefficients
of C, without changing the limit of the coefficients of C. At this point
we apply adjunction and induction, Case B, Step 6.

3. Preliminaries

3.1. Notation and Conventions. If D =
∑
diDi is an R-divisor on

a normal variety X, then the round down of D is bDc =
∑
bdicDi,

where bdc denotes the largest integer which is at most d, the fractional
part of D is {D} = D−bDc, and the round up of D is dDe = −b−Dc.
If m is a positive integer, then let

Dbmc =
bmDc
m

.

Note that Dbmc is the largest divisor less than or equal to D such that
mDbmc is integral.

The sheaf OX(D) is defined by

OX(D)(U) = { f ∈ K(X) | (f)|U +D|U ≥ 0 },
so that OX(D) = OX(bDc). Similarly we define |D| = |bDc|. If X is
normal, and D is an R-divisor on X, the rational map φD associated
to D is the rational map determined by the restriction of bDc to the
smooth locus of X.

We say that D is R-Cartier if it is a real linear combination of Cartier
divisors. If f : Y −→ X is a morphism then D|Y denotes the pullback
of D to Y , f ∗D. In general D|Y is only well-defined up to R-linear
equivalence. However if f(Y ) is not contained in the support of D
then D|Y is a well-defined R-Cartier divisor. An R-Cartier divisor D
on a normal variety X is nef if D · C ≥ 0 for any curve C ⊂ X. We
say that two R-divisors D1 and D2 are R-linearly equivalent, denoted
D1 ∼R D2, if the difference is an R-linear combination of principal
divisors.
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A log pair (X,∆) consists of a normal variety X and a R-Weil divisor
∆ ≥ 0 such that KX + ∆ is R-Cartier. The support of ∆ =

∑
i∈I diDi

(where di 6= 0) is the sum D =
∑

i∈I Di. If (X,∆) has simple normal
crossings, a stratum of (X,∆) is an irreducible component of the in-
tersection ∩j∈JDj, where J is a non-empty subset of I (in particular,
a stratum of (X,∆) is always a proper closed subset of X). If we are
given a morphism X −→ T , then we say that (X,∆) has simple nor-
mal crossings over T if (X,∆) has simple normal crossings and both
X and every stratum of (X,D) is smooth over T . We say that the
birational morphism f : Y −→ X only blows up strata of (X,∆), if f is
the composition of birational morphisms fi : Xi+1 −→ Xi, 1 ≤ i ≤ k,
with X = X0, Y = Xk+1, and fi is the blow up of a stratum of (Xi,∆i),
where ∆i is the sum of the strict transform of ∆ and the exceptional
locus.

A log resolution of the pair (X,∆) is a projective birational morphism
µ : Y −→ X such that the exceptional locus is the support of a µ-ample
divisor and (Y,G) has simple normal crossings, where G is the support
of the strict transform of ∆ and the exceptional divisors. If we write

KY + Γ +
∑

biEi = µ∗(KX + ∆)

where Γ is the strict transform of ∆, then bi is called the coefficient of Ei
with respect to (X,∆). The log discrepancy of Ei is a(Ei, X,∆) = 1−bi.
The log discrepancy of (X,∆) is the infimum over all log resolutions of
the log discrepancy of any exceptional divisor. The total log discrepancy
of (X,∆) is the minimum of the log discrepancy of (X,∆) and 1 − a
where a ranges over the coefficients of the components of ∆. The pair
(X,∆) is kawamata log terminal (respectively log canonical ; purely log
terminal ; divisorially log terminal) if bi < 1 for all i and b∆c = 0
(respectively bi ≤ 1 for all i and for all log resolutions; bi < 1 for all
i and for all log resolutions; the coefficients of ∆ belong to [0, 1] and
there exists a log resolution such that bi < 1 for all i). If we drop
the condition that ∆ ≥ 0 but all of the coefficients of Γ are at most
one then we say that (X,∆) is sub log canonical. A non kawamata log
terminal centre is the centre of any valuation associated to a divisor Ei
with bi ≥ 1. In this paper, we only consider valuations ν of X whose
centre on some birational model Y of X is a divisor.

We now introduce some results some of which are well known to
experts but which are included for the convenience of the reader.

3.2. The volume.
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Definition 3.2.1. Let X be an irreducible projective variety of dimen-
sion n and let D be an R-divisor. The volume of D is

vol(X,D) = lim sup
m→∞

n!h0(X,OX(mD))

mn
.

We say that D is big if vol(X,D) > 0.

For more background, see [31].

Lemma 3.2.2. Let X be a projective variety and let (X,∆) be a log
pair.

If D is an R-divisor and vol(X,D) > nn then for every point x ∈ X
we may find Π ∼R D such that (X,∆+Π) is not kawamata log terminal
at x ∈ X.

Proof. Arguing as in the proof of [24, 6.7.1] we may assume that x ∈ X
is a general point, so that in particular x is a smooth point of X. As
the volume is a continuous function of D we may assume that D is a
Q-divisor, [30, 2.2.44]. The result then follows as in the proof of [24,
6.1]. �

Lemma 3.2.3. Let X be a quasi-projective Q-factorial variety and let
(X,∆) be a kawamata log terminal pair.

If (X,∆ +D) is not log canonical, where D ≥ 0 is big, then we may
find 0 ≤ D′ ∼R tD, for some 0 < t < 1 such that (X,∆ + D′) has
exactly one log canonical place.

Proof. As (X,∆ +D) is not log canonical we may find δ > 0 such that
(X,∆+(1−δ)D) is not log canonical. As D is big we may find divisors
A ≥ 0 and B ≥ 0 such that D ∼R A+B and A is ample. Replacing D
by (1− δ)D + δA+ δB we may assume that there is an ample divisor
A ≥ 0 such that D ≥ A.

Let

π : Y −→ X

be a log resolution. We may write

KY + Γ +
∑

aiEi = π∗(KX + ∆ + tD),

where Γ is the strict transform of ∆ and ai are linear functions of t. By
assumption ai < 1 when t = 0 and there is an index i such that ai > 1
when t = 1. It follows that we may find t ∈ (0, 1) such that ai ≤ 1
for all indices with equality for at least one index i. Possibly using A
to tie-break, see [24], we may assume that there is at most one index i
such that ai = 1. �
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3.3. Divisorially log terminal modifications. If (X,∆) is not kawa-
mata log terminal then we may find a modification which is divisorially
log terminal, so that the non kawamata log terminal locus is a divisor:

Proposition 3.3.1. Let (X,∆) be a log pair where X is a variety and
the coefficients of ∆ belong to [0, 1].

Then there is a projective birational morphism π : Y −→ X such that

(1) Y is Q-factorial,
(2) π only extracts divisors of log discrepancy at most zero,
(3) if E =

∑
Ei is the sum of the π-exceptional divisors and Γ

is the strict transform of ∆, then (Y,Γ + E) is divisorially log
terminal and

KY + E + Γ = π∗(KX + ∆) +
∑

a(Ei,X,B)<0

a(Ei, X,B)Ei.

(4) Further, if (X,∆) is log canonical and S is a component of ∆
then there is a nef divisor of the form −T − F , where T is the
strict transform of S and F ≥ 0 is a sum of exceptional divisor
whose centres are contained in S.

Any birational morphism π : Y −→ X satisfying (1–3) is called a di-
visorially log terminal modification.

Proof. The proof of (1–3) is due to the first author and can be found
in [13], [28, 3.1], and also [4].

Now suppose that (X,∆) is log canonical and S is a component of
∆. In this case

KY + E + Γ = π∗(KX + ∆).

Pick ε > 0 so that Γ−εT ≥ 0. Note that (Y,E+Γ−εT ) is divisorially log
terminal, as Y is Q-factorial and (Y,E+ Γ) is divisorially log terminal.
By Theorem 1.1 of [7] or by Theorem 1.6 of [16], we may replace Y by a
log terminal model of (Y,E+Γ− εT ) over X, gaining the fact that −T
is nef over X, at the expense of temporarily losing the property that
(Y,Γ + E) is divisorially log terminal, whilst preserving the condition
that KY + E + Γ is log canonical and numerically trivial over X. If
g : W −→ Y is a divisorially log terminal modification of (Y,Γ + E)
and we replace Y by W then g∗(−T ) is a nef divisor over X of the
correct form. �

3.4. DCC sets. We say that a set I of real numbers satisfies the de-
scending chain condition or DCC, if it does not contain any infinite
strictly decreasing sequence. For example,

I = { r − 1

r
| r ∈ N },
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satisfies the DCC. Let I ⊂ [0, 1]. We define

I+ := { 0 } ∪ { j ∈ [0, 1] | j =
l∑

p=1

ip, for some i1, i2, . . . , il ∈ I },

and

D(I) := { a ≤ 1 | a =
m− 1 + f

m
,m ∈ N, f ∈ I+ }.

As usual, I denotes the closure of I. Note that the set D(I) appears
when we apply adjunction, (4.1).

Proposition 3.4.1. Let I ⊂ [0, 1].

(1) D(D(I)) = D(I) ∪ { 1 }.
(2) I satisfies the DCC if and only if I satisfies the DCC.
(3) I satisfies the DCC if and only if D(I) satisfies the DCC.

Proof. Straightforward, see for example [32, 4.4]. �

3.5. Bounded pairs. We recall some results and definitions from [15],
stated in a convenient form.

Definition 3.5.1. We say that a set X of varieties is birationally
bounded if there is a projective morphism Z −→ T , where T is of
finite type, such that for every X ∈ X, there is a closed point t ∈ T
and a birational map f : Zt 99K X.

We say that a set D of log pairs is log birationally bounded (re-
spectively bounded) if there is a log pair (Z,B), where the coefficients
of B are all one, and a projective morphism Z −→ T , where T is
of finite type, such that for every (X,∆) ∈ D, there is a closed point
t ∈ T and a birational map f : Zt 99K X (respectively isomorphism of
varieties) such that the support of Bt is not the whole of Zt and yet Bt

contains the support of the strict transform of ∆ and any f -exceptional
divisor (respectively f(Bt) = ∆).

Theorem 3.5.2. Fix a positive integer n and a set I ⊂ [0, 1]∩Q, which
satisfies the DCC. Let B0 be a set of log canonical pairs (X,∆), where
X is projective of dimension n, KX + ∆ is big and the coefficients of
∆ belong to I.

Suppose that there is a constant M such that for every (X,∆) ∈ B0

there is a positive integer k such that φk(KX+∆) is birational and

vol(X, k(KX + ∆)) ≤M.

