LOG ABUNDANCE THEOREM FOR THREEFOLDS.
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§1 INTRODUCTION

An important step in the classification of algebraic varieties is to find a good model X in
a birational equivalence class. In Mori’s minimal model program, we take X to be either a
minimal model, or a Mori fibre space.

Now the most important property of a minimal model is that K x, the class of the canonical
divisor, is nef. This means that Kx - C' is non-negative, for any curve C in X. (On the other
hand, a Mori fibre space is always covered by rational curves.)

However this property is purely numerical. It has been conjectured (the abundance conjecture,
6-1-14 of [10]) that much more is true, that some multiple of Kx defines a base point free linear
system.

Moreover an important refinement of this conjecture goes further to the category of log
divisors. (Log divisors appear naturally in the classification of open varieties and in many
inductive proofs. For an introduction to the minimal model program, see [4], page 28, and for
the log minimal model program see the introduction to [10].) The aim of this paper is to prove

this conjecture in dimension three:

1.1 Theorem (Log Abundance). Let the pair (X, A) consist of a threefold X and boundary
A, such that Kx + A is nef, and log canonical.
Then |/m(Kx + A)| is basepoint free for some m.

With the aid of (1.1), we can establish the following birational classification of pairs (X, A),
where X is a threefold, and Kx + A is log terminal:
The pair (X, A) is birational to (X', A’) (i.e there is a birational map, such that A’ is the

strict transform of A) a pair with log terminal singularities and, either
(1) |m(Kx 4+ A’)| is base point free for some m, or
(2) there is a morphism #n’: X’ — Y”, which is a log Mori fibre space.

Indeed we may apply the log minimal model program to (X, A). Eventually either Kx + A
is nef, in which case (1.1) applies, or (2) holds. A similar result is true if the pair (X, A) is log

canonical.



Here are some other immediate Corollaries:

Corollary (cf. [2], [6]). Let (X,A) be a log canonical threefold.

Then the log canonical ring

é H(X,0x(Lm(Kx + A)J)

m=0
18 finitely generated as a C-algebra.

Corollary. Let X be a minimal threefold, whose canonical divisor is numerically trivial. (For
example a Calabi- Yau manifold, cf. [18].)

Then any effective nef divisor is semi-ample.

We will prove (1.1) only assuming X is proper, see (7.1). From now on, to simplify the
statements of results, we shall however always assume X is projective.

Note that (1.1) generalises the Abundance Theorem of Kawamata ([8]) and Miyaoka ([14],
[16], and [15]), and is also considered to be a first step towards a proof of the Abundance
Conjecture in dimension four. (See [12] for a good exposition of Abundance in dimension three.)

The Abundance Theorem for threefolds states that the canonical divisor of a minimal model,
an endproduct of the minimal model program (or Mori’s program), is semi-ample. Recently
Shokurov ([21], see also [12]) extended the MMP to the log category. (1.1) is then a natural and
important generalisation of the Abundance Theorem.

The log category is a natural setting for inductive proofs. This has been our guiding phi-
losophy, and several Theorems are stated in every dimension, see (5.6), (6.1) and (6.2), and
(7.3).

We now give a sketch of the proof of (1.1). First we assume K x + A is kawamata log terminal.

§82-4 are devoted to the first step of the proof of (1.1):

1.2 Theorem. Let the pair (X, A) consist of a threefold and boundary A such that Kx + A is
nef and kawamata log terminal.
Then k(Kx + A) > 0.

To prove (1.2), first we run a special minimal model program (see §2), to reduce to the
case m: X — Y is a Mori fibre space and Kx + A is the pull back of Ky + B, for some B.
Our strategy is to try to choose B, so that (Y, B) is kawamata log terminal, and thus apply
induction. In §3, we prove this for a conic bundle, see (3.8). Roughly speaking, part of B is
fixed (any components of A which don’t surject onto Y, for example) and part we are free to

choose in a linear system, without base components, see (3.4). In practice, we need to improve
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the morphism 7 using a base change and several applications of the MMP, without changing the
linear equivalence class of Kg + B. But then we have to deal with non-effective divisors defined
only up to linear equivalence, for which we introduce the convenient formalism of compound
divisors in (1.4).

(3.10) and (6.3) complete the proof of (1.2), by reducing the del Pezzo case, to a straightfor-

ward analysis via classification (§4).

In §5, we apply the minimal model program to improve the pair (X, A). Two cases then

arise. In one, X is a Mori fibre space (5.4), and we may apply induction (using §§3 and 4).

