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Abstract. Any two birational Mori fibre spaces are connected by
a sequence of Sarkisov links.
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1. Introduction

We prove that any two birational Mori fibre spaces are connected by
a sequence of elementary transformations, known as Sarkisov links:

Theorem 1.1. Suppose that φ : X −→ S and ψ : Y −→ T are two
Mori fibre spaces with Q-factorial terminal singularities.

Then X and Y are birational if and only if they are related by a
sequence of Sarkisov links.

Recall the following:

Conjecture 1.2. Let (Z,Φ) be a kawamata log terminal pair.
Then we may run f : Z 99K X the (KZ + Φ)-MMP such that either

(1) (X,∆) is a log terminal model, that is KX + ∆ is nef, or
(2) there is a Mori fibre space φ : X −→ S, that is ρ(X/S) = 1 and
−(KX + ∆) is φ-ample,
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where ∆ = f∗Φ.

We will refer to the log terminal model X and the Mori fibre space
φ as the output of the (KZ + Φ)-MMP. If h : Z 99K X is any sequence
of divisorial contractions and flips for the (KZ + Φ)-MMP then we say
that h is the result of running the (KZ + Φ)-MMP. In other words if h
is the result of running the (KZ + Φ)-MMP then X does not have to
be either a log terminal model or a Mori fibre space.

By [1] the only unknown case of (1.2) is when KZ + Φ is pseudo-
effective but neither Φ nor KZ + Φ is big. Unfortunately the output is
not unique in either case. We will call two Mori fibre spaces φ : X −→ S
and ψ : Y −→ T Sarkisov related if X and Y are outcomes of running
the (KZ + Φ)-MMP, for the same Q-factorial kawamata log terminal
pair (Z,Φ). This defines a category, which we call the Sarkisov cat-
egory, whose objects are Mori fibre spaces and whose morphisms are
the induced birational maps X 99K Y between two Sarkisov related
Mori fibre spaces. Our goal is to show that every morphism in this
category is a product of Sarkisov links. In particular a Sarkisov link
should connect two Sarkisov related Mori fibre spaces.

Theorem 1.3. If φ : X −→ S and ψ : Y −→ T are two Sarkisov
related Mori fibres spaces then the induced birational map σ : X 99K Y
is a composition of Sarkisov links.

Note that if X and Y are birational and have Q-factorial terminal
singularities, then φ and ψ are automatically the outcome of running
the KZ-MMP for some projective variety Z, so that (1.1) is an easy
consequence of (1.3).

It is proved in [1] that the number of log terminal models is finite
if either Φ or KZ + Φ is big, and it is conjectured that in general the
number of log terminal models is finite up to birational automorphisms.
Moreover Kawamata, see [5], has proved:

Theorem 1.4. Suppose that σ : X 99K Y is a birational map between
two Q-factorial varieties which is an isomorphism in codimension one.

If KX + ∆ and KY + Γ are kawamata log terminal and nef and Γ is
the strict transform of ∆ then σ is the composition of (KX + ∆)-flops.

Note that if the pairs (X,∆) and (Y,Γ) both have Q-factorial termi-
nal singularities then the birational map σ is automatically an isomor-
phism in codimension one.

We recall the definition of a Sarkisov link. Suppose that φ : X −→ S
and ψ : Y −→ T are two Mori fibre spaces. A Sarkisov link σ : X 99K Y
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between φ and ψ is one of four types:

I

X ′ - Y

X
?

T

ψ

?

S

φ

?�

II

X ′ - Y ′

X
?

Y
?

S

φ

?
= T

ψ

?

III

X - Y ′

S

φ

?
Y
?

T

ψ

?-

IV

X - Y

S

φ

?
T

ψ

?

R.
�

-

There is a divisor Ξ on the space L on the top left (be it L = X or
L = X ′) such that KL + Ξ is kawamata log terminal and numerically
trivial over the base (be it S, T , or R). Every arrow which is not
horizontal is an extremal contraction. If the target is X or Y it is a
divisorial contraction. The horizontal dotted arrows are compositions
of (KL + Ξ)-flops. Links of type IV break into two types, IVm and
IVs. For a link of type IVm both s and t are Mori fibre spaces. For a
link of type IVs both s and t are small birational contractions. In this
case R is not Q-factorial; for every other type of link all varieties are
Q-factorial. Note that there is an induced birational map σ : X 99K Y
but not necessarily a rational map between S and T .

The Sarkisov program has its origin in the birational classification
of ruled surfaces. A link of type I corresponds to the diagram

F1 = F1

P2
?

P1

ψ
?

pt.

φ

?�

Note that there are no flops for surfaces so the top horizontal map is
always the identity. The top vertical arrow on the left is the blow up
of a point in P2 and ψ is the natural map given by the pencil of lines.
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A link of type III is the same diagram, reflected in a vertical line,

F1 = F1

P1

φ
?

P2
?

pt.

ψ

?
-

A link of type II corresponds to the classical elementary transforma-
tion between ruled surfaces,

X ′ = Y ′

X
?

Y
?

S

φ

?
= T.

ψ

?

The birational map X ′ −→ X blows up a point in one fibre and the
birational map Y ′ −→ Y blows down the old fibre. Finally a link
of type IV corresponds to switching between the two ways to project
P1 × P1 down to P1,

P1 × P1 = P1 × P1

P1

φ
?

P1

ψ
?

pt.
�

-

It is a fun exercise to factor the classical Cremona transformation
σ : P2 99K P2, [X : Y : Z] −→ [X−1 : Y −1 : Z−1] into a product of
Sarkisov links. Indeed one can use the Sarkisov program to give a very
clean proof that the birational automorphism of P2 is generated by this
birational map σ and PGL(3). More generally the Sarkisov program
can sometimes be used to calculate the birational automorphism group
of Mori fibre spaces, especially Fano varieties. With this said, note that
the following problem seems quite hard:

Question 1.5. What are generators of the birational automorphism
group of P3?
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Note that a link of type IVs only occurs in dimension four or more.
For an example of a link of type IVs simply take S 99K T to be a
flop between threefolds, let S −→ R be the base of the flop and let
X = S × P1 and Y = T × P1 with the obvious maps down to S and
T . It is conceivable that one can factor a link of type IVs into links of
type I and III. However given any positive integer k it is easy to write
down examples of links of type IV which cannot be factored into fewer
than k links of type I, II or III.

Let us now turn to a description of the proof of (1.3). The proof
is based on the original ideas of the Sarkisov program (as explained
by Corti and Reid [3]; see also [2]). We are given a birational map
σ : X 99K Y and the objective is to factor σ into a product of Sarkisov
links. In the original proof one keeps track of some subtle invariants
and the idea is to prove:

• the first Sarkisov link σ1 exists,
• if one chooses σ1 appropriately then the invariants improve, and
• the invariants cannot increase infinitely often.

Sarkisov links arise naturally if one plays the 2-ray game. If the
relative Picard number is two then there are only two rays to contract
and this gives a natural way to order the steps of the minimal model
program. One interesting feature of the original proof is that it is a
little tricky to prove the existence of the first Sarkisov link, even if we
assume existence and termination of flips. In the original proof one
picks a linear system on Y and pulls it back to X. There are then
three invariants to keep track of; the singularities of the linear system
on X, as measured by the canonical threshold, the number of divisors
of log discrepancy one (after rescaling to the canonical threshold) and
the pseudo-effective threshold. Even for threefolds it is very hard to
establish that these invariants satisfy the ascending chain condition.

Our approach is quite different. We don’t consider any linear systems
nor do we try to keep track of any invariants. Instead we use one of
the main results of [1], namely finiteness of ample models for kawamata
log terminal pairs (Z,A + B). Here A is a fixed ample Q-divisor and
B ranges over a finite dimensional affine space of Weil divisors. The
closure of the set of divisors B with the same ample model is a disjoint
union of finitely many polytopes and the union of all of these polytopes
corresponds to divisors in the effective cone.

Now if the space of Weil divisors spans the Néron-Severi group then
one can read off which ample model admits a contraction to another
ample model from the combinatorics of the polytopes, (3.3). Further
this property is preserved on taking a general two dimensional slice,
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(3.4). Sarkisov links then correspond to points on the boundary of the
effective cone which are contained in more than two polytopes, (3.7).
To obtain the required factorisation it suffices to simply traverse the
boundary. In other words instead of considering the closed cone of
curves and playing the 2-ray game we look at the dual picture of Weil
divisors and we work inside a carefully chosen two dimensional affine
space. The details of the correct choice of underlying affine space are
contained in §4.

To illustrate some of these ideas, let us consider an easy case. Let
S be the blow up of P2 at two points. Then S is a toric surface and
there are five invariant divisors. The two exceptional divisors, E1 and
E2, the strict transform L of the line which meets E1 and E2, and
finally the strict transform L1 and L2 of two lines, one of which meets
E1 and one of which meets E2. Then the cone of effective divisors is
spanned by the invariant divisors and according to [4] the polytopes we
are looking for are obtained by considering the chamber decomposition
given by the invariant divisors. Since L1 = L + E1 and L2 = L + E2

the cone of effective divisors is spanned by L, E1 and E2. Since −KS is
ample, we can pick an ample Q-divisor A such that KS + A ∼Q 0 and
KS + A + E1 + E2 + L is divisorially log terminal. Let V be the real
vector space of Weil divisors spanned by E1, E2 and L. In this case
projecting LA(V ) from the origin we get
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L

P1 × P1P1 P1

S
L + E1 L + E2

P1 P1F1 F1

P2

. E1 E2.
pt

1
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We have labelled each polytope by the corresponding model. Imagine
going around the boundary clockwise, starting just before the point
corresponding to L. The point L corresponds to a Sarkisov link of
type IVm, the point L+E2 a link of type II, the point E2 a link of type
III, the point E1 a link of type I and the point L+ E1 another link of
type II.

2. Notation and conventions

We work over the field of complex numbers C. An R-Cartier divisor
D on a variety X is nef if D · C ≥ 0 for any curve C ⊂ X. We say
that two R-divisors D1, D2 are R-linearly equivalent (D1 ∼R D2) if
D1 −D2 =

∑
ri(fi) where ri ∈ R and fi are rational functions on X.

We say that an R-Weil divisor D is big if we may find an ample R-
divisor A and an R-divisor B ≥ 0, such that D ∼R A+B. A divisor D
is pseudo-effective, if for any ample divisor A and any rational number
ε > 0, the divisor D + εA is big. If A is a Q-divisor, we say that A
is a general ample Q-divisor if A is ample and there is a sufficiently
divisible integer m > 0 such that mA is very ample and mA ∈ |mA| is
very general.

A log pair (X,∆) is a normal variety X and an R-Weil divisor ∆ ≥ 0
such that KX + ∆ is R-Cartier. We say that a log pair (X,∆) is log
smooth, if X is smooth and the support of ∆ is a divisor with global
normal crossings. A projective birational morphism g : Y −→ X is a log
resolution of the pair (X,∆) if Y is smooth and the strict transform Γ
of ∆ union the exceptional set E of g is a divisor with normal crossings
support. If we write

KY + Γ + E = g∗(KX + ∆) +
∑

aiEi,

where E =
∑
Ei is the sum of the exceptional divisors then the log

discrepancy a(Ei, X,∆) of Ei is ai. By convention the log discrepancy
of any divisor B which is not exceptional is 1 − b, where b is the co-
efficient of B in ∆. The log discrepancy a is the infinimum of the log
discrepancy of any divisor.

A pair (X,∆) is kawamata log terminal if a > 0. We say that the
pair (X,∆) is log canonical if a ≥ 0. We say that the pair (X,∆)
is terminal if the log discrepancy of any exceptional divisor is greater
than one.

We say that a rational map φ : X 99K Y is a rational contraction
if there is a resolution p : W −→ X and q : W −→ Y of φ such that
p and q are contraction morphisms and p is birational. We say that
φ is a birational contraction if q is in addition birational and every
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p-exceptional divisor is q-exceptional. If in addition φ−1 is also a bira-
tional contraction, we say that φ is a small birational map. We refer
the reader to [1] for the definitions of negative and non-positive rational
contractions and of log terminal models.

If C is a closed convex in a finite dimensional real vector space then
C∗ denotes the dual convex set in the dual real vector space.

3. The combinatorics of ample models

We fix some notation. Z is a smooth projective variety, V is a finite
dimensional affine subspace of the real vector space WDivR(Z) of Weil
divisors on Z, which is defined over the rationals, and A ≥ 0 is an
ample Q-divisor on Z. We suppose that there is an element Θ0 of
LA(V ) such that KZ + Θ0 is big and kawamata log terminal.

We recall some definitions and notation from [1]:

Definition 3.1. Let D be an R-divisor on Z.
We say that f : Z 99K X is the ample model of D, if f is a rational

contraction, X is a normal projective variety and there is an ample
divisor H on X such that if p : W −→ Z and q : W −→ X resolve f
and we write p∗D ∼R q

∗H +E, then E ≥ 0 and for every B ∼R p
∗D if

B ≥ 0 then B ≥ E.

Note that if f is birational then q∗E = 0.

Definition 3.2. Let

VA = {Θ |Θ = A+B,B ∈ V },
LA(V ) = {Θ = A+B ∈ VA |KZ + Θ is log canonical and B ≥ 0 },
EA(V ) = {Θ ∈ LA(V ) |KZ + Θ is pseudo-effective }.

Given a rational contraction f : Z 99K X, define

AA,f (V ) = {Θ ∈ EA(V ) | f is the ample model of (Z,Θ) }.
In addition, let CA,f (V ) denote the closure of AA,f (V ).

Theorem 3.3. There are finitely many 1 ≤ i ≤ m rational contrac-
tions fi : Z 99K Xi with the following properties:

(1) {Ai = AA,fi
| 1 ≤ i ≤ m } is a partition of EA(V ). Ai is a finite

union of interiors of rational polytopes. If fi is birational then
Ci = CA,fi

is a rational polytope.
(2) If 1 ≤ i ≤ m and 1 ≤ j ≤ m are two indices such that Aj∩Ci 6=

∅ then there is a contraction morphism fi,j : Xi −→ Xj and a
factorisation fj = fi,j ◦ fi.

Now suppose in addition that V spans the Néron-Severi group of Z.
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(3) Pick 1 ≤ i ≤ m such that a connected component C of Ci inter-
sects the interior of LA(V ). The following are equivalent
• C spans V .
• If Θ ∈ Ai ∩ C then fi is a log terminal model of KZ + Θ.
• fi is birational and Xi is Q-factorial.

(4) If 1 ≤ i ≤ m and 1 ≤ j ≤ m are two indices such that Ci spans
V and Θ is a general point of Aj ∩ Ci which is also a point of
the interior of LA(V ) then Ci and NE(Xi/Xj)

∗×Rk are locally
isomorphic in a neighbourhood of Θ, for some k ≥ 0. Further
the relative Picard number of fi,j : Xi −→ Xj is equal to the
difference in the dimensions of Ci and Cj ∩ Ci.

Proof. (1) is proved in [1].
Pick Θ ∈ Aj ∩ Ci and Θ′ ∈ Ai so that

Θt = Θ + t(Θ′ −Θ) ∈ Ai if t ∈ (0, 1].

By finiteness of log terminal models, cf. [1], we may find a positive
constant δ > 0 and a birational contraction f : Z 99K X which is a log
terminal model of KZ + Θt for t ∈ (0, δ]. Replacing Θ′ = Θ1 by Θδ we
may assume that δ = 1. If we set

∆t = f∗Θt,

then KX +∆t is kawamata log terminal and nef, and f is KZ +Θt non-
positive for t ∈ [0, 1]. As ∆t is big the base point free theorem implies
that KX + ∆t is semiample and so there is an induced contraction
morphism gi : X −→ Xi together with ample divisors H1/2 and H1

such that

KX + ∆1/2 = g∗iH1/2 and KX + ∆1 = g∗iH1.

If we set

Ht = (2t− 1)H1 + 2(1− t)H1/2,

then

KX + ∆t = (2t− 1)(KX + ∆1) + 2(1− t)(KX + ∆1/2)

= (2t− 1)g∗iH1 + 2(1− t)g∗iH1/2

= g∗iHt,

for all t ∈ [0, 1]. As KX + ∆0 is semiample, it follows that H0 is semi-
ample and the associated contraction fi,j : Xi −→ Xj is the required
morphism. This is (2).

Now suppose that V spans the Néron-Severi group of Z. Suppose
that C spans V . Pick Θ in the interior of C ∩Ai. Let f : Z 99K X be a

10



log terminal model of KZ + Θ. It is proved in [1] that f = fj for some
index 1 ≤ j ≤ m and that Θ ∈ Cj. But then Ai∩Aj 6= ∅ so that i = j.

If fi is a log terminal model of KZ + Θ then fi is birational and Xi

is Q-factorial.
Finally suppose that fi is birational and Xi is Q-factorial. Fix Θ ∈

Ai. Pick any divisor B ∈ V such that −B is ample KXi
+ fi∗(Θ + B)

is ample and Θ + B ∈ LA(V ). Then fi is (KZ + Θ + B)-negative and
so Θ +B ∈ Ai. But then Ci spans V . This is (3).

We now prove (4). Let f = fi andX = Xi. As Ci spans V , (3) implies
that f is birational and X is Q-factorial so that f is a Q-factorial weak
log canonical model of KZ + Θ. Suppose that E1, E2, . . . , Ek are the
divisors contracted by f . Pick Bi ∈ V numerically equivalent to Ei.
If we let E0 =

∑
Ei and B0 =

∑
Bi then E0 and B0 are numerically

equivalent. As Θ belongs to the interior of LA(V ) we may find δ > 0
such that KZ + Θ + δE0 and KZ + Θ + δB0 are both kawamata log
terminal. Then f is (KZ +Θ+δE0)-negative and so f is a log terminal
model of KZ + Θ + δE0 and fj is the ample model of KZ + Θ + δE0.
But then f is also a log terminal model of KZ + Θ + δB0 and fj is also
the ample model of KZ + Θ + δB0. In particular Θ + δB0 ∈ Aj ∩ Ci.
As we are supposing that Θ is general in Aj ∩ Ci, in fact f must be a
log terminal model of KZ + Θ. In particular f is (KZ + Θ)-negative.

Pick ε > 0 such that if Ξ ∈ V and ‖Ξ − Θ‖ < ε then Ξ belongs to
the interior of LA(V ) and f is (KZ + Ξ)-negative. Then the condition
that Ξ ∈ Ci is simply the condition that KX + ∆ = f∗(KZ + Ξ) is nef.
Let W be the affine suspace of WDivR(X) given by pushing forward
the elements of V and let

N = {∆ ∈ W |KX + ∆ is nef }.
Given (a1, a2, . . . , ak) ∈ Rk let B =

∑
aiBi and E =

∑
aiEi. If ‖B‖ <

ε then, as Ξ + B is numerically equivalent to Ξ + E, KX + ∆ ∈ N if
and only if KX + ∆ + f∗B ∈ N . In particular Ci is locally isomorphic
to N × Rk.

But since fj is the ample model of KZ + Θ, in fact we can choose ε
sufficiently small so that KX + ∆ is nef if and only if KX + ∆ is nef
over Xj, see §3 of [1]. There is a surjective affine linear map from W
to the space of Weil divisors on X modulo numerical equivalence over
Xj and this induces an isomorphism

N ' NE(X/Xj)
∗ × Rl,

in a neighbourhood of f∗Θ.
Note that KX +f∗Θ is numerically trivial over Xj. As f∗Θ is big and

KX + f∗Θ is kawamata log terminal we may find an ample Q-divisor
11



A′ and a divisor B′ ≥ 0 such that

KX + A′ +B′ ∼R KX + f∗Θ,

is kawamata log terminal. But then

−(KX +B′) ∼R −(KX + ∆′) + A′,

is ample over Xj. Hence fij : X −→ Xj is a Fano fibration and so by
the cone theorem

ρ(Xi/Xj) = dimN .
This is (4). �

Corollary 3.4. If V spans the Néron-Severi group of Z then there is
a Zariski dense open subset U of the Grassmannian G(α, V ) of real
affine subspaces of dimension α such that if [W ] ∈ U and it is defined
over the rationals then W satisfies (1-4) of (3.3).

Proof. Let U ⊂ G(α, V ) be the set of real affine subspaces W of V of
dimension α, which contain no face of any Ci or LA(V ). In particular
the interior of LA(W ) is contained in the interior of LA(V ). (3.3)
implies that (1-2) always hold for W and (1-4) hold for V and so (3)
and (4) clearly hold for W ∈ U . �

From now on in this section we assume that V has dimension two
and satisfies (1-4) of (3.3).

Lemma 3.5. Let f : Z 99K X and g : Z 99K Y be two rational con-
tractions such that CA,f is two dimensional and O = CA,f ∩ CA,g is one
dimensional. Assume that ρ(X) ≥ ρ(Y ) and that O is not contained
in the boundary of LA(V ). Let Θ be an interior point of O and let
∆ = f∗Θ.

Then there is a rational contraction π : X 99K Y which factors g =
π ◦ f and either

(1) ρ(X) = ρ(Y ) + 1 and π is a (KX + ∆)-trivial morphism, in
which case, either
(a) π is birational and O is not contained in the boundary of
EA(V ), in which case, either

(i) π is a divisorial contraction and O 6= CA,g, or
(ii) π is a small contraction and O = CA,g, or

(b) π is a Mori fibre space and O = CA,g is contained in the
boundary of EA(V ), or

(2) ρ(X) = ρ(Y ), in which case, π is a (KX+∆)-flop and O 6= CA,g
is not contained in the boundary of EA(V ).
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Proof. By assumption f is birational andX is Q-factorial. Let h : Z 99K
W be the ample model corresponding to KZ+Θ. Since Θ is not a point
of the boundary of LA(V ) if Θ belongs to the boundary of EA(V ) then
KZ + Θ is not big and so h is not birational. As O is a subset of
both CA,f and CA,g there are morphisms p : X −→ W and q : Y −→ W
of relative Picard number at most one. There are therefore only two
possibilities:

(1) ρ(X) = ρ(Y ) + 1, or
(2) ρ(X) = ρ(Y ).

Suppose we are in case (1). Then q is the identity and π = p : X −→
Y is a contraction morphism such that g = π ◦ f . Suppose that π is
birational. Then h is birational and O is not contained in the boundary
of EA(V ). If π is divisorial then Y is Q-factorial and so O 6= CA,g. If
π is a small contraction then Y is not Q-factorial and so CA,g = O is
one dimensional. If π is a Mori fibre space then O is contained in the
boundary of EA(V ) and O = CA,g.

Now suppose we are in case (2). By what we have already proved
ρ(X/W ) = ρ(Y/W ) = 1. p and q are not divisorial contractions as O
is one dimensional. p and q are not Mori fibre spaces as O cannot be
contained in the boundary of EA(V ). Hence p and q are small and the
rest is clear. �

Lemma 3.6. Let f : W 99K X be a birational contraction between
projective Q-factorial varieties. Suppose that (W,Θ) and (W,Φ) are
both kawamata log terminal.

If f is the ample model of KW + Θ and Θ−Φ is ample then f is the
result of running the (KW + Φ)-MMP.

Proof. By assumption we may find an ample divisor H on W such that
KW + Φ + H is kawamata log terminal and ample and a positive real
number t < 1 such that tH ∼R Θ − Φ. Note that f is the ample
model of KW + Φ + tH. Pick any s < t sufficiently close to t so
that f is (KW + Φ + sH)-negative and yet f is still the ample model of
KW +Φ+sH. Then f is the unique log terminal model of KW +Φ+sH.
In particular if we run the (KW+Φ)-MMP with scaling of H then, when
the value of the scalar is s, the induced rational map is f . �

We now adopt some more notation for the rest of this section. Let
Θ = A+B be a point of the boundary of EA(V ) in the interior of LA(V ).
Enumerate T1, T2, . . . , Tk the polytopes Ci of dimension two which con-
tain Θ. Possibly re-ordering we may assume that the intersections O0

and Ok of T1 and Tk with the boundary of EA(V ) and Oi = Ti∩Ti+1 are
13



all one dimensional. Let fi : Z 99K Xi be the rational contractions as-
sociated to Ti and gi : Z 99K Si be the rational contractions associated
to Oi. Set f = f1 : Z 99K X, g = fk : Z 99K Y , X ′ = X2, Y

′ = Xk−1.
Let φ : X −→ S = S0, ψ : Y −→ T = Sk be the induced morphisms
and let Z 99K R be the ample model of KZ + Θ.
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T1

O0

T2

O1

· · ·Tk−1

Ok−1

Tk

Ok

Θ

1
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Theorem 3.7. Suppose Φ is any divisor such that KZ+Φ is kawamata
log terminal and Θ− Φ is ample.

Then φ and ψ are two Mori fibre spaces which are outputs of the
(KZ+Φ)-MMP which are connected by a Sarkisov link if Θ is contained
in more than two polytopes.

Proof. We assume for simplicity of notation that k ≥ 3. The case
k ≤ 2 is similar and we omit it. The incidence relations between the
corresponding polytopes yield a commutative heptagon,

X ′ - Y ′

X

p

?
Y

q

?

S

φ

?
T

ψ

?

R

t
�

s -

where p and q are birational maps. φ and ψ are Mori fibre spaces by
(3.5). Pick Θ1 and Θk in the interior of T1 and Tk sufficiently close to
Θ so that Θ1 −Φ and Θk −Φ are ample. As X and Y are Q-factorial,
(3.6) implies that φ and ψ are possible outcomes of the (KZ+Φ)-MMP.
Let ∆ = f∗Θ. Then KX + ∆ is numerically trivial over R.

Note that there are contraction morphisms Xi −→ R and that
ρ(Xi/R) ≤ 2. If ρ(Xi/R) = 1 then Xi −→ R is a Mori fibre space. By
(3.3) there is facet of Ti which is contained in the boundary of EA(V )
and so i = 1 or k. Thus Xi 99K Xi+1 is a flop, 1 < i < k − 1. Since
ρ(X ′/R) = 2 it follows that either p is a divisorial contraction and s is
the identity or p is a flop and s is not the identity. We have a similar
dichotomy for q : Y ′ 99K Y and t : T −→ R.

There are then four cases. If s and t are the identity then p and q
are divisorial extractions and we have a link of type II.

If s is the identity and t is not then p is a divisorial extraction and q
is a flop and we have a link of type I. Similarly if t is the identity and
s is not then q is a divisorial extraction and p is a flop and we have a
link of type III.

Finally suppose neither s nor t is the identity. Then both p and q are
flops. Suppose that s is a divisorial contraction. Let F be the divisor
contracted by s and let E be its inverse image in X. Since φ has relative
Picard number one φ∗(F ) = mE, for some positive integer m. Then
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KX + ∆ + δE is kawamata log terminal for any δ > 0 sufficiently small
and E = B(KX +∆+δE/R). If we run the (KX +∆+δE)-MMP over
R then we end with a birational contraction X 99K W , which is a Mori
fibre space over R. Since ρ(X/R) = 2, W = Y and we have a link of
type III, a contradiction. Similarly t is never a divisorial contraction.
If s is a Mori fibre space then R is Q-factorial and so t must be a Mori
fibre space as well. This is a link of type IVm. If s is small then R is
not Q-factorial and so t is small as well. Thus we have a link of type
IVs. �

4. Proof of (1.3)

Lemma 4.1. Let φ : X −→ S and ψ : Y −→ T be two Sarkisov re-
lated Mori fibre spaces corresponding to two Q-factorial kawamata log
terminal projective varieties (X,∆) and (Y,Γ).

Then we may find a smooth projective variety Z, two birational con-
tractions f : Z 99K X and g : Z 99K Y , a kawamata log terminal pair
(Z,Φ), an ample Q-divisor A on Z and a two dimensional rational
affine subspace V of WDivR(Z) such that

(1) if Θ ∈ LA(V ) then Θ− Φ is ample,
(2) AA,φ◦f and AA,ψ◦g are not contained in the boundary of LA(V ),
(3) V satisfies (1-4) of (3.3),
(4) CA,f and CA,g are two dimensional, and
(5) CA,φ◦f and CA,ψ◦g are one dimensional.

Proof. By assumption we may find a Q-factorial kawamata log terminal
pair (Z,Φ) such that f : Z 99K X and g : Z 99K Y are both outcomes
of the (KZ + Φ)-MMP.

Let p : W −→ Z be any log resolution of (Z,Φ) which resolves the
indeterminancy of f and g. We may write

KW + Ψ = p∗(KZ + Φ) + E ′,

where E ′ ≥ 0 and Ψ ≥ 0 have no common components, E ′ is excep-
tional and p∗Ψ = Φ. Pick −E ample over Z with support equal to the
full exceptional locus such that KW + Ψ +E is kawamata log terminal.
As p is (KW + Ψ +E)-negative, KZ + Φ is kawamata log terminal and
Z is Q-factorial, the (KW + Ψ + E)-MMP over Z terminates with the
pair (Z,Φ) by (3.6). Replacing (Z,Φ) with (W,Ψ+E), we may assume
that (Z,Φ) is log smooth and f and g are morphisms.

Pick general ample Q-divisorsA,H1, H2, . . . , Hk on Z such thatH1, H2, . . . , Hk

generate the Néron-Severi group of Z. Let

H = A+H1 +H2 + · · ·+Hk.
17



Pick sufficiently ample divisors C on S and D on T such that

−(KX + ∆) + φ∗C and − (KY + Γ) + ψ∗D,

are both ample. Pick a rational number 0 < δ < 1 such that

−(KX + ∆ + δf∗H) + φ∗C and − (KY + Γ + δg∗H) + ψ∗D,

are both ample and KZ + Φ + δH is both f and g-negative. Replacing
H by δH we may assume that δ = 1. Now pick a Q-divisor Φ0 ≤ Φ
such that A+ (Φ0 − Φ),

−(KX + f∗Φ0 + f∗H) + φ∗C and − (KY + g∗Φ0 + g∗H) + ψ∗D,

are all ample and KZ + Φ0 +H is both f and g-negative.
Pick general ample Q-divisors F1 ≥ 0 and G1 ≥ 0

F1 ∼Q −(KX+f∗Φ0+f∗H)+φ∗C and G1 ∼Q −(KY +g∗Φ0+g∗H)+ψ∗D.

Then

KZ + Φ0 +H + F +G,

is kawamata log terminal, where F = f ∗F1 and G = g∗G1.
Let V0 be the affine subspace of WDivR(Z) which is the translate by

Φ0 of the vector subspace spanned by H1, H2, . . . , Hk, F,G. Suppose
that Θ = A+B ∈ LA(V0). Then

Θ− Φ = (A+ Φ0 − Φ) + (B − Φ0),

is ample, as B−Φ0 is nef by definition of V0. Note that Φ0 +F +H ∈
AA,φ◦f (V0), Φ0 +G+H ∈ AA,ψ◦g(V0), and f , respectively g, is a weak
log canonical model of KZ +Φ0 +F +H, respectively KZ +Φ0 +G+H.
(3.3) implies that V0 satisfies (1-4) of (3.3).

Since H1, H2, . . . , Hk generate the Néron-Severi group of Z we may
find constants h1, h2, . . . , hk such that G is numerically equivalent to∑
hiHi. Then Φ0 + F + δG + H − δ(

∑
hiHi) is numerically equiv-

alent to Φ0 + F + H and if δ > 0 is small enough Φ0 + F + δG +
H − ∑

δhiHi ∈ LA(V0). Thus AA,φ◦f (V0) is not contained in the
boundary of LA(V0). Similarly AA,ψ◦g(V0) is not contained in the
boundary of LA(V0). In particular AA,f (V0) and AA,g(V0) span V0

and AA,φ◦f (V0) and AA,ψ◦g(V0) span affine hyperplanes of V0, since
ρ(X/S) = ρ(Y/T ) = 1.

Let V1 be the translate by Φ0 of the two dimensional vector space
spanned by F + H − A and F + G − A. Let V be a small general
perturbation of V1, which is defined over the rationals. Then (2) holds.
(1) holds, as it holds for any two dimensional subspace of V0, (3) holds
by (3.4) and this implies that (4) and (5) hold. �
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Proof of (1.3). Pick (Z,Φ), A and V given by (4.1). Pick points Θ0 ∈
AA,φ◦f (V ) and Θ1 ∈ AA,ψ◦g(V ) belonging to the interior of LA(V ).
As V is two dimensional, removing Θ0 and Θ1 divides the boundary
of EA(V ) into two parts. The part which consists entirely of divisors
which are not big is contained in the interior of LA(V ). Consider
tracing this boundary from Θ0 to Θ1. Then there are finitely many
2 ≤ i ≤ l points Θi which are contained in more than two polytopes
CA,fi

(V ). (3.7) implies that for each such point there is a Sarkisov link
σi : Xi 99K Yi and σ is the composition of these links. �
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