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Abstract. Let L be a nef line bundle on a projective scheme X in positive characteris-
tic. We prove that the augmented base locus of L is equal to the union of the irreducible
closed subsets V of X such that L|V is not big. For a smooth variety in characteristic
zero, this was proved by Nakamaye using vanishing theorems.

1. Introduction

Let X be a projective scheme over an algebraically closed field k, and L a line
bundle on X. The base locus Bs(L) of L is the closed subset of X consisting of those
x ∈ X such that every section of L vanishes at x. It is easy to see that if m1 and m2 are
positive integers such that m1 divides m2, then Bs(Lm2) ⊆ Bs(Lm1). It follows from the
Noetherian property that Bs(Lm) is independent of m if m is divisible enough; this is the
stable base locus SB(L) of L.

The stable base locus is a very interesting geometric invariant of L, but it is quite
subtle: for example, there are numerically equivalent Cartier divisors whose stable base
loci are different. Nakamaye introduced in [5] the following upper approximation of SB(L),
the augmented base locus B+(L). If L ∈ Pic(X) and A ∈ Pic(X) is ample, then

B+(L) := SB(Lm ⊗ A−1),

for m � 0. It is easy to check that this is well-defined, it is independent of A, and only
depends on the numerical equivalence class of L. The following is our main result.

Theorem 1.1. Let X be a projective scheme over an algebraically closed field of positive
characteristic. If L is a nef line bundle on X, then B+(L) is equal to L⊥, the union of all
irreducible closed subsets V of X such that L|V is not big.

We note that since L is nef, for an irreducible closed subset V of X, the restriction

L|V is not big if and only if V has positive dimension and (L|dim(V )
V ) = 0. When X is

a smooth projective variety in characteristic zero, the above theorem was proved in [5],
making use of the Kawamata-Viehweg vanishing theorem. It is an interesting question
whether the result holds in characteristic zero when the variety is singular.
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The proof of Theorem 1.1 makes use in an essential way of the Frobenius morphism.
The following is a key ingredient in the proof.

Theorem 1.2. Let X be a projective scheme over an algebraically closed field of positive
characteristic. If L is a nef line bundle on X and D is an effective Cartier divisor such
that L(−D) is ample, then B+(L) = B+(L|D).

In the proofs of the above results we make use of techniques introduced by Keel
in [2]. In fact, if we replace in Theorem 1.2 the two augmented base loci by the corre-
sponding stable base loci, we recover one of the main results in [2]. We give a somewhat
simplified proof of this result (see Corollary 3.6 below), and this proof extends to give
also Theorem 1.2.

In the next section we recall some basic facts about augmented base loci. The proofs
of Theorems 1.2 and 1.1 are then given in §3.

1.1. Acknowledgment. We are indebted to Rob Lazarsfeld for discussions that led to
some of the results in this paper. We would also like to thank Seán Keel for several very
useful discussions and the referee for some useful comments.

2. Augmented base loci and big line bundles

In this section we review some basic facts about the augmented base locus. This
notion is usually defined for integral schemes. However, even if one is only interested in
this restrictive setting, for the proof of Theorem 1.1 we need to also consider possibly
reducible, or even non-reduced schemes. We therefore define the augmented base locus in
the more general setting that we will need. Its general properties follow as in the case of
integral schemes, for which we refer to [1].

Let X be a projective scheme over an algebraically closed field k. If L is a line bundle
on X and s ∈ H0(X,L), then we denote by Z(s) the zero-locus of s (with the obvious
scheme structure). Note that Z(s) is defined by a locally principal ideal, but in general it
is not an effective Cartier divisor (if X is reduced, then Z(s) is an effective Cartier divisor
if and only if no irreducible component of X is contained in Z(s)). The base locus of L is
by definition the closed subset of X given by

Bs(L) :=
⋂

s∈H0(X,L)

Z(s)red.