The defining characteristic of the other case is that X is not covered by rational curves C,
that are Kx + A trivial (and this is precisely what is required to apply (6.1)). Indeed this
dichotomy is repeated twice more (see (1) and (2) of (2.4), (5.3) and (7.1)). Here (see (5.7)), we
try to apply the arguments of Kawamata [8] and Miyaoka [15]. Moreover, using (1.2), we are
able to make the technically important reduction to the case where § = A is reduced, and in
fact when v = 1 the result follows immediately. When v = 2, we need a significant improvement
of Miyaoka’s semi-positivity result (see §6).

Finally, §7 passes from kawamata log terminal to log canonical.

It should also be pointed out, that (6.1) and it Corollaries ((6.2) and (6.3)) are interesting,
independently of the proof of (1.1).

Acknowledgments: We would like to especially thank Lung-Ying Fong and Janos Kollar for
many useful conversations and encouragement. We would like also to thank Lung-Ying Fong, for
a previous version of the v = 2 case, and Professor Kawamata for pointing out that (3.8) should
hold. Thanks should also go to Alessio Corti, Bob Gompf, Tie Luo, Shigefumi Mori, Miles Reid
and David Saltman for some helpful conversations. The second author was supported in part
by a Grant under the Monbusho International Scientific Research Program: 04044081.

1.2 Notation. Let f: X — Y be a morphism of normal varieties. If Ky is Q-Cartier then
Kx/y is defined to be Kx — f*Ky.

We say f is a Mori fibre space, if f has relative Picard number one, —Kx is f-ample, and X

has Q-factorial terminal singularities.

In what follows, (X, A) will denote a variety with a boundary (resp. subboundary) A, i.e.
A is a Q-Weil divisor and if we write A as the sum of its irreducible components Y d;A;, then
0 <d; <1 (resp. d; <1). By convention, we will often write A as S+ B, where S is the part of
A with coefficient one and B is the rest. We will say A is a pure boundary (resp. subboundary),

if S is empty. Let m: X’ — X be a generically finite morphism of normal varieties. If 7 is
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finite, or Kx + A is Q-Cartier we define the log pullback A’ by the formula

Note that even if Kx + A is log terminal, usually A’ will only be a subboundary. However
Kx + A is semi-ample iff Kx/ + A’ is.

We will also use the following standard definitions:

k(X, D) denotes the Titaka dimension of the variety X with divisor D. In particular, x(D) > 0
iff [mD| is non-empty for some positive integer m.

In the case where D is nef, we can define the numerical counterpart

v(X,D) =max{n € NUO | (D") not numerically 0 }.

(For simplicity, we will often drop the reference to the variety). Dyeq is the boundary, where
each component of D is taken with multiplicity one.

D is said to be semi-ample, if the linear system |mD| is base point free, for some positive
integer m. D is said to be abundant if k(D) = v(D).

A sheaf F is said to be reflexive, if F = F**.

We will use the definitions of log terminal and canonical in (2.1.3) of [12]. (We remind the
readers that the definition of kawamata log terminal is the same as log terminal in [10].) All

these definitions make sense if A is only a subboundary, and here we will attach the prefix sub.

1.3 Results.

We collect some standard results, which will be required for the proof of (1.1).

Definition-Lemma: (Log) Terminal Model. Let the pair (X, A) consist of a normal variety
of dimension at most three, and a pure boundary (resp. boundary) such that Kx+A is Q-Cartier.

Then we may find a Q-factorial terminal (resp. log terminal) pair (X', A"), a birational
morphism g: X' — X and a divisor D such that Kx: + A" + D = g*(Kx + A), where D is
effective and g-exceptional, and the image of D lies in the locus where K x + A is not kawamata
log terminal (resp. log canonical). Furthermore, g is an isomorphism over any open set where

X is Q-factorial and Kx + A is terminal (resp. log terminal).

Proof. The existence of log terminal models is well known (see (17.10) of [12] and (9.1) of [21]).

We construct the terminal model in two stages. Suppose A is a pure boundary, and let
(X', A") be the log terminal model. Since any component of A’ that has coefficient one is
exceptional, shifting components of A’ with coefficient one into D, we may assume (X', A’) is

kawamata log terminal and apply (6.9.4) of [12]. O

Remark. Note that when the pair (X, A) is kawamata log terminal (resp. log canonical), then
D is empty, and A’ is the log pullback.



We will use the non-trivial fact that Abundance holds for semi log canonical surfaces (see
Chapters 11 and 12 of [12]). In particular, if Kx 4+ S + B is log canonical and nef, and S is
reduced then some multiple of (Kx + S + B)|gs is base point free.

We now recall some of the standard reduction steps already proved in the literature. Suppose

Kx + A is kawamata log terminal and nef. Then Kx + A is semi-ample if either

(1) Kx + A is abundant (see (6.1) of [5]), or
(2) Kx + A is big (see 3-1-1 of [10]).

1.4 Preliminaries.

Here we put some non-standard results.