Then the set

{ vol(X,KX + ∆) | (X,∆) ∈ B0 },
satisfies the DCC.
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Proof. Follows from (2.3.4), (3.1) and (1.9) of [15]. �

Recall:

Definition 3.5.3. Let X be a normal projective variety and let D be
a big Q-Cartier Q-divisor on X.

If x and y are two general points of X then, possibly switching x
and y, we may find 0 ≤ ∆ ∼Q (1 − ε)D, for some 0 < ε < 1, where
(X,∆) is not kawamata log terminal at y, (X,∆) is log canonical at x
and {x} is a non kawamata log terminal centre, then we say that D is
potentially birational.

Note that this is a slight variation on the definition which appears
in [15], where general is replaced by very general.

Theorem 3.5.4. Let (X,∆) be a kawamata log terminal pair, where X
is projective of dimension n and let H be an ample Q-divisor. Suppose
there is a constant γ ≥ 1 and a family of subvarieties V −→ B with
the following property.

If x and y are two general points of X then, possibly switching x
and y, we can find b ∈ B and 0 ≤ ∆b ∼Q (1 − δ)H, for some δ > 0,
such that (X,∆ + ∆b) is not kawamata log terminal at y and there is a
unique non kawamata log terminal place of (X,∆ + ∆b) whose centre
Vb contains x. Further there is a divisor D on W , the normalisation
of Vb, such that φD is birational and γH|W −D is pseudo-effective.

Then mH is potentially birational, where m = 2p2γ + 1 and p =
dimVb.

Proof. Let x and y be two general points of X. Possibly switching
x and y, we will prove by descending induction on k that there is a
Q-divisor ∆0 ≥ 0 such that:
([)k ∆0 ∼Q λH, for some λ < 2(p − k)pγ + 1, where (X,∆ + ∆0) is
log canonical at x, not kawamata log terminal at y and there is a non
kawamata log terminal centre Z ⊂ Vb of dimension at most k containing
x.

Suppose k = p. (X,∆ + ∆b) is not kawamata log terminal but log
canonical at x since there is a unique non kawamata log terminal place
whose centre contains x. Thus ∆0 = ∆b ∼Q λH, where λ = 1− δ < 1,
satisfies ([)k and so this is the start of the induction.

Now suppose that we may find a Q-divisor ∆0 satisfying ([)k. We
may assume that Z is the minimal non kawamata log terminal centre
containing x and that Z has dimension k. Let Y ⊂ W be the inverse
image of Z. As x is a general point of X it is also a general point
of W , Y and Z. In particular the restriction of γH|W − D to Y is
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pseudo-effective, Y −→ Z is birational, and as φD is birational and x
is general, the restriction of φD to Y is birational. Thus

vol(Y, γH|Y ) ≥ vol(Y,D|Y ) ≥ 1,

where the last inequality is proved, for example, in [14, 2.2]. Note that

vol(Z, γH|Z) = vol(Y, γH|Y ),

as H is nef, see for example [23, VI.2.15]. Thus

vol(Z, 2pγH|V ) > vol(Z, 2kγH|V ) ≥ 2kk,

so that by [15, 2.3.5], we may find ∆1 ∼Q µH, where µ < 2pγ and
constants 0 < ai ≤ 1 such that (X,∆ + a0∆0 + a1∆1) is log canonical
at x, not kawamata log terminal at y and there is a non kawamata log
terminal centre Z ′ containing x, whose dimension is less than k. As

a0∆0 + a1∆1 ∼Q (a0λ+ a1µ)H,

and

λ′ = a0λ+ a1µ < 2(p− k)pγ + 1 + 2pγ = 2(p− (k − 1))pγ + 1,

a0∆0 + a1∆1 satisfies ([)k−1. This completes the induction and the
proof. �

Theorem 3.5.5. Fix a positive integer n. Let B0 be a set of kawamata
log terminal pairs (X,∆), where X is projective of dimension n and
KX + ∆ is ample.

Suppose that there are positive integers p, k and l such that for every
(X,∆) ∈ B0 we have:

(1) There is a family of subvarieties V −→ B such that if x and y
are two general points of X then, possibly switching x and y, we
can find b ∈ B and 0 ≤ ∆b ∼Q (1− δ)H, for some δ > 0, such
that (X,∆ + ∆b) is not kawamata log terminal at y and there
is a unique non kawamata log terminal place of (X,∆ + ∆b)
whose centre Vb contains x, where H = k(KX + ∆). Further
there is a divisor D on W , the normalisation of Vb, such that
φD is birational and lH|W −D is pseudo-effective.

(2) Either p∆ is integral or the coefficients of ∆ belong to

{ r − 1

r
| r ∈ N }.

Then there is a positive integer m such that φmk(KX+∆) is birational,
for every (X,∆) ∈ B0.
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Proof. Let m0 = 2(n−1)2l+ 1. (3.5.4) implies that m0H is potentially
birational. But then [15, 2.3.4.1] implies that φKX+dm0jHe is birational
for all positive integers j.

If p∆ is integral then

KX + dm0kp(KX + ∆)e = b(m0kp+ 1)(KX + ∆)c,

and if the coefficients of ∆ belong to

{ r − 1

r
| r ∈ N },

then

KX + dm0kp(KX + ∆)e = b(m0kp+ 1)(KX + ∆)c.
Let m = (m0 + 1)p. �

4. Adjunction

We will need the following basic result about adjunction (see for
example §16 in [27]).

Lemma 4.1. Let (X,∆ = S ′ + B) be a log canonical pair, where S
has coefficient one in ∆. If S is the normalisation of S ′ then there is
a divisor Θ = DiffS(B) on S such that

(KX + ∆)|S = KS + Θ.

(1) If (X,∆) is purely log terminal then (S,Θ) is kawamata log
terminal.

(2) If (X,∆) is divisorially log terminal then (S,Θ) is divisorially
log terminal.

(3) If B =
∑
biBi then the coefficients of Θ belong to the set

D({ b1, b2, . . . , bm }).

In particular, if (X,∆) is divisorially log terminal and the coefficients
of B belong to the set I then the coefficients of Θ belong to the set
D(I).

Theorem 4.2. Let I be a subset of [0, 1] which contains 1. Let X be
a projective variety of dimension n and let V be an irreducible closed
subvariety, with normalisation W . Suppose we are given a log pair
(X,∆) and an R-Cartier divisor ∆′ ≥ 0, with the following properties:

(1) the coefficients of ∆ belong to I,
(2) (X,∆) is kawamata log terminal, and
(3) there is a unique non kawamata log terminal place ν for (X,∆+

∆′), with centre V .
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Then there is a divisor Θ on W whose coefficients belong to

{ a | 1− a ∈ LCTn−1(D(I)) } ∪ { 1 },
such that the difference

(KX + ∆ + ∆′)|W − (KW + Θ),

is pseudo-effective.
Now suppose that V is the general member of a covering family of

subvarieties of X. Let ψ : U −→ W be a log resolution of W and let
Ψ be the sum of the strict transform of Θ and the exceptional divisors.
Then

KU + Ψ ≥ (KX + ∆)|U .

Proof. Since there is a unique non kawamata log terminal place with
centre V , it follows that (X,∆+∆′) is log canonical but not kawamata
log terminal at the generic point of V , see (2.31) of [29]. Let g : Y −→
X be a divisorially log terminal modification of (X,∆ + ∆′), (3.3.1), so
that the centre of ν is a divisor S on Y and this is the only exceptional
divisor with centre V . As (X,∆ + ∆′) is divisorially log terminal, S is
normal and so there is a commutative diagram

S - Y

W

f

?
- X.

g

?

We may write

KY +S+Γ = g∗(KX+∆)+E and KY +S+Γ+Γ′ = g∗(KX+∆+∆′),

where Γ is the sum of the strict transform of ∆ and the exceptional
divisors, apart from S. In particular the coefficients of Γ belong to
I. As (X,∆) is kawamata log terminal, E ≥ 0. As g is a divisorially
log terminal modification of (X,∆ + ∆′), Γ′ ≥ 0 and (Y, S + Γ) is
divisorially log terminal. We may write

(KY + S + Γ)|S = KS + Φ and (KY + S + Γ + Γ′)|S = KS + Φ′.

Note that the coefficients of Φ belong to D(I). Let B be a prime divisor
on W . Let

µ = sup{ t ∈ R | (S,Φ + tf ∗B) is log canonical over a

neighbourhood of the generic point of B },
be the log canonical threshold over a neighbourhood of the generic
point of B. We define Θ by

multB(Θ) = 1− µ.
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It is clear that the coefficients of Θ belong to

{ a | 1− a ∈ LCTn−1(D(I)) } ∪ { 1 }.

Let

λ = sup{ t ∈ R | (S,Φ′ + tf ∗B) is log canonical over a

neighbourhood of the generic point of B },

be the log canonical threshold over a neighbourhood of the generic
point of B. We define a divisor Θb on W by

multB(Θb) = 1− λ.

As Γ′ ≥ 0 we have Φ ≤ Φ′, so that λ ≤ µ. But then

Θ ≤ Θb.

Note that Θb is precisely the divisor defined in Kawamata’s subadjunc-
tion formula, see Theorem 1 and 2 of [18] and also (8.5.1) and (8.6.1)
of [25]. It follows that the difference

(KX + ∆ + ∆′)|W − (KW + Θb),

is pseudo-effective, so that the difference

(KX + ∆ + ∆′)|W − (KW + Θ),

is certainly pseudo-effective.
Now suppose that V is the general member of a covering family of

subvarieties of X. We first relate the definition of Θ, which uses the
log canonical threshold on S, to a log canonical threshold on X. Let
B be a prime divisor on W and let A be its image on V . Pick any
Q-divisor H ≥ 0 on X which is Q-Cartier in a neighbourhood of the
generic point of A and which does not contain V such that

multB(H|W ) = 1.

We have

KY + S + Γ + tg∗H = g∗(KX + ∆ + tH) + E,

and so

(KY + S + Γ + tg∗H)|S = KS + Φ + tf ∗B,

over a neighbourhood of the generic point of B. Now if (X,∆ + tH)
is not log canonical in a neighbourhood of the generic point of A then
KY + S + Γ + tg∗H is not log canonical over a neighbourhood of the
generic point of B. Inversion of adjunction on Y , cf [17], implies that
KY +S+Γ+ tg∗H is log canonical over a neighbourhood of the generic

21



point of B if and only if KS + Φ + tf ∗B is log canonical over a neigh-
bourhood of the generic point of B. It follows that if

µ = sup{ t ∈ R | (S,Φ + tf ∗B) is log canonical over a

neighbourhood of the generic point of B },

the log canonical threshold of f ∗B over a neighbourhood of the generic
point of B, and

ξ = sup{ t ∈ R | (X,∆ + tH) is log canonical at the generic point of A },

the log canonical threshold of H at the generic point of A, then µ ≤ ξ.
By assumption we may pick a component R0 of the Hilbert schemeH

whose universal family dominatesX, such that V is the general member
of R0. Let π0 : Z0 −→ R0 be the restriction of the normalisation of the
universal family. Cutting by hyperplanes in R0 we may find R ⊂ R0

with V ∈ R such that if π : Z −→ R is the restriction of π0 then the
natural morphism h : Z −→ X is generically finite (note that if we take
the hyperplanes successively from a fixed sequence of general pencils of
hyperplanes then we won’t lose the fact that V is a general element).
We may write

KZ + Ξ = h∗(KX + ∆).