If m is a positive integer and s ∈ H0(X,L), then it is clear that Z(s)red = Z(s⊗m)red,
hence Bs(Lm) ⊆ Bs(L). More generally, we have Bs(Lmr) ⊆ Bs(Lr) for every m, r ≥ 1,
hence by the Noetherian property there is m0 ≥ 1 such that

SB(L) :=
⋂
r≥1

Bs(Lr)

is equal to Bs(Lm) whenever m is divisible by m0. The closed subset SB(L) of X is the
stable base locus of L. It follows by definition that SB(L) = SB(Lr) for every r ≥ 1.
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Since X is projective, every line bundle is of the form OX(D), for some Cartier
divisor D (see [4]). We will sometimes find it convenient to work with Cartier divisors,
rather than line bundles. Let Cart(X)Q := Cart(X) ⊗Z Q denote the group of Cartier
Q-divisors and Pic(X)Q := Pic(X) ⊗Z Q. For a Cartier divisor D , we put SB(D) =
SB(OX(D)). Since SB(D) = SB(rD) for every r ≥ 1, the definition extends in the
obvious way to Cart(X)Q.

Given a Cartier Q-divisor D, the augmented base locus of D is

B+(D) :=
⋂
A

SB(D − A),

where the intersection is over all ample Cartier Q-divisors on X. It is easy to see that if
A1 and A2 are ample Cartier Q-divisors such that A1−A2 is ample, then SB(D−A2) ⊆
SB(D − A1). It follows from the Noetherian property that there is an ample Cartier Q-
divisor A such that B+(D) = SB(D − A). Furthermore, in this case if A′ is ample and
A−A′ is ample, too, then B+(D) = SB(D −A′). It is then clear that if H is any ample
Cartier divisor on X, then for m� 0 we have

B+(D) = SB

(
D − 1

m
H

)
= SB(mD −H).

The following properties of the augmented base locus are direct consequences of the
definition (see [1, §1]).

1) For every Cartier Q-divisor D, we have SB(D) ⊆ B+(D).
2) If D1 and D2 are numerically equivalent Cartier Q-divisors, then B+(D1) =

B+(D2).

If D is a Cartier divisor and L = OX(D), we also write B+(L) for B+(D).

Lemma 2.1. If L is a line bundle on the projective scheme X, and Y is a closed subscheme
of X, then

i) SB(L|Y ) ⊆ SB(L).
ii) B+(L|Y ) ⊆ B+(L).

Proof. The first assertion follows from the fact that if s ∈ H0(X,L), then Z(s|Y ) ⊆ Z(s),
hence Bs(Lm|Y ) ⊆ Bs(Lm) for every m ≥ 1. For the second assertion, fix an ample line
bundle A on X, and let m� 0 be such that B+(L) = SB(Lm⊗A−1). Since A|Y is ample
on Y , using i) and the definition of the augmented base locus of L|Y , we obtain

B+(L|Y ) ⊆ SB(Lm|Y ⊗ A−1|Y ) ⊆ SB(Lm ⊗ A−1) = B+(L).

�

Recall that a line bundle L on an integral n-dimensional scheme X is big if there
is C > 0 such that h0(X,Lm) ≥ Cmn for m � 0. Equivalently, this is the case if and
only if there are Cartier divisors A and E, with A ample and E effective, such that
Lm ' OX(A + E) for some m ≥ 1. We refer to [3, §2.2] for basic facts about big line
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bundles on integral schemes. The following lemma is well-known, but we include a proof
for completeness.

Lemma 2.2. Let X be an n-dimensional projective scheme and L a line bundle on X.
For every coherent sheaf F on X, there is C > 0 such that h0(X,F ⊗ Lm) ≤ Cmn for
every m ≥ 1.

Proof. Let us write L ' A ⊗ B−1 for suitable very ample line bundles A and B. For
every m ≥ 1, the line bundle Bm is very ample. By choosing a section sm ∈ H0(X,Bm)
such that Z(sm) does not contain any of the associated subvarieties of F , we obtain an
inclusion H0(X,F ⊗ Lm) ↪→ H0(X,F ⊗ Am). Since h0(X,F ⊗ Am) = P (m) for m � 0,
where P is a polynomial of degree ≤ n, we obtain the assertion in the lemma. �

If X is reduced, and A, D are Cartier divisors on X with A ample and D effective,
then the restriction of OX(A+D) to every irreducible component Y of X is big (note that
the restriction D|Y is well-defined and gives an effective divisor on Y ). As a consequence
of the next lemma, we will obtain a converse to this statement.

Lemma 2.3. Let X be a reduced projective scheme. Given line bundles L and A on X,
with A ample, if m � 0 and s ∈ H0(X,Lm ⊗ A−1) is general, then for every irreducible
component Y of X such that L|Y is big, we have Y 6⊆ Z(s).

Note that since A is ample, if s ∈ H0(X,Lm⊗A−1) and Y ′ is an irreducible compo-
nent of X (considered with the reduced scheme structure) such that L|Y ′ is not big, then
Y ′ ⊆ Z(s).

Proof of Lemma 2.3. Suppose that Y is an irreducible component of X (considered with
the reduced structure) such that L|Y is big, but such that for infinitely many m we have
Y ⊆ Z(s) for every s ∈ H0(X,Lm ⊗ A−1). If W is the union of the other irreducible
components of X, also considered with the reduced scheme structure, then we have an
exact sequence

0 −→ OX −→ OY ⊕OW −→ OY ∩W −→ 0,

where Y ∩W denotes the (possibly non-reduced) scheme-theoretic intersection of Y and
W . After tensoring with Lm ⊗ A−1 and taking global sections, this induces the exact
sequence

0 −→ H0(X,Lm ⊗ A−1) −→ H0(Y, Lm ⊗ A−1|Y )⊕H0(W,Lm ⊗ A−1|W )

−→ H0(Y ∩W,Lm ⊗ A−1|Y ∩W ).

By assumption, the map H0(X,Lm ⊗ A−1) −→ H0(Y, Lm ⊗ A−1|Y ) is zero for infinitely
many m, in which case the above exact sequence implies

(1) h0(Y, Lm ⊗ A−1|Y ) ≤ h0(T, Lm ⊗ A−1|T ).

Let n = dim(Y ). Since dim(T ) ≤ n−1, it follows from Lemma 2.2 that we can find C > 0
such that

h0(T, Lm ⊗ A−1|T ) ≤ Cmn−1
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for all m. On the other hand, since L|Y is big, it is easy to see that there is C ′ > 0 such
that h0(Y, Lm ⊗ A−1|Y ) ≥ C ′mn for all m� 0. These two estimates contradict (1) when
m� 0. �

Corollary 2.4. Let L be a line bundle on the reduced projective scheme X. If the restric-
tion of L to every irreducible component of X is big, then for every ample line bundle
A and every m � 0, the zero locus of a general section in H0(X,Lm ⊗ A−1) defines an
effective Cartier divisor on X.

3. Main results

In this section we assume that all our schemes are of finite type over an algebraically
closed field k of characteristic p > 0. For such a scheme X we denote by F = FX the
absolute Frobenius morphism of X. This is the identity on the topological space, and it
takes a section f of OX to fp. Note that F is a finite morphism of schemes (not preserving
the structure of schemes over k). We will also consider the iterates F e of F , for e ≥ 1.

Let us recall some basic facts concerning pull-back of line bundles, sections, and
subschemes. Suppose that L is a line bundle on X and Z is a closed subscheme of X.

1) There is a canonical isomorphism of line bundles (F e)∗(L) ' Lpe .
2) The scheme-theoretic inverse image Z [e] := (F e)−1(Z) is a closed subscheme of X

defined by the ideal I
[pe]
Z , such that if IZ is locally generated by (fi)i, then I

[pe]
Z

is defined by (fpe

i )i. In particular, if Y is another closed subscheme of X, having
the same support as Z, there is some e such that Y is a subscheme of Z [e].

3) If s ∈ H0(Z,L|Z), then (F e)∗(s) is a section in H0(Z [e], (F e)∗(L)|Z[e]), whose
restriction to Z gets identified with s⊗p

e ∈ H0(Z,Lpe|Z).

Lemma 3.1. If X is a projective scheme over k and L is a line bundle on X, then

i) SB(L) = SB(L|Xred
).

ii) B+(L) = B+(L|Xred
).

Proof. The inclusions “⊇” in both i) and ii) follow from Lemma 2.1. Let us prove the
reverse implication in i). Let m be such that SB(L|Xred

) = Bs(Lm|Xred
). Given x ∈ X,

suppose that x 6∈ Bs(Lm|Xred
). Consider s ∈ H0(Xred, L

m|Xred
) such that x 6∈ Z(s). Let J

denote the ideal defining Xred, and let e� 0 be such that J [pe] = 0. In this case (F e)∗(s)
gives a section in H0(X,Lmpe) whose restriction to Xred is equal to s⊗p

e
. In particular,

x 6∈ Z((F e)∗(s)). We conclude that x 6∈ Bs(Lmpe), hence x 6∈ SB(L). This completes the
proof of i).

Let A be an ample line bundle on X, and let m � 0 be such that B+(L|Xred
) =

SB(Lm ⊗ A−1|Xred
) and B+(L) = SB(Lm ⊗ A−1). The assertion in ii) now follows by

applying i) to Lm ⊗ A−1. �
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The following is a key result from [2]. We give a different proof, that has the ad-
vantage that it will apply also when replacing the stable base loci by the augmented base
loci.

Theorem 3.2. If L is a nef line bundle on a projective scheme X, and D is an effective
Cartier divisor on X such that L(−D) is ample, then

SB(L) = SB(L|D).

We isolate the key point in the argument in a lemma that we will use several times.

Lemma 3.3. Let A be an ample line bundle on a projective scheme X, and D an effective
Cartier divisor on X. If L := A⊗OX(D) is nef, then for every m ≥ 1 and every section
s ∈ H0(D,Lm|D), there is e ≥ 1 such that s⊗p

e ∈ H0(D,Lmpe|D) is the restriction of a
section in H0(X,Lmpe).

Proof. Consider the short exact sequence

0 −→ Lm(−D) −→ Lm −→ Lm|D −→ 0.

Pulling-back by F e gives the exact sequence

0 −→ Lmpe(−peD) −→ Lmpe −→ Lmpe|peD −→ 0.

Note that Lm(−D) = Lm−1 ⊗ L(−D) is ample, since L is nef and L(−D) is ample. By
asymptotic Serre vanishing, we conclude that for e� 0 we have H1(X,Lmpe(−peD)) = 0,
and therefore the restriction map

H0(X,Lmpe) −→ H0(X,Lmpe|peD)

is surjective. Therefore there is t ∈ H0(X,Lmpe) such that t|peD = (F e)∗(s). In this case
the restriction of t to D is equal to s⊗p

e
. �

Proof of Theorem 3.2. It follows from Lemma 2.1 that it is enough to show that if P is a
point on X that does not lie in SB(L|D), then P does not lie in SB(L). If P does not lie
on D, then it is clear that P 6∈ SB(L), since A := L ⊗ OX(−D) is ample. On the other
hand, if P ∈ D, let m ≥ 1 be such that there is a section s ∈ H0(D,Lm|D), with P 6∈ Z(s).
Since Z(s⊗p

e
)red = Z(s)red, in order to show that P 6∈ SB(L) it is enough to show that

for some e, the section s⊗p
e

lifts to a section in H0(X,Lmpe). This is a consequence of
Lemma 3.3. �

Corollary 3.4. Let X be a reduced projective scheme. If L and A are line bundles on X,
with A ample and L nef, and Z = Z(s) for some s ∈ H0(X,L ⊗ A−1), then SB(L) =
SB(L|Z).

Proof. Let X ′ be the union of the irreducible components of X that are contained in Z,
and let X ′′ be the union of the other components (we consider on both X ′ and X ′′ the
reduced scheme structures). If X ′ = X, then Z = X and there is nothing to prove, while if
X ′ = ∅, then Z is an effective Cartier divisor and the assertion follows from Theorem 3.2.
Therefore we may and will assume that both X ′ and X ′′ are non-empty.
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Using the fact that A is ample and the definition of the stable base locus, we obtain
SB(L) ⊆ SB(L ⊗ A−1) ⊆ Z. As in the proof of Theorem 3.2, we see that it is enough
to show that if t ∈ H0(Z,Lm|Z) for some m, then there is e ≥ 1 such that t⊗p

e
can be

lifted to a section in H0(X,Lmpe). By applying Lemma 3.3 to X ′′, D = Z ∩X ′′ and the
ample line bundle L|X′′ ⊗ OX′′(−D), we see that for some e we can lift t⊗p

e|X′′∩Z to a
section t′′ ∈ H0(X ′′, Lmpe|X′′). Since X ′ ⊆ Z, the restriction of t′′ to X ′′ ∩X ′ is equal to
t⊗p

e|X′∩X′′ . Therefore we can glue t⊗p
e|X′ with t′′ to get a section in H0(X,Lmpe) lifting

t⊗p
e
. �

Recall that if L is a nef line bundle on the projective scheme X, then the exceptional
locus L⊥ is the union of all closed irreducible subsets V ⊆ X such that L|V is not big.

Since L is nef, this condition is equivalent to the fact that dim(V ) > 0 and (L|dim(V )
V ) = 0.

Remark 3.5. It is easy to see by induction on dim(X) that L⊥ is a closed subset of
X. Note first that if X1, . . . , Xr are the irreducible components of X (with the reduced
scheme structures), then clearly L⊥ = (L|X1)

⊥ ∪ . . . ∪ (L|Xr)
⊥. Therefore we may assume

that X is integral. In this case, if L is not big, then L⊥ = X. Otherwise, we can find
an effective Cartier divisor D and a positive integer m such that Lm(−D) is ample. It is
clear that if L|V is not big, then V ⊆ D. Therefore L⊥ = (L|D)⊥, hence it is closed by
induction.

The following result is one of the main results from [2]. As we will see, this is an
easy consequence of Corollary 3.4.

Corollary 3.6. If L is a nef line bundle on the projective scheme X, then SB(L) =
SB(L|L⊥).

Proof. Arguing by Noetherian induction, we may assume that the result holds for every
proper closed subscheme of X. Since L⊥ = (L|Xred

)⊥, it follows from Lemma 3.1 that we
may assume that X is reduced. If the restriction of L to every irreducible component of
X is not big, then L⊥ = X, and there is nothing to prove. From now on we assume that
this is not the case, and let X ′ and X ′′ be the union of those irreducible components of X
on which the restriction of L is not (respectively, is) big. On both X ′ and X ′′ we consider
the reduced scheme structures. Note that by assumption X ′′ is nonempty.

Consider an ample line bundle A on X. It follows from Lemma 2.3 that if m � 0,
there is a section s ∈ H0(X,Lm ⊗ A−1) such that no irreducible component of X ′′ is
contained in Z = Z(s) (but such that X ′ ⊆ Z). It is clear that if V is an irreducible
closed subset of X such that L|V is not big, then V ⊆ Z. Therefore L⊥ = (L|Z)⊥.
Since X ′′ is nonempty, it follows that Z 6= X, hence the inductive assumption gives
SB(L|Z) = SB(L|L⊥). On the other hand, Corollary 3.4 gives

SB(L) = SB(Lm) = SB(Lm|Z) = SB(L|Z),

which completes the proof. �

We can now prove the second theorem stated in the Introduction.
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Proof of Theorem 1.2. We suitably modify the argument in the proof of Theorem 3.2.
By Lemma 2.1, it is enough to prove the inclusion B+(L) ⊆ B+(L|D). Furthermore,
Lemma 3.1 implies B+(L|D) = B+(L|2D) = B+(L2|2D) and we have B+(L) = B+(L2),
hence we may replace L by L2 and D by 2D to assume that L(−D) ' A2, for some ample
line bundle A.

Suppose that P is a point that does not lie on B+(L|D). If P 6∈ D, since L(−D)
is ample, it follows that P 6∈ B+(L). Hence from now on we may assume that P ∈ D.
By assumption, for m � 0 we have P 6∈ SB(Lm ⊗ A−1|D). Let us choose r ≥ 1 such
that there is t ∈ H0(D,Lrm ⊗ A−r|D) with P 6∈ Z(t). Furthermore, since we may take r
large enough, we may assume that Ar−1|D is globally generated. Let t′ ∈ H0(D,Ar−1|D)
be such that P 6∈ Z(t′). Therefore t⊗ t′ ∈ H0(D,Lrm ⊗ A−1) is such that P 6∈ Z(t⊗ t′).
Note that Lrm⊗A−1(−D) ' Lrm−1⊗A is ample, since L is nef and A is ample. Therefore

Lemma 3.3 implies that for some e ≥ 1, the section t⊗p
e ⊗ t′⊗p

e

can be lifted to a section
in H0(X,Lrmpe ⊗ A−p

e
), and this section clearly does not vanish at P . This shows that

P 6∈ B+(L), and completes the proof of the theorem. �

Corollary 3.7. Let X be a reduced projective scheme. If L and A are line bundles on X,
with L nef and A ample, and Z = Z(s) for some s ∈ H0(X,L ⊗ A−1), then B+(L) =
B+(L|Z).