In §3, we will work with pairs (Y, B), where Y is a normal variety, and 9B is a mixed object:
it is the data of a QWeil divisor D and the linear equivalence class of a Q-Cartier divisor L.
We will call B a compound divisor. |B| denotes the set of Q-Weil divisors B of the form
C + D, where kC belongs to the linear system |kL|, for some positive integer k. We will say
two compound divisors 8 and B’ are equivalent, if L+ D and L'+ D’ are Q-linearly equivalent.
We introduce a partial order on equivalent compound divisors, by the rule 8 > B’ if D > D’
as Weil divisors.

If Ky + D is Q-Cartier, we define the discrepancies of Ky + B, by taking the supremum of
the discrepancies of Kx + B over all possible choices of B € |®B|. This is equivalent to the limit
of the discrepancies of Ky + B, for generic choice of kC' in |kL|, as k goes to infinity. We extend
the definitions of log terminal in the obvious way, and we will say (Y, B) is a pure subboundary,
if some B € |®8| is a subboundary, with no reduced part. Here B is a pure subboundary for
generic choice of kC in |kL| and any sufficiently divisible k.

If f: Y — Y is a generically finite morphism, and either Ky + D is Q-Cartier or f is finite,
we define the log pullback (Y',8’) of (Y, B) by the formulae

Kyl + D, = f*(Ky + D) and LI = f*L

In words, D' is the log pullback of D, and L' is the ordinary pullback of L.

1.3 Lemma. Let B and B’ be equivalent compound divisors, where Ky + D is Q-Cartier and
(Y,B') is subkawamata log terminal (resp. B’ is a pure subboundary). Suppose L is pulled back
along a birational map g, and D' — D = A+ E where A and E are respectively effective and
g-exceptional.

Then the pair (Y,B) is subkawamata log terminal (resp. B is a pure subboundary).

Proof. Clear, since |%B'| C |%B|. O



Note that (1.3) applies when B’ > B (just take f to be the identity). However 8B and B’
may be equivalent and 8 is a subboundary while 9B’ is not . For example any divisor is the

difference of two ample divisors.

1.4 Lemma. Suppose Ky + D is Q-Cartier.
Then the pair (Y,B) is subkawamata log terminal (resp. B is a pure subboundary), iff either

(1) the pair (Y, B) is subkawamata log terminal (resp. B is a pure subboundary) for some
B € %8|, or
(2) for every birational morphism f: Y' — Y, the log pullback (Y',B') is a pure subbound-

ary.

Proof. In both cases, one direction is clear.

Otherwise suppose the pair (Y, B) is subkawamata log terminal, or the log pullback under
a birational morphism is always a subboundary. Pick a resolution f: Y’ — Y such that the
union of the support of D, the stable base locus of L and the exceptional locus is a normal
crossing divisor. Then, by Bertini, f is a log resolution of the support of B for generic choice of
kC in |kL| and k sufficiently divisible, and by assumption all the discrepancies of the exceptional

divisors associated to f are strictly less than one. [

1.5 Lemma. Let f : Y' — Y be a generically finite projective morphism between normal
varieties. Suppose Ky + D is Q-Cartier and the pair (Y',B8') is the log pullback of the pair
(v, B).

Then the pair (Y,B) is subkawamata log terminal iff the pair (Y',B') is. In particular, if B’
is a pure subboundary, then so is B and if f is finite, then B’ is a pure subboundary iff B is.

Proof. Using the Stein factorisation, we may assume f is either birational or finite. If f is
birational, the result follows by definition, so we may assume f is finite.

Now if (Y, B) is subkawamata log terminal, then so is (Y, B) for B € |28|. But then (20.3) of
[12] implies that (Y, B’) is subkawamata log terminal, which implies that (Y, ') is subkawa-
mata log terminal.

Now suppose the pair (Y’,B’) is subkawamata log terminal. Passing to a Galois closure (and
using the directions we have already proved) we can assume that f: Y’ — Y is the quotient by
a finite group G. By (1) of (1.4), Ky + C' + D’ is subkawamata log terminal, for some choice
of C'. But if we set C" = (1/|G|) X2, 9"(C'), then Ky' + C" + D' is also subkawamata log
terminal and C" = f*C for some C on Y.

Now we may again apply (20.3) of [12], and (1) of (1.4). O
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1.6 Definition—-Lemma. Let m: X — Y and f: Y' — Y be morphisms of smooth varieties.
Suppose f is finite and X has dimension at most three. Let M be a boundary in X, such that
every component of M dominates Y, and Kx + M is terminal on the general fibre of m.

Then we may find a commutative square

X — X
g

Y —— Y,
f

where X' is Q-factorial, birational to the fibre product, the general fibres of ©' and w are the
same, and Kx: + M’ is terminal, where M’ is the strict transform of M.