Possibly blowing up, we may assume that (Z,Ξ) has simple normal
crossings over a dense open subset R1 of R. Let U be the fibre of π
corresponding to W . As V is a general member of R0, we may assume
that r = π(U) ∈ R1 and so (U,Ξ|U) has simple normal crossings. As
the coefficients of Ξ|U are at most one it follows that (U,Ξ|U) is sub
log canonical. Therefore it is enough to check that

KU + Ψ ≥ (KX + ∆)|U = KU + Ξ|U ,

on the given model and in fact we just have to check that Ψ ≥ Ξ|U .
Let C be a prime divisor on U . If multC Ξ|U ≤ 0 there is nothing

to prove as Ψ ≥ 0. If C is an exceptional divisor of U −→ V then
multC Ψ = 1 and there is again nothing to prove as multC Ξ|U ≤ 1.

Otherwise pick a prime component G of Ξ such that multC(G|U) = 1.
If h(G) is a divisor then let H = h(G)/e where e is the ramification in-
dex atG. Note that the pullback ofH toW is Q-Cartier in a neighbour-
hood of the generic point of B = ψ(C). Otherwise, pick a Q-Cartier
divisor H ≥ 0, which does not contain V , such that multG(h∗H) = 1.
Either way, as r ∈ R is general it follows that multC(h∗H|U) = 1. But
then

multB(H|W ) = multC(h∗H|U) = 1.
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We may write

KZ + Ξ + ξh∗H = h∗(KX + ∆ + ξH).

As (X,∆+ξH) is log canonical in a neighbourhood of the generic point
of B, KZ + Ξ + ξh∗H is sub log canonical in a neighbourhood of the
generic point of C. Note that in a neighbourhood of the generic point
of C,

(KZ + Ξ + ξh∗H)|U = KU + Ξ|U + ξC + J,

where J ≥ 0. As r is a general point of R, (U,Ξ|U + ξC + J) is sub log
canonical in a neighbourhood of the generic point of C. It follows that

multC Ξ|U + ξ ≤ 1,

so that

multC Ψ = multB Θ = 1− µ ≥ 1− ξ ≥ multC Ξ|U .
Thus Ψ ≥ Ξ|U . �

5. Global to local

Lemma 5.1. Fix a positive integer n and a set 1 ∈ I ⊂ [0, 1].
Suppose (X,∆) is a log canonical pair where X is a variety of di-

mension n + 1, the coefficients of ∆ belong to I and there is a non
kawamata log terminal centre V ⊂ X. Suppose that c ∈ I is the coeffi-
cient of some component M of ∆ which contains V .

Then we may find a log canonical pair (S,Θ) where S is a projective
variety of dimension at most n, the coefficients of Θ belong to D(I),
KS + Θ is numerically trivial and some component of Θ has coefficient

m− 1 + f + kc

m
,

where m, k ∈ N and f ∈ D(I).

Proof. Possibly passing to an open subset of X and replacing V by a
maximal (with respect to inclusion) non kawamata log terminal centre,
we may assume that X is quasi-projective. If V is a divisor then M = V
is a component of ∆ with coefficient one so that c = 1. As 1 ∈ I we
may take (S,Θ) = (P1, p+ q), where p and q are two points of P1.

Otherwise, let π : Y −→ X be a divisorially log terminal modification
of (X,∆). Then Y is Q-factorial and we may write

KY + E + Γ = π∗(KX + ∆),

where Γ is the strict transform of ∆, E is the sum of the exceptional
divisors and the pair (Y,E + Γ) is divisorially log terminal. By (4)
of (3.3.1) we may choose π so that there is a nef divisor of the form

23



−N − F , where N is the strict transform of M and F ≥ 0 is a sum of
exceptional divisors whose centres are contained in M .

By assumption π is not an isomorphism over the generic point of V .
It follows that N must intersect an exceptional divisor S of π whose
centre is V . We may write

(KY + E + Γ)|S = KS + Θ,

by adjunction, where (S,Θ) is divisorially log terminal, the coefficients
of Θ belong to D(I) and some component of Θ has a coefficient of the
form

m− 1 + f + kc

m
,

where m, k ∈ N and f ∈ D(I). Note that N ∩ S dominates V . If
v ∈ V is a general point then (Sv,Θv) is divisorially log terminal, Sv
is projective of dimension at most n, the coefficients of Θv belong to
D(I), some component of Θv has a coefficient of the form

m− 1 + f + kc

m
,

and KSv + Θv is numerically trivial. �

Lemma 5.2. Let I ⊂ [0, 1] be a set which satisfies the DCC.
If J0 ⊂ [0, 1] is a finite set then

I0 = { c ∈ I | m− 1 + f + kc

m
∈ J0, for some k, m ∈ N and f ∈ D(I) }

is a finite set.

Proof. We may assume that c 6= 0. Suppose that

l =
m− 1 + f + kc

m
∈ J0.

Then kc ≤ 1. As I satisfies the DCC, we may find δ > 0 such that
c > δ. It follows that k < 1/δ so that k can take on only finitely
many values. As J0 is finite, we may find ε > 0 such that if l < 1 then
l < 1 − ε. But then m < 1

ε
. If l = 1 then f + kc = 1, in which case

we may take m = 1. Either way, we may assume that m takes on only
finitely many values.

Fix k, m and l. Then

c =
(ml −m+ 1)− f

k
.

The LHS belongs to I, a set which satisfies the DCC. The RHS belongs
to a set which satisfies the ACC. But the only set which satisfies both
the DCC and the ACC is a finite set. �
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Lemma 5.3. Theorem Dn−1 implies Theorem An.

Proof. As I satisfies the DCC so does J = D(I). As we are assuming
Theorem Dn−1, there is a finite set J0 ⊂ J such that if (S,Θ) is a log
canonical pair where S is projective of dimension at most n − 1, the
coefficients of Θ belong to J and KS + Θ is numerically trivial, then
the coefficients of Θ belong to J0. Let

I0 = { c ∈ I | m− 1 + f + kc

m
∈ J0 for some k and m ∈ N and f ∈ I+ }.

As J0 is a finite set, (5.2) implies that I0 is also a finite set.
Suppose that (X,∆) is a log canonical pair where X is a quasi-

projective variety of dimension n, the coefficients of ∆ belong to I, and
there is a non kawamata log terminal centre Z ⊂ X which is contained
in every component of ∆. (5.1) implies that the coefficients of ∆ belong
to I0. �

6. Upper bounds on the volume

Lemma 6.1. Using the notation of Theorem Bn, Theorem Dn−1 and
Theorem An−1 imply that there is a constant ε > 0 with the following
property:

If (X,∆) ∈ D, where X has dimension n, ∆ is big and KX + Φ is
numerically trivial, where

Φ ≥ (1− δ)∆,
for some δ < ε, then (X,Φ) is kawamata log terminal.

Proof. Theorem Dn−1 and Theorem An−1 imply that we may find ε > 0
with the following property: if S is a projective variety of dimension
n− 1, (S,Θ) and (S,Θ′) are two log pairs, the coefficients of Θ belong
to D(I), and

(1− ε)Θ ≤ Θ′ ≤ Θ,

then (S,Θ) is log canonical if (S,Θ′) is log canonical, and moreover
Θ = Θ′ if in addition KS + Θ′ is numerically trivial.

Suppose that (X,Φ) is not kawamata log terminal, where

Φ ≥ (1− δ)∆,
for some δ < ε and KX + Φ is numerically trivial. As δ < ε and Φ is
big we may assume that KX + Φ is not log canonical. Pick λ ∈ (0, 1]
such that (X, (1 − λ)∆ + λΦ) is log canonical but not kawamata log
terminal. As Φ is big, δ < ε and (X,∆) is kawamata log terminal,
(3.2.3) implies that, perturbing Φ, we may assume (X, (1− λ)∆ + λΦ)
has only one non kawamata log terminal place.
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Replacing Φ by (1− λ)∆ + λΦ we may assume that (X,Φ) is purely
log terminal and the non kawamata log terminal locus is irreducible.
Let φ : Y −→ X be a divisorially log terminal modification of (X,Φ).
We may write

KY + Ψ = φ∗(KX + Φ) and KY + Γ + aS = φ∗(KX + ∆),

where S = bΨc is a prime divisor, Γ is the strict transform of ∆ and
a < 1, as (X,∆) is kawamata log terminal.

As KY +Ψ is numerically trivial, KY +Ψ−S is not pseudo-effective.
By [8, 1.3.3], we may run f : Y 99K W the (KY + Ψ − S)-MMP until
we end with a Mori fibre space π : W −→ Z. As KY +Ψ is numerically
trivial, every step of this MMP is S-positive, so that the strict transform
T of S dominates Z. Let F be the general fibre of π. Replacing Y , Γ
and Ψ by F and the restriction of π∗Γ and π∗Ψ to F , we may assume
that S, Ψ and Γ are Q-linearly equivalent to multiples of the same
ample divisor.

In particular KY + Γ + S is ample. As Ψ ≥ (1− ε)Γ + S, it follows
that KY + (1− η)Γ + S is numerically trivial, for some 0 < η < ε, and
KY + (1− ε)Γ + S is log canonical. We may write

(KY + (1− ε)Γ + S)|S = KS + Θ1,

(KY + (1− η)Γ + S)|S = KS + Θ2, and

(KY + Γ + S)|S = KS + Θ,

where the coefficients of Θ belong to D(I). Note that

(1− ε)Θ ≤ Θ1 ≤ Θ2 ≤ Θ,

where by (4.1) the first inequality follows from the inequality

t

(
m− 1 + f

m

)
≤ m− 1 + tf

m
for any t ≤ 1.

As (S,Θ1) is log canonical, it follows that (S,Θ) is log canonical. In
particular (S,Θ2) is also log canonical. As KS + Θ2 is numerically
trivial, Θ = Θ2, a contradiction. �

Lemma 6.2. Theorem Dn−1 and Theorem An−1 imply Theorem Bn.

Proof. Let ε > 0 be the constant given by (6.1). If (X,∆) ∈ D, ∆ is
big, Π ∼R η∆ and (X,Π + (1 − η)∆) is not kawamata log terminal,
then (6.1) implies that η ≥ ε. But then (3.2.2) implies that

vol(X,∆) ≤
(n
ε

)n
. �
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7. Birational boundedness

Lemma 7.1. Let (X,∆) be a log pair, where X is a projective variety
of dimension n and let D be a big R-divisor.

If vol(X,D) > (2n)n then there is a family V −→ B of subvarieties
of X such that if x and y are two general points of X then we may find
b ∈ B and 0 ≤ ∆b ∼R D such that (X,∆ + ∆b) is not kawamata log
terminal at y and there is a unique non kawamata log terminal place
of (X,∆ + ∆b) whose centre Vb contains x. Further, if B1, B2, . . . , Bk

are the irreducible components of B and Vi −→ Bi is the corresponding
family then the natural map Vi −→ X is dominant.

Proof. Let K be the algebraic closure of the function field of X. There
is a fibre square

XK
- X

SpecK
?

- Spec k.
?

Let ξ be the closed point of XK corresponding to the generic point
of X, and let ∆K and DK be the pullbacks of ∆ and D to XK . (3.2.2)
implies that we may find 0 ≤ Dξ ∼R DK/2 such that (XK ,∆K +Dξ) is
not log canonical at ξ. By standard arguments we may spread out Dξ

to a family of divisors Dt, t ∈ T , where there is dominant morphism
g : T −→ X such that (X,∆ +Dt) is not log canonical at x = g(t) and
where Dt ∼R D/2.

Let y be a general point of X. Pick s such that (X,∆ + Ds) is not
log canonical at y = g(s), where Ds ∼R D/2. Let

β = βs,t = sup{λ ∈ R | (X,∆ + λ(Dt +Ds)) is log canonical at x },

be the log canonical threshold. Thus (X,∆+β(Ds+Dt)) is log canon-
ical but not kawamata log terminal at x. Possibly switching s and t,
we may assume that (X,∆+β(Ds+Dt)) is not kawamata log terminal
at y. Perturbing, by (3.2.3) we may assume that there is a unique
non kawamata log terminal place of (X,∆ + β(Dt +Ds)) whose centre
V(s,t) contains x (as y is general, we will not lose the property that
(X,∆ +β(Dt +Ds)) is not kawamata log terminal at y). Decomposing
B = T × T into finitely many locally closed subsets, we may assume
that the log canonical threshold is constant on each irreducible com-
ponent of B, and moreover that Vs,t forms a family V −→ B. Possibly
discarding components of B, we may assume that every component of
V dominates X. Then the image of B in X × X contains an open
subset of the form U × U . �
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Lemma 7.2. Assume Theorem Cn−1 and Theorem An−1. Fix a positive
integer p.

Let B1 be the set of kawamata log terminal pairs (X,∆), where X
is projective of dimension n, KX + ∆ is big and either p∆ is integral
or the coefficients of ∆ belong to

{ r − 1

r
| r ∈ N }.

Then there is a positive integer m such that φm(KX+∆) is birational,
for every (X,∆) ∈ B1.

Proof. Passing to a log canonical model of (X,∆) we may assume that
KX + ∆ is ample.

Pick a positive integer k such that vol(X, k(KX + ∆)) > (2n)n. We
will apply (3.5.5) to k(KX + ∆). (2) holds by hypothesis.

Let

J = { 1− a | a ∈ LCTn−1(D(I)) } ∪ { 1}.
Theorem An−1 implies that J satisfies the DCC.

Theorem Cn−1 implies that there is a positive integer l such that if
(U,Ψ) is a log canonical pair, where U is projective of dimension at
most n− 1, the coefficients of Ψ belong to J and KU + Ψ is big, then
φl(KU+Ψ) is birational.

Apply (7.1) to k(KX + ∆) to get a family V −→ B. Let b ∈ B be
a general point. Let ν : W −→ Vb be the normalisation of Vb and let
0 ≤ ∆b ∼R k(KX + ∆) be the divisor given by (7.1), so that Vb is the
unique non kawamata log terminal place of (X,∆ + ∆b) containing x.
(4.2)n implies that we may find Θ on W such that

(KX + ∆ + ∆b)|W − (KW + Θ),

is pseudo-effective, where the coefficients of Θ belong to J .
Let ψ : U −→ W be a log resolution of (W,Θ) and let Ψ be the sum

of the strict transform of Θ and the exceptional divisors. (4.2)n implies
that

(KU + Ψ) ≥ (KX + ∆)|U ,
so that KU + Ψ is big. As the coefficients of Θ belong to J , it follows
that the coefficients of Ψ belong to J . But then φl(KU+Ψ) is birational.
It is easy to see (1) of (3.5.5) holds.

As the hypotheses of (3.5.5) hold, there is a positive integer m0 such
that φm0k(KX+∆) is birational. If vol(X,KX +∆) ≥ 1 then vol(X, 2(n+
1)(KX + ∆)) > (2n)n and φ2m0(n+1)(KX+∆) is birational.

Otherwise, if vol(X,KX + ∆) < 1, then we may find k such that

(2n)n < vol(X, k(KX + ∆)) ≤ (4n)n.
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It follows that

vol(X,m0k(KX + ∆)) ≤ (4m0n)n.

(3.5.2) implies that there is a constant 0 < δ < 1 such that if (X,∆) ∈
B, then

vol(X,KX + ∆) > δ.

In this case,
vol(X,α(KX + ∆)) > (2n)n,

where

α =
2n

δ
,

and we may take m = max(m0pαq, 2m0(n+ 1)). �

Lemma 7.3. Using the notation of Theorem Cn, assume Theorem Cn−1,
Theorem An−1, and Theorem Bn.

Then there is a constant β < 1 such that if (X,∆) ∈ B then the
pseudo-effective threshold

λ = inf{ t ∈ R |KX + t∆ is big },
is at most β.

Proof. We may assume that 1 ∈ I. Suppose that (X,∆) ∈ B. Let
π : W −→ X be a log resolution of (X,∆). We may write

KW + Ξ = π∗(KX + ∆) + F,

where Ξ is the strict transform of ∆ plus the sum of the exceptional
divisors and F ≥ 0 is exceptional as (X,∆) is log canonical. Let

µ = inf{ t ∈ R |KW + tΞ is big }.
be the pseudo-effective threshold. As π∗(KW + µΞ) = KX + µ∆ is
pseudo-effective it follows that λ ≤ µ and so it suffices to bound µ away
from one. Replacing (X,∆) by (W,Ξ) we may assume that (X,∆) has
simple normal crossings.

We may assume that λ > 1/2, so that KX is not pseudo-effective.
As KX + ∆ is big we may find 0 ≤ D ∼R (KX + ∆). If ε > 0 then

(1 + ε)(KX + λ∆) ∼R KX + µ∆ + εD,

where µ = (1 + ε)λ − ε < λ. It follows that if ε is sufficiently small
then KX + µ∆ + εD is kawamata log terminal. By [8, 1.4.2], we may
run f : X 99K Y the (KX + λ∆)-MMP with scaling until KY + Γ is
kawamata log terminal and nef, where Γ = f∗(λ∆). Now we may run
the (KY + µf∗∆)-MMP with scaling of f∗D until we get to a Mori
fibre space π : Y −→ Z; all steps of this MMP are (KY + Γ)-trivial, as
all steps of this MMP are (KY + µf∗∆ + εf∗D)-trivial, so that (Y,Γ)
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remains kawamata log terminal and nef. Replacing (X,∆) by a log
resolution, we may assume that f is a morphism. Replacing X by the
general fibre of the composition of f and π, we may assume that Z is
a point, so that KY + Γ is numerically trivial.

Suppose that we have a sequence of such log pairs (Xl,∆l) ∈ B.
We may assume that the pseudo-effective threshold is an increasing
sequence,

λ1 < λ2 < λ3 < . . . ,

and it suffices to bound this sequence away from one. Let

J = {λli | i ∈ I, l ∈ N }.
Then J satisfies the DCC, as λl are an increasing sequence.

Theorem Bn implies that there is a constant C such that vol(Y,Γ) <
C for any Γ whose coefficients belong to J . Let α be the smallest non-
zero element of J and let G = Gl be the sum of the components of
Γ = Γl. Let Y = Yl. Then

vol(Y,KY +G) = vol(Y,G− Γ)

≤ vol(Y,G)

≤ vol(Y,
1

α
Γ)

≤ C

αn
.

Let D be the sum of the components of ∆. Certainly KX +D is big.
We may write

KX +D = f ∗(KY +G) + F,

where F is supported on the exceptional locus. It follows that

vol(X,KX +D) ≤ vol(Y,KY +G) ≤ C

αn
.

Given (Xl, Dl) we may pick r ∈ N such that

KXl
+ Θl = KXl

+
r − 1

r
Dl

is big. As the coefficients of Θl belong to

{ r − 1

r
| r ∈ N },

(7.2) implies that
{ (Xl,Θl) | l ∈ N },

is log birationally bounded. But then

{ (Xl,∆l) | l ∈ N },
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is log birationally bounded. In particular, [15, 1.9] implies that there
is a constant δ > 0 such that

vol(Xl, KXl
+ ∆l) ≥ δ,

for every l ∈ N. In this case

δ ≤ vol(X,KX+∆) ≤ vol(Y,KY +
1

λ
Γ) = (

1

λ
−1)n vol(Y,Γ) ≤ (

1

λ
−1)nC,

so that we may take

β =
1

1 +
(
δ
C

)1/n
. �

Lemma 7.4. Theorem Cn−1, Theorem An−1, and Theorem Bn imply
Theorem Cn.

Proof. Replacing I by

I ∪ { r − 1

r
| r ∈ N } ∪ {1},

we may assume that 1 is both an accumulation point of I and an
element of I. Let α be the smallest non-zero element of I. By (7.3)
there is a constant β < 1 such that if (X,∆) ∈ B then the pseudo-
effective threshold

λ = inf{ t ∈ R |KX + t∆ is big },

is at most β.
Pick (X,∆) ∈ B. Let π : Y −→ X be a log resolution of (X,∆).

Then we may write

KY + Γ = π∗(KX + ∆) + E,

where Γ is the strict transform of ∆ plus the sum of the exceptional
divisors. Replacing (X,∆) by (Y,Γ) we may assume that (X,∆) is log
smooth. If S = b∆c, then we may pick r ∈ N such that

KX + ∆′ = KX +
r − 1

r
S + {∆},

is big. Replacing (X,∆) by (X,∆′), we may assume that (X,∆) is
kawamata log terminal.

Pick p such that

p >
2

α(1− β)
.
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If a is the coefficient of a component of ∆ then

bpac
p

> a− 1

p

> a− α(1− β)

2

≥ a− a(1− β)

2

=
a(1 + β)

2
.

It follows that
β + 1

2
∆ ≤ ∆bpc ≤ ∆,

so that KX + ∆bpc is big. Since the coefficients of ∆bpc belong to

I0 = { i
p
| 1 ≤ i ≤ p− 1 },

(7.2) implies that there is a positive integer m such that φm(KX+∆bpc)

is birational. But then φm(KX+∆) is birational as well. �

8. Numerically trivial log pairs

Lemma 8.1. Theorem Dn−1 and Theorem Cn imply Theorem Dn.

Proof. We may assume that 1 ∈ I and n > 1.
As we are assuming Theorem Dn−1 there is a finite set J0 ⊂ J = D(I)

with the following property. If (S,Θ) is a log pair such that S is
projective of dimension n− 1, the coefficients of Θ belong to J , (S,Θ)
is log canonical, and KS +Θ is numerically trivial, then the coefficients
of Θ belong to J0. Let I1 be the largest subset of I such thatD(I1) ⊂ J0.
(5.2) implies that I1 is finite.

Theorem Cn implies that there is a constant m with the following
property: if (Y,Γ) is log canonical, Y is a projective variety of dimen-
sion n, KY +Γ is big and the coefficients of Γ belong to I, then φm(KY +Γ)

is birational.
For every 1 ≤ l ≤ m, let

Al = [(l − 1)/m, l/m),

and Am+1 = { 1 } so that

[0, 1] =
m+1⋃
l=1

Al.
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Let I2 be the union of the largest elements of Al ∩ I (if Al ∩ I does
not have a largest element, either because it is empty or because it has
infinitely many elements, then we ignore the elements of Al ∩ I). Then
I2 has at most m+ 1 elements, so that I2 is certainly finite. Let I0 be
the union of I1 and I2.

Suppose that (X,∆) satisfies (1–4) of Theorem Dn. Let π : Y −→ X
be a divisorially log terminal modification, so that Y is Q-factorial. As
(X,∆) is log canonical if we write

KY + Γ = π∗(KX + ∆),

then Γ is the strict transform of ∆ plus the exceptional divisors, so that
(Y,Γ) is numerically trivial and divisorially log terminal. Replacing
(X,∆) by (Y,Γ), we may assume that X is Q-factorial. Further (X,∆)
is kawamata log terminal if and only if b∆c = 0. Suppose that B is a
prime component of ∆ with coefficient i. It suffices to prove that i ∈ I0.
We may assume that i 6= 1. Suppose that B intersects a component of
b∆c. If S is the normalisation of this component then by adjunction
we may write

(KX + ∆)|S = KS + Θ,

where the coefficients of Θ belong to J = D(I) by (4.1). As S is
projective of dimension n − 1, (S,Θ) is log canonical, and KS + Θ is
numerically trivial, the coefficients of Θ belong to J0. But then i ∈ I1.

As KX+∆ is numerically trivial, KX+∆−iB is not pseudo-effective.
By [8, 1.3.3] we may run f : X 99K Y the (KX +∆−iB)-MMP until we
reach a Mori fibre space. As KX + ∆ is numerically trivial, it follows
that every step of this MMP is B-positive. If at some step of this MMP
we contract a component S of b∆c then this component intersects B
and i ∈ I1 by the argument above. Otherwise, it follows that (Y, f∗∆)
is kawamata log terminal if and only if bf∗∆c = 0. Further B is not
contracted and so replacing (X,∆) by (Y, f∗∆), we may assume that
X is a Mori fibre space π : X −→ Z, where B dominates Z.

If Z is not a point, then replacing X by the general fibre of π we are
done by induction. So we may assume that X has Picard number one.
If b∆c 6= 0 then any component S of b∆c intersects B and so i ∈ I1.
Otherwise b∆c = 0 and we may assume that (X,∆) is kawamata log
terminal.

Suppose that j ∈ I and j > i. Let π : Y −→ X be a log resolution
of (X,∆). Let Γ0 be the strict transform of ∆, let E by the sum of the
exceptional divisors, and let C be the strict transform of B. Set

Γ = Γ0 + E + (j − i)C.
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Then (Y,Γ) is log canonical and the coefficients of Γ belong to I. We
may write

KY + Γ0 + E = π∗(KX + ∆) + F,

where F ≥ 0 contains the full exceptional locus. Pick ε > 0 such that
F ≥ εE. Note that (j − i)C + εE > δπ∗B for any δ > 0 sufficiently
small, so that

KY + Γ = (KY + Γ0 + (1− ε)E) + (j − i)C + εE,

is big. Hence φm(KY +Γ) is birational, so that KY + Γbmc is big. But
then KX + Λbmc is big, where

Λ = π∗Γ = ∆ + (j − i)B.

It follows that if i ∈ Al, then j ≥ l/m, so that i is the largest element
of the interval Al which also belongs to I. Hence i ∈ I2. �

9. Proofs of Theorems

Proof of (1.5) and (1.4). This is Theorem A and Theorem D. �

Proof of (1.1). Suppose that c1, c2, . . . ∈ LCTn(I, J), where ci ≤ ci+1.
It suffices to show that ci = ci+1 for i sufficiently large. By assumption
we may find log canonical pairs (Xi,∆i) and R-Cartier divisors Mi,
where Xi is a variety of dimension n, the coefficients of ∆i belong to I,
the coefficients of Mi belong to J and ci is the log canonical threshold,

ci = sup{ t ∈ R | (Xi,∆i + ciMi) is log canonical }.

Let Θi = ∆i + ciMi and

K = I ∪ { cij | i ∈ N, j ∈ J }.

Then (Xi,Θi) is log canonical, Xi is a variety of dimension n, the
coefficients of Θi belong to K and there is a non kawamata log termi-
nal centre V contained in the support of Mi. Possibly throwing away
components of Θi which don’t contain V and passing to an open sub-
set which contains the generic point of V , we may assume that every
component of Θi contains V .

As K satisfies the DCC, (1.5) implies that the coefficients of Θi

belong to a finite subset K0 of K. It follows ci = ci+1 for i sufficiently
large. �

Proof of (1.3). (3) is Theorem C.
Fix a constant V > 0 and let

DV = { (X,∆) ∈ D | 0 < vol(X,KX + ∆) ≤ V }.
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(3) implies that φm(KX+∆) is birational. (3.5.2) implies that the set

{ vol(X,KX + ∆) | (X,∆) ∈ DV },
satisfies the DCC, which implies that (1) and (2) of (1.3) hold in di-
mension n. �

Lemma 9.1. Let Z −→ T be a projective morphism to a variety and
suppose that (Z,Φ) has simple normal crossings over T . Suppose that
the restriction of any irreducible component of Φ to any fibre is irre-
ducible. Suppose that (Z,Φ) is kawamata log terminal and there is a
closed point 0 ∈ T such that KZ0 + Φ0 is big. Let 0 ≤ Θ ≤ Φ be any
divisor with the same support as Φ.

Then we may find finitely many birational contractions fi : Z 99K Xi

over T such that if f : Zt 99K Y is the log canonical model of (Zt,Ψ)
for some t ∈ T and Θt ≤ Ψ ≤ Φt then f = fit for some index i.

Proof. [15, 1.7] implies that KZ + Φ is big over T . Pick

0 ≤ D ∼R,T (KZ + Φ).

Let

B =
ε

1− ε
D.

If we pick ε > 0 sufficiently small then KZ + B + Φ is kawamata log
terminal and we may find a divisor 0 ≤ Θ′ ≤ Θ with

KZ + Θ = ε(KZ + Φ) + (1− ε)(KZ + Θ′).

If Θ ≤ Ξ ≤ Φ then

KZ + Ξ ∼R,T (1− ε)(KZ +B + Ξ′),

where Θ′ ≤ Ξ′ ≤ Ξ. It is proved in [8, 1.1.5] that there are finitely
many f1, f2, . . . , fk birational contractions fi : Z 99K Xi over T such
that if g : Z 99K X is the log canonical model of KZ + Ξ over T then
g = fi for some index 1 ≤ i ≤ k.

It suffices to show that if Ξ|Zt = Ψ and g is the log canonical model
of KZ + Ξ then f = gt. For this we may assume that T is affine.

In this case the (relative) log canonical model is given by taking Proj

Xi = Proj(Z,R(Z, k(KZ + Ξ))),

of the (truncation of the) canonical ring

R(Z, k(KZ + Ξ)) =
⊕
m∈N

H0(Z,OZ(mk(KZ + Ξ))).

On the other hand [15, 1.7] implies that if k is sufficiently divisible then

R(Z, k(KZ + Ξ)) −→ R(Zt, k(KZt + Ψ)),
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is surjective and so f = gt. �

Proof of (1.6). By definition there is a log pair (Z,B) and a projec-
tive morphism Z −→ T , where T is of finite type with the following
property. If (X,∆) ∈ D then there is a closed point t ∈ T and a
birational map f : X 99K Zt such that the support of Bt is a divisor
on Zt which contains the support of the strict transform of ∆ and any
f−1-exceptional divisor.

We may assume that T is reduced. Decomposing T into a finite
union of locally closed subsets and throwing away some components,
we may assume that every fibre Zt is a variety and that B does not
contain Zt; blowing up and decomposing T into a finite union of locally
closed subsets, we may assume that (Z,B) has simple normal crossings;
passing to an open subset of T , we may assume that the fibres of
Z −→ T are log pairs, so that (Z,B) has simple normal crossings over
T ; passing to a finite cover of T , we may assume that every stratum of
(Z,B) has irreducible fibres over T ; decomposing T into a finite union of
locally closed subsets, we may assume that T is smooth; finally passing
to a connected component of T , we may assume that T is integral.

Let a = 1 − ε < 1. By assumption δ ≤ a ≤ 1. Let Φ = aB and
Θ = δB, so that Φ, Θ and B have the same support but the coefficients
of Φ are all a, the coefficients of Θ are all δ and the coefficients of B
are all one. As (Z,Φ) is kawamata log terminal it follows that there
are only finitely many valuations of log discrepancy at most one with
respect to (Z,Φ). As (Z,Φ) has simple normal crossings there is a
sequence of blow ups Y −→ Z of strata, which extracts every divisor
of log discrepancy at most one. Note that as (Z,Φ) has simple normal
crossings over T , it follows that if t ∈ T is a closed point then every
valuation of log discrepancy at most one with respect to (Zt,Φt) has
centre a divisor on Yt.

Suppose that (X,∆) ∈ D. Then there is a closed point t ∈ T and a
birational map f : X 99K Zt such that the support of Bt contains the
support of the strict transform of ∆t and any f−1-exceptional divisor.
Let p : W −→ X and q : W −→ Zt resolve f . Let S be the sum of the
p-exceptional divisors and let Ξ be the sum of the strict transform of
∆ and aS, so that S and Ξ are divisors on W . We may write

KW + Ξ = p∗(KX + ∆) + E,

where E is a sum of p-exceptional divisors and E ≥ 0 as the log dis-
crepancy of (X,∆) is greater than ε.

Let Ψ = q∗Ξ. We may write

p∗(KX + ∆) + E + F = q∗(KZt + Ψ),
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where F is q-exceptional. As p∗(KX + ∆) is nef, it is q-nef so that
E + F ≥ 0 by negativity of contraction. If ν is any valuation whose
centre is a divisor on X then

a(Zt,Φt, ν) ≤ a(Zt,Ψ, ν) as Φt ≥ Ψ

≤ a(X,∆, ν) as E + F ≥ 0

≤ 1 as the centre of ν is a divisor on X.

Therefore the induced birational map Yt 99K X is a birational con-
traction. Thus replacing Z by Y and B by its strict transform union
the exceptional divisor, we may assume that g = f−1 : Zt 99K X is a
birational contraction. In this case F is p-exceptional and so g is the
log canonical model of (Zt,Θt).

Since there are only finitely integral divisors 0 ≤ B′ ≤ B, replacing
B we may assume that Ψ has the same support as Bt. KZt + Φt is big
as KZt + Ψ is big and Φt ≥ Ψ. Finally Θt ≤ Ψ ≤ Φt and so we are
done by (9.1). �

10. Proofs of Corollaries

Proof of (1.2). This follows from (1.1) and the main result of [6]. �

Proof of (1.7). (1.5) implies that there is a finite subset I0 ⊂ I such
that the coefficients of ∆ belong to I0. Thus there is a positive integer
r such that r∆ is integral.

On the other hand, Theorem B implies that there is a constant C
such that vol(X,∆) < C. Let D be the sum of the components of ∆.
Then KX +D is big and

vol(X,KX +D) = vol(X,D −∆)

≤ vol(X,D)

≤ vol(X, r∆)

≤ Crn.

Let π : Y −→ X be a log resolution of (X,∆). Let G be the sum
of the strict transform of the components of ∆ and the exceptional
divisors. Then (Y,G) has simple normal crossings. Pick η > 0 such
that (X, (1 + η)∆) is kawamata log terminal and the log discrepancy is
greater than ε. Then KX + (1 + η)∆ is ample and we may write

KY + Γ = π∗(KX + (1 + η)∆),
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where Γ ≤ G. As KY + Γ is big it follows that KY + G is big. (1.3)
implies that there is a positive integer m such that φm(KY +G) is bira-
tional, for every (X,∆) ∈ D. But then D is log birationally bounded
by [15, 2.4.2.3-4]. Now apply (1.6). �

Proof of (1.8). Let D = −r(KX + ∆). Then D is an ample Cartier
divisor and D − (KX + ∆) is ample. By Kollár’s effective base point
free theorem (cf. [21]), there is a fixed positive integer m such that the
linear system |mD| is base point free. Pick a general divisor H ∈ |mD|.
Then (X,Λ = ∆ + 1

mr
H) is kawamata log terminal and

KX + Λ ∼Q 0.

Note the coefficients of Λ belong to the finite set

I = { i
r
| 1 ≤ i ≤ r − 1 } ∪ { 1

mr
}.

There are two ways to proceed. On the one hand we may apply (1.7).
Here is a more direct approach. Theorem B implies that

vol(X,Λ),

is bounded from above. But then

vol(X,mD) ≤ (mr)n vol(X,Λ),

is bounded from above. �

Proof of (1.10). Suppose that r1 ≤ r2 ≤ . . . is a non-decreasing se-
quence in R. For each i we may find (X,∆) = (Xi,∆i) ∈ D and a
Cartier divisor H such that −(KX + ∆) ∼R rH. By the cone theorem
we may find a curve C such that −(KX + ∆) · C ≤ 2n, cf. Theorem
18.2 of [13]. In particular r ≤ 2n, as H ·C ≥ 1. By Fujino’s extension,
[12], of Kollár’s effective base point free theorem, [21], to the case of log
canonical pairs, there is a fixed positive integer m such that the linear
system |mH| is base point free. Possibly replacing m by a multiple we
may assume that m > 2n. Pick a general divisor D ∈ |mH|.

Then (X,Λ = ∆ + r
m
D) is log canonical and

KX + Λ ∼R 0.

Then the coefficients of Λi = Λ belong to the set

I ∪ { ri
m
| i ∈ N },

which satisfies the DCC. (1.4) implies that the coefficients of Λ belong
to a finite subset. But then ri = ri+1 is eventually constant and so R
satisfies the ACC. �
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11. Accumulation points

Definition 11.1. Given I ⊂ [0, 1] and c ∈ [0, 1] let

Dc(I) = { a ≤ 1 | a =
m− 1 + f + kc

m
, k,m ∈ N, f ∈ I+ } ⊂ D(I∪{ c }).

Let Nn(I, c) be the set of log canonical pairs (X,∆) such that X is a
projective variety of dimension n, KX + ∆ is numerically trivial and
we may write ∆ = B + C, where the coefficients of B belong to D(I)
and the coefficients of C 6= 0 belong to Dc(I).

Let

Nn(I) = { c ∈ [0, 1] |Nn(I, c) is non-empty }.

Lemma 11.2. Let n ∈ N and I ⊂ [0, 1].

(1) LCTn(I) ⊂ LCTn+1(I).
(2) Nn(I) ⊂ Nn+1(I).
(3) If f ∈ I+ and k ∈ N then

c =
1− f
k
∈ Nn(I).

Proof. Let E be an elliptic curve. If (X,∆ =
∑
di∆i) is a log pair

then (Y,Γ) is a log pair, where Y = X ×E and Γ =
∑
di(∆i×E). By

construction Γ has the same coefficients as ∆.
Note that (X,∆) is log canonical if and only if (Y,Γ) is log canonical.

This gives (1). Further if c ∈ [0, 1] and (X,∆) ∈ Nn(I, c) then (Y,Γ) ∈
Nn+1(I, c). This is (2).

Using (2), it suffices to prove (3) when n = 1. Let X = P1 and
∆ = B + C, where B = fp + fq, C = 2kcr, and p, q and r are three
points of P1. Then (X,∆) ∈ N1(I, c) (take m = 1) so that c ∈ N1(I).
This is (3). �

For technical reasons, it is convenient to introduce a smaller set than
Nn(I, c):

Definition 11.3. Given I ⊂ [0, 1] and c ∈ [0, 1] let Kn(I, c) ⊂ Nn(I, c)
be the subset consisting of kawamata log terminal pairs (X,∆), where
X is Q-factorial of Picard number one.

Let

Kn(I) = { c ∈ [0, 1] |Km(I, c) is non-empty, for some m ≤ n }.

Lemma 11.4. If n ∈ N and I ⊂ [0, 1] then

Nn(I ∪ { 1 }) = Kn(I).

In particular, Nn(I ∪ { 1 }) = Nn(I).
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Proof. By (2) of (11.2), it suffices to show that

Nn(I ∪ { 1 }) ⊂ Kn(I).

Suppose that c ∈ Nn(I ∪ { 1 }). Then we may find (X,∆) ∈ Nn(I ∪
{ 1 }, c). By assumption we may write ∆ = A + B + C, where the
coefficients of A are one, the coefficients of B belong to D(I) and the
coefficients of C 6= 0 belong to Dc(I).

Let π : X ′ −→ X be a divisorially log terminal modification of
(X,∆). If we write

KX′ + ∆′ = π∗(KX + ∆),

then X ′ is projective of dimension n, X ′ is Q-factorial, (X ′,∆′) is
divisorially log terminal and KX′ + ∆′ is numerically trivial. Let B′

and C ′ be the strict transforms of B and C and let A′ = ∆′−B′−C ′.
Then the coefficients of A′ are one, the coefficients of B′ belong to
D(I) and the coefficients of C ′ 6= 0 belong to Dc(I). Thus (X ′,∆′) ∈
Nn(I ∪ { 1 }, c). Replacing (X,∆) by (X ′,∆′) we may assume that X
is Q-factorial and (X,A + B) is divisorially log terminal. Note that
(X,∆) is kawamata log terminal if and only if A = 0.

Suppose that A and C intersect. Let S be an irreducible component
of A which intersects C. Then we may write

(KX + ∆)|S = KS + Θ,

by adjunction, where (S,Θ) is divisorially log terminal and moreover
we may write Θ = A′+B′+C ′, where the coefficients of A′ are one, the
coefficients of B′ belong to D(I) and the coefficients of C ′ 6= 0 belong
to Dc(I). Thus (S,Θ) ∈ Nn−1(I ∪ { 1 }, c). Hence c ∈ Nn−1(I ∪ { 1 })
and so c ∈ Kn−1(I) ⊂ Kn(I), by induction on n.

Let f : X 99K X ′ be a step of the (KX + A + B)-MMP. As KX +
∆ is numerically trivial, f is automatically C-positive. Suppose that
f is birational. Let A′ = f∗A, B′ = f∗B and C ′ = f∗C, so that
∆′ = f∗∆ = A′ + B′ + C ′. C ′ 6= 0, as f is C-positive. X ′ is a
projective variety of dimension n, (X ′,∆′) is log canonical, KX′ + ∆′ is
numerically trivial, the coefficients of A′ are all one, the coefficients of
B′ belong to D(I) and the coefficients of C ′ 6= 0 belong to Dc(I). Thus
(X ′,∆′) ∈ Nn(I ∪ { 1 }, c). Further X ′ is Q-factorial and (X ′, A′ +B′)
is divisorially log terminal. If a component of A is contracted then A
and C intersect and we are done. Otherwise (X ′,∆′) is kawamata log
terminal if and only if A′ = 0.

If we run the (KX + A + B)-MMP with scaling of an ample divisor
then we end with a Mori fibre space. Therefore, replacing (X,∆) by
(X ′,∆′) finitely many times, we may assume that f : X 99K Z = X ′ is
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a Mori fibre space and C dominates Z. If dimZ > 0 then let z ∈ Z be
a general point. Then (Xz,∆z) ∈ Nn−k(I ∪ { 1 }, c), where k = dimZ,
and we are done by induction on the dimension.

So we may assume that Z is a point in which case X has Picard
number one. If A 6= 0 then A and C intersect and we are done. If
A = 0 then (X,∆) is kawamata log terminal and so (X,∆) ∈ Kn(I, c).
But then c ∈ Kn(I). �

Proposition 11.5. If I ⊂ [0, 1], I = I+ and n ∈ N then LCTn+1(I) =
Nn(I).

Proof. We first show that LCTn+1(I) ⊂ Nn(I). Pick 0 6= c ∈ LCTn+1(I).
By definition we may find a log canonical pair (X,∆ + cM) where X
has dimension n+ 1, the coefficients of ∆ belong to I, M is an integral
Q-Cartier divisor and there is a non kawamata log terminal centre V
contained in the support of M . Possibly passing to an open subset of
X and replacing V by a maximal non kawamata log terminal centre,
we may assume that V is the only non kawamata log terminal centre
of (X,∆ + cM). In particular, (X,∆) is kawamata log terminal.

If V is a component of M then V has coefficient one in ∆ + cM
and c = 1−f

k
∈ Nn(I) by (3) of (11.2). Otherwise let f : Y −→ X

be a divisorially log terminal modification of (X,∆ + cM). Then Y is
Q-factorial and we may write

KY + T + ∆′ + cM ′ = f ∗(KX + ∆ + cM)

where ∆′ and M ′ are the strict transforms of ∆ and M , T is the sum
of the exceptional divisors and the pair (Y, T +∆′+cM ′) is divisorially
log terminal. By (4) of (3.3.1) we may choose f so that T contains
the inverse image of V . Let S be an irreducible component of T which
intersects M ′. Then we may write

(KY + T + ∆′ + cM ′)|S = KS + Θ,

by adjunction, where (S,Θ) is divisorially log terminal and moreover
we may write Θ = A+B +C, where the coefficients of A are one, the
coefficients of B belong to D(I) and the coefficients of C 6= 0 belong
to Dc(I). As S is a non kawamata log terminal centre, the centre of
S on X is V so that there is a morphism S −→ V . If v ∈ V is a
general point then (Sv,Θv) ∈ Nk(I ∪ { 1 }, c), for some k ≤ n. Thus
c ∈ Nk(I ∪ { 1 }) ⊂ Nn(I).

We now show that LCTn+1(I) ⊃ Nn(I). Pick 0 6= c ∈ Nn(I). Then
we may find a pair (X,∆) ∈ Km(I, c), some m ≤ n. If m < n then we
are done by induction on the dimension. Otherwise X has dimension
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n. As −KX is ample, we may pick d such that −dKX is very ample
and embed X into projective space by the linear system | − dKX |.

Let Y be the cone over X and let Γj be the cone over ∆j. Then
Y is a quasi-projective variety of dimension n + 1. Y is Q-factorial as
X has Picard number one. (Y,Γ =

∑
diΓi) is log canonical but not

kawamata log terminal at the vertex p of the cone. By assumption we
may write

di =
mi − 1 + fi + kic

mi

,

for each i, where mi is a positive integer, ki is a non-negative integer
(ki = 0 if Γi is a component of Bi and ki > 0 if Γi is a component of
Ci) and fi ∈ I+. Since we are working locally around p, the vertex of
Y , we may find a cover of π : Ỹ −→ Y which ramifies over Γi to index
mi for every i and is otherwise unramified at the generic point of any
divisor. We may write

KỸ + Γ̃ = π∗(KY + Γ),

where the coefficients of Γ̃ belong to the set

{ fi + kic | i }.
Ỹ is a Q-factorial quasi-projective variety of dimension n+1 and (Ỹ , Γ̃)
is log canonical but not kawamata log terminal over any point q lying
over p. Let

Θ =
∑

fiΓi and Mi =
∑

kiΓi.

Then the coefficients of Θ belong to I+ = I, Mi is an integral Q-Cartier
divisor and

c = sup{ t ∈ R | (X,Θ + tM) is log canonical },
is the log canonical threshold. But then c ∈ LCTn+1(I). �

Lemma 11.6. Let (X,∆) be a log canonical pair, where X is Q-
factorial of dimension n and Picard number one and KX + ∆ is nu-
merically trivial.

If the coefficients of ∆ are at least δ then ∆ has at most n+1
δ

compo-
nents.

Proof. [27, 18.24] implies that the sum of the coefficients of ∆ is at
most n+ 1. �

Proposition 11.7. Fix a positive integer n and a set I ⊂ [0, 1] whose
only accumulation point is one such that I = I+.

Let c1, c2, . . . ∈ [0, 1] be a strictly decreasing sequence with limit c 6= 0
with the following property. There is a sequence of log canonical pairs
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(Xi,∆i) such that Xi is a projective variety of dimension n, KXi
+ ∆i

is numerically trivial and we may write ∆i = Ai + Bi + Ci, where the
coefficients of Ai are approaching one, the coefficients of Bi belong to
D(I) and the coefficients of Ci 6= 0 belong to Dci(I).

Then c ∈ Nn−1(I).

Proof. We may assume that Ai and Bi + Ci have no common compo-
nents. Replacing Bi by Bi−bBic and Ai by Ai + bBic we may assume
that b∆ic = bAic. As the coefficients of Ai + Bi belong to a set which
satisfies the DCC, (1.5) implies that not all of the coefficients of Ci are
increasing. In particular at least one coefficient of Ci is bounded away
from one.

Let ai be the total log discrepancy of (Xi,∆i).
Case A: lim ai > 0.
In this case, we assume that ai is bounded away from zero.
Case A, Step 1: We reduce to the case Xi is Q-factorial and the

Picard number of Xi is one.
As we are assuming that ai is bounded away from zero, Ai = 0 and

so (Xi,∆i) ∈ Nn(I, ci), so that ci ∈ Nn(I) = Kn(I), by (11.4). Thus
we may assume that (Xi,∆i) ∈ Km(I, ci), for some m ≤ n. If m < n
then we are done by induction. Otherwise we may assume that Xi is
Q-factorial and the Picard number of Xi is one.

Possibly passing to a subsequence, (11.6) implies that we may assume
that the number of components of Bi and Ci is fixed. As the only
accumulation point ofD(I) is one and the coefficients of Bi are bounded
away from one, possibly passing to a subsequence we may assume that
the coefficients of Bi are fixed and that the coefficients of Ci have the
form

r − 1

r
+
f

r
+
kci
r
,

where k, r and f depend on the component but not on i.
Given t ∈ [0, 1], let Ci(t) be the divisor with the same components

as Ci but now with coefficients

r − 1

r
+
f

r
+
kt

r
,

so that Ci = Ci(ci). Let

hi = sup{ t | (Xi, Bi + Ci(t)) is log canonical },
be the log canonical threshold. Set h = limhi.

Case A, Step 2: We reduce to the case h > c.
Suppose that h ≤ c. As ci ≤ hi, it follows that h = c. Now

hi ∈ LCTn(D(I)) = Nn−1(I),
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so that we are done by induction in this case.
Case A, Step 3: We reduce to the case vol(Xi, Ci) is unbounded.
Suppose not, suppose that vol(Xi, Ci) is bounded from above. Let

di =
ci + hi

2
and d =

c+ h

2
.

Then the coefficients of (Xi, Bi + Ci(d)) are fixed. The log discrep-
ancy of (Xi, Bi + Ci(di)) is at least ai/2 so that the log discrepancy
of (Xi, Bi + Ci(d)) is bounded away from zero. As h > c, possibly
passing to a tail of the sequence, we may assume that d > ci so that
KXi

+Bi + Ci(d) is ample. Note that

vol(Xi, KXi
+Bi + Ci(d)) = vol(Xi, Ci(d)− Ci)

is bounded from above by assumption. (1.3) implies that there is a
positive integer m such that φm(KXi

+Bi+Ci(d)) is birational. But then

{ (Xi,∆i) | i ∈ N } is log birationally bounded by [15, 2.4.2.4]. (1.6)
implies that (Xi,∆i) belongs to a bounded family. Thus we may find
an ample Cartier divisor Hi such that the intersection numbers Ti ·
Hn−1
i and −KXi

· Hn−1
i are bounded, where Ti is any component of

∆i. Possibly passing to a subsequence, we may assume that these
intersection numbers are constant. But then

(KXi
+ ∆i) ·Hn−1

i = 0, Ai ·Hn−1
i = 0 and Bi ·Hn−1

i

is independent of i, whilst Ci ·Hn−1
i is not constant, a contradiction.

Case A, Step 4: We finish case A.
As vol(Xi, Ci) is unbounded (3.2.2) implies that we may find εi > 0

and divisors 0 ≤ C ′i ∼R εiCi such that (Xi,∆i+C
′
i) is not log canonical.

Passing to a subsequence, and using (3.2.3), we may find gi < ci and a
divisor

0 ≤ Θi ∼R Ci − Ci(gi) with lim gi = c,

such that (Xi,Φi = Bi + Ci(gi) + Θi) has a unique non kawamata log
terminal place. If φ : Yi −→ Xi is a divisorially log terminal modifica-
tion then φ extracts a unique prime divisor Si of log discrepancy zero
with respect to (Xi,Φi). We may write

KYi+Ψi = φ∗(KXi
+Φi) and KYi+B

′
i+C

′
i+siSi = φ∗(KXi

+∆i),

where Si = bΨic, B′i and C ′i are the strict transform of Bi and Ci, and
si < 1, as (Xi,∆i) is kawamata log terminal.

As KYi+Ψi is numerically trivial, KYi+Ψi−Si is not pseudo-effective.
By [8, 1.3.3], we may run f : Yi 99K Wi the (KYi + Ψi − Si)-MMP
until we end with a Mori fibre space πi : Wi −→ Zi. As KYi + Ψi is
numerically trivial, every step of this MMP is Si-positive, so that the
strict transform Ti of Si dominates Zi. Let Fi be the general fibre of
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πi. Replacing Yi, B
′
i, C

′
i and Ψi by Fi and the restriction of f∗B

′
i, f∗C

′
i

and f∗Ψi to Fi, we may assume that Si, Ψi, B
′
i and C ′i are multiples of

the same ample divisor. In particular KYi +B′i + C ′i + Si is ample.
We let C ′i(t) denote the strict transform of Ci(t). We may write

(KYi + Si +B′i + C ′i(t))|Si
= KSi

+B′′i + C ′′i (t),

where the coefficients of B′′i belong to D(I) and the coefficients of
C ′′i (t) 6= 0 belong to Dt(I). We let C ′′i = C ′′i (ci).

There are two cases. Suppose that (Si, B
′′
i +C ′′i ) is not log canonical.

Let
ki = sup{ t | (Si, B′′i + C ′′i (t)) is log canonical },

be the log canonical threshold. Then ki ∈ LCTn−1(D(I)) = Nn−2(I).
Then k = lim ki ∈ Nn−2(I) ⊂ Nn−1(I) by induction on n. As (Si, B

′′
i +

C ′′i (gi)) is kawamata log terminal, ki ∈ (gi, ci). Thus

c = lim ci = lim ki = k ∈ Nn−1(I).

Otherwise we may suppose that (Si, B
′′
i + C ′′i ) is log canonical. Let

li = sup{ t | (Si, B′′i + C ′′i (t)) is pseudo-effective },
be the pseudo-effective threshold. Then li ∈ Nn−1(I) and l = lim li ∈
Nn−1(I) by induction on n. On the other hand li ∈ (gi, ci). Thus

c = lim ci = lim li = l ∈ Nn−1(I).

Case B: lim ai = 0.
In this case, we assume that ai approaches 0.
Case B, Step 1: We reduce to the case Ai 6= 0, Xi is Q-factorial

and (Xi,∆i) is kawamata log terminal if and only if bAic = 0.
Possibly passing to a subsequence we may assume that ai ≥ ai+1 and

ai ≤ 1. If (Xi,∆i) is not divisorially log terminal or Ai 6= 0 but Xi

is not Q-factorial then let πi : X
′
i −→ Xi be a divisorially log terminal

modification. If Ai = 0 then let πi : X
′
i −→ Xi extract a divisor of log

discrepancy ai, where X ′i is Q-factorial. Either way, we may write

KX′
i
+ ∆′i = π∗i (KXi

+ ∆i),

where ∆′i is a sum of the strict transform of ∆i and a divisor which is
exceptional. Let B′i and C ′i be the strict transforms of Bi and Ci and
let A′i = ∆′i −B′i − C ′i 6= 0. Then X ′i is a Q-factorial projective variety
of dimension n, (X ′i,∆

′
i) is a divisorially log terminal pair, KX′

i
+ ∆′i is

numerically trivial, the coefficients of A′i 6= 0 are approaching one, the
coefficients of B′i belong to D(I) and the coefficients of C ′i 6= 0 belong
to Dci(I). Replacing (Xi,∆i) by (X ′i,∆

′
i), we may assume that Ai 6= 0

and Xi is Q-factorial. Moreover (Xi,∆i) is kawamata log terminal if
and only if bAic = 0.
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Case B, Step 2: We are done if the support of Ci and bAic intersect.
Suppose that a component of Ci intersects the normalisation of a

component Si of bAic. Then we may write

(KXi
+ ∆i)|Si

= KSi
+ Θi,

by adjunction. Si is projective of dimension n−1, (Si,Θi) is log canoni-
cal, KSi

+Θi is numerically trivial, and we may write Θi = A′i+B
′
i+C

′
i,

where the coefficients of A′i approach one, the coefficients of B′i belong
to D(I) and the coefficients of C ′i 6= 0 belong to Dci(I). In this case,
the limit c belongs to Nn−2(I) ⊂ Nn−1(I) by induction.

Case B, Step 3: We are done if fi : Xi −→ Zi is a Mori fibre space,
Ai dominates Zi and dimZi > 0.

Let Fi be the general fibre of fi. We may write

(KXi
+ ∆i)|Fi

= KFi
+ Θi,

by adjunction. Fi is projective of dimension at most n − 1, (Fi,Θi)
is log canonical, KFi

+ Θi is numerically trivial, and we may write
Θi = A′i + B′i + C ′i, where the coefficients of A′i approach one, the
coefficients of B′i belong to D(I) and the coefficients of C ′i belong to
Dci(I).

There are two cases. Suppose that C ′i = 0. Then (1.5) implies that
the coefficients of A′i are fixed, so that bA′ic = A′i. But then bAic 6= 0
dominates Zi. On the other hand, as C ′i = 0, Ci does not intersect Fi,
that is, Ci does not dominate Zi. But then Ci must contain a fibre so
that Ai and Ci intersect and we are done by Case B, Step 2. Otherwise
C ′i 6= 0. In this case ci ∈ Nn−1(I) so that

c = lim ci ∈ Nn−2(I) ⊂ Nn−1(I),

by induction.
Case B, Step 4: We reduce to the case (Xi,∆i) is kawamata log

terminal.
Suppose not, suppose that (Xi,∆i) is not kawamata log terminal.

By Case B, Step 1, this implies that Si = bAic is not the zero divisor.
Let Θi = ∆i − Si. We run the (KXi

+ Θi)-MMP with scaling of some
ample divisor. Let fi : Xi 99K X ′i be a step of the (KXi

+ Θi)-MMP.
As KXi

+ ∆i is numerically trivial, fi is automatically Si-positive. Let
A′i = fi∗Ai, B

′
i = fi∗Bi and C ′i = fi∗Ci. First suppose that fi is

birational. If C ′i = 0 then (1.5) implies that the coefficients of A′i are
all one. As fi contracts Ci it does not contract a component of Ai and
so it follows that the coefficients of Ai are all one, that is, Si = Ai.
As fi contracts Ci and fi is Si-positive, Ci intersects Si and we are
done by Case B, Step 2. Therefore we may assume that C ′i 6= 0 and we
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may replace (Xi,∆i) by (X ′i,∆
′
i). As the MMP must terminate with a

Mori fibre space, replacing (Xi,∆i) with (X ′i,∆
′
i) finitely many times,

we may assume that fi : Xi −→ Zi = X ′i is a Mori fibre space and Si
dominates Zi. By Case B, Step 3, we may assume that Zi is a point.
But then the support of Si and Ci intersect and we are done by Case
B, Step 2.

Case B, Step 5: We reduce to the case Xi has Picard number one.
We run the (KXi

+Bi+Ci)-MMP with scaling of some ample divisor.
Let fi : Xi 99K X ′i be a step of the (KXi

+Bi +Ci)-MMP. As KXi
+ ∆i

is numerically trivial fi is automatically Ai-positive. Let A′i = fi∗Ai,
B′i = fi∗Bi and C ′i = fi∗Ci. First suppose that fi is birational. Suppose
C ′i = 0. As fi contracts only one divisor and Ai and Ci are non-zero by
assumption, it follows that A′i 6= 0. (1.5) implies that the coefficients
of A′i are all one, which contradicts the fact that (Xi,∆i) is kawamata
log terminal. Therefore we may assume that C ′i 6= 0 and we may
replace (Xi,∆i) by (X ′i,∆

′
i). As the MMP must terminate with a Mori

fibre space, replacing (Xi,∆i) with (X ′i,∆
′
i) finitely many times, we

may assume that fi : Xi −→ Zi = X ′i is a Mori fibre space and Ai
dominates Zi.

By Case B, Step 3 we may assume that Zi is a point, so that Xi has
Picard number one.

Case B, Step 6: We finish case B and the proof.
Possibly passing to a subsequence, (11.6) implies that we may assume

that the number of components of Bi and Ci is fixed. As the only
accumulation point ofD(I) is one and the coefficients of Bi are bounded
away from one, possibly passing to a subsequence we may assume that
the coefficients of Bi are fixed and that the coefficients of Ci have the
form

r − 1

r
+
f

r
+
kci
r
,

where k, r and f depend on the component but not on i.
Given t ∈ [0, 1], let Ci(t) be the divisor with the same components

as Ci but now with coefficients

r − 1

r
+
f

r
+
kt

r
,

so that Ci = Ci(ci).
Let Ti be the sum of the components of Ai, so that Ti has the same

components as Ai but now every component has coefficient one. Then
Ai ≤ Ti and Ci(c) ≤ Ci. Note that (Xi, Ai + Bi + Ci(c)) is kawamata
log terminal as (Xi, Ai +Bi + Ci) is kawamata log terminal. Let

si = sup{ s ∈ [0, 1] | (Xi, Ai +Bi + Ci(c) + s(Ti − Ai)) is log canonical }
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be the log canonical threshold. Then

Ai +Bi + Ci(c) ≤ Ai +Bi + Ci(c) + si(Ti − Ai) ≤ Ti +Bi + Ci(c),

As the coefficients of Ai +Bi +Ci(c) belong to a set which satisfies the
DCC and the coefficients of Ti − Ai approach zero, the coefficients of
Ai + Bi + Ci(c) + si(Ti − Ai) belong to a set which satisfies the DCC.
Therefore, possibly passing to a tail of the sequence, (1.4) implies that
si = 1, so that (Xi, Ti +Bi + Ci(c)) is log canonical.

Suppose that (Xi, Ti +Bi + Ci) is not log canonical. Let

di = sup{ t ∈ [c, ci) | (Xi, Ti +Bi + Ci(t)) is log canonical },

be the log canonical threshold. Then di ∈ LCTn(D(I)) = Nn−1(I) and
c = lim di and so we are done by induction on the dimension.

Thus we may assume that (Xi, Ti +Bi + Ci) is log canonical. Let

ei = sup{ t ∈ R |KXi
+ Ti +Bi + Ci(t)) is pseudo-effective },

be the pseudo-effective threshold. Suppose that ei < c. Let

fi = sup{ t ∈ R |KXi
+ tTi +Bi + Ci(c)) is pseudo-effective },

be the pseudo-effective threshold. As ei < c, fi < 1 and lim fi = 1, so
that the coefficients of fiTi +Bi +Ci(c) belong to a set which satisfies
the DCC, which contradicts (1.5). Thus ei ≥ c. On the other hand
ei < ci as KXi

+Ti +Bi +Ci is strictly bigger than KXi
+Ai +Bi +Ci,

which is numerically trivial. Thus lim ei = c. Possibly passing to a
subsequence we may assume that either ei > ei+1 for all i or ei = c. In
the former case we might as well replace Ci = Ci(ci) by Ci(ei). In this
case some component of Ci intersects a component Si of Ti and we are
done by Case B, Step 2. In the latter case we restrict to a component
Si of Ti and apply adjunction to conclude that c = ei ∈ Nn−1(I). �

Proof of (1.11). By (11.5) it suffices to prove that the accumulation
points of Nn(I) belong to Nn−1(I). Suppose that c1, c2, . . . ∈ [0, 1]
is a strictly decreasing sequence of real numbers such that N(I, ci) is
non-empty. Pick (Xi,∆i) ∈ N(I, ci). By assumption we may write
∆i = Bi + Ci where the coefficients of Bi belong to D(I) and the
coefficients of Ci 6= 0 belong to Dci(I), and so (11.7) implies that the
limit c belongs to Nn−1(I). �
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