Proof. We modify slightly the argument in the proof of Theorem 1.2, along the lines in
the proof of Corollary 3.4. By Lemma 2.1, it is enough to show that if P 6∈ B+(L|Z), then
P 6∈ B+(L). Let X ′ be the union of the irreducible components of X that are contained in
Z, and X ′′ the union of the other components, both considered with the reduced scheme
structures. If X ′ = X, then Z = X and there is nothing to prove, while if X ′ = ∅, then Z
is an effective Cartier divisor, and the assertion follows from Theorem 1.2. From now on,
we assume that both X ′ and X ′′ are nonempty.

After replacing L and A by L2 and A2, respectively, and s by s⊗2, we may assume
that A = B2, for some ample line bundle B (note that B+(L|Z(s)) = B+(L|Z(s⊗2)) by
Lemma 3.1). Suppose that P 6∈ B+(L|Z). If P 6∈ Z, then P 6∈ SB(L ⊗ A−1); since A is
ample, we have B+(L) ⊆ SB(L⊗A−1), hence P 6∈ B+(L). From now on we assume that
P lies in Z.

Arguing as in the proof of Theorem 1.2, we find a section

t⊗ t′ ∈ H0(Z,Lrm ⊗ A−1|Z)

such that P 6∈ Z(t ⊗ t′), and we use Lemma 3.3 to deduce that for some e ≥ 1, we can

lift t⊗p
e ⊗ t′p

e

|Z∩X′′ to a section t′′ ∈ H0(X ′′, Lrmpe ⊗A−p
e|X′′). Recall that X ′ ⊆ Z, hence

X ′ ∩ X ′′ ⊆ Z ∩ X ′′, and therefore t′′|X′∩X′′ = t⊗p
e ⊗ t′⊗p

e

|X′∩X′′ . Since X is reduced, it

follows that we can glue t′′ and t⊗p
e ⊗ t′⊗p

e

|X′ to a section in H0(X,Lrmpe ⊗ A−p
e
) that

does not vanish at P . Therefore P 6∈ B+(L), which concludes the proof. �

We now give the proof of the characteristic p version of Nakamaye’s theorem.
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Proof of Theorem 1.1. We argue as in the proof of Corollary 3.6. By Noetherian induction,
we may assume that the theorem holds for every proper closed subscheme of X. Lemma 3.1
implies B+(L) = B+(L|Xred

), and since L⊥ = (L|Xred
)⊥, we may assume that X is reduced.

Note that the inclusion L⊥ ⊆ B+(L) is clear: if V is a closed irreducible subset of
X that is not contained in B+(L), then we can find an ample line bundle A, a positive
integer m, and s ∈ H0(X,Lm ⊗ A−1) such that V 6⊆ Z(s). Therefore s|V gives a nonzero
section of Lm⊗A−1|V , hence L|V is big. This shows that it is enough to prove the inclusion
B+(L) ⊆ L⊥.

If the restriction of L to all the irreducible components of X is not big, then L⊥ = X,
and the assertion is clear. Otherwise, let X ′ denote the union of the irreducible components
of X on which the restriction of L is not big, and X ′′ the union of the other components,
both with the reduced scheme structures. It follows from Lemma 2.3 that given any ample
line bundle A, we can find m ≥ 1 and a section s ∈ H0(X,Lm⊗A−1) whose restriction to
every component of X ′′ is nonzero (and whose restriction to X ′ is zero). Let Z = Z(s). By
assumption X ′′ is nonempty, and therefore Z is a proper closed subscheme of X, hence by
the inductive assumption we have B+(L|Z) = (L|Z)⊥. If V ⊆ X is an irreducible closed
subset such that L|V is not big, then V ⊆ Z, hence L⊥ = (L|Z)⊥. On the other hand,
Corollary 3.7 gives B+(L) = B+(L|Z), and we conclude that B+(L) = L⊥. �
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