Moreover if we write Kx: /vy +M'+D = 9" (Kx/y+M), then D is effective and no component
of D dominates Y'.

Proof. We will construct X’ in stages. First let W be the fibre product and Z its normalisation.
The graph of 7w gives a fibre diagram

W — X xY'

! !

Y —2 5 Y xY.
Thus W is a local complete intersection in X x Y”, whose normal bundle is the pullback of Ty . It
follows that Ky y is the pullback of Kx/y. If ¢ is the normalisation map, then by (2.3) of [20],
we have an equality of Weil divisors on Z: Kz +C = ¢*(Kw), where C is effective and supported
on the conductor. Now choose a resolution X’ — Z and run the K x.-MMP over Z until K x:
is relatively nef. It follows that X’ — Z is an isomorphism over any open set where Z is Q-
factorial and terminal, and in particular along the general fibre of Z — Y. Let C be the strict
transform, and h the map to the fibre product. Then, we may write Kx: + C + E = h*(Kw),
where E is exceptional. Since Kx: is relatively nef, it follows from (2.19) of [12] that F is
effective. At this stage, X’ is Q-factorial, D is effective and no component dominates Y”’, and

7' and 7 have the same general fibre. Now pass to a terminal model of the pair (X', M’). O

1.7 Lemma. Let f: X — Y be a projective morphism with connected fibres between normal
quasi-projective varieties. Let F' be a Q-Cartier numerically f trivial divisor on X, where no
component of F' dominates Y. Suppose Y is Q-factorial.

Then F' is the pullback of a unique Q-divisor on Y.

Proof. Let A be the image of all the components of F' which dominate divisors in Y. Let B be

any component of A, and F} any divisor which dominates B. If we choose a number r, so that
7



F —rf*B does not contain F} in its support, then the support of F' — r f* B does not dominate
B. Indeed, if we cut Y and X by hyperplanes, we reduce to the well known case of X a surface
and Y a curve.

Thus we may assume A is empty, and we want to show F' is empty. We drop the hypotheses
that f has connected fibres, and proceed by induction on the relative dimension d of f. If d = 0,
by taking the Stein factorisation, we may assume f is birational and the result follows from
(2.10) of [12]. Otherwise, replace X by H a general hyperplane section, F' by F' N H, and apply

induction. O

§2 A SIMPLE VARIATION OF THE MINIMAL MODEL PROGRAM

We will need a slight refinement of the Rationality Theorem (see 4-1-1 of [10]).

2.1 Lemma. Suppose the pair (X,A) has Q-factorial kawamata log terminal singularities, D
is a nef Q-Cartier divisor, but Kx + A is not nef. Set

A=sup{p| D+ pu(Kx + A) is nef}.
Then X is rational and moreover there is a (Kx + A)-extremal ray R, such that

(D+A(Kx +A))-R=0.

Proof. Let r be a natural number, such that both r(Kx + A) and rD are Cartier divisors. Now
by Theorem 1 of [7], for each (Kx + A)-extremal ray R;, there is a rational curve C; (which
generates R;), such that —(Kx + A) - C; < 2n, where n is the dimension of X. In particular

D.C;
—(Kx—l-A)CZ

is an integer multiple of 1/(2rn), for every . Let

nf D-C;
= 1n .
b= Tkx +A)-C;

Then certainly there exists an extremal ray R such that (D + u(Kx +A))-R =0, p € Q and
D + X\(Kx + A) is not nef for any value of A greater than . But D + u(Kx + A) is nef, by the
Cone Theorem (4-2-1 of [10]), since it is positive on each R;. Thus A = pu. O
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2.2 Lemma. Suppose the pair (X, A) has Q-factorial kawamata log terminal singularities, and
W is an effective Q-divisor such that Kx + A is not nef, but Kx + A + W is nef.

Then there is a (Kx + A)-extremal ray R and rational number 0 < X\ < 1 such that Kx +
A+ AW is nef but trivial on R.

Proof. Apply 2.1)to D=Kx+A+W. O

2.3 Remarks.

(1) In dimension at most three, we may use (2.2) to define a special minimal model program,
which we will refer to as the (Kx + A)-MMP with scaling of W.

(2) Suppose we have a morphism p: X — Y (or (Kx + A+ AW)-flop) and divisor D’ such
that Kx + A + AW = p*(D’). Then k(D) > k(Kx + A + A\W) = (D’). In particular
if p is a divisorial extremal contraction or flop associated to the (Kx + A)-MMP with
scaling of W, then we may take D' = Ky + T = Ky + m,(A) + A\W.

2.4 Lemma. Let the pair (X,A) consist of a variety X of dimension at most three, with
boundary A. Suppose Kx + A is nef and kawamata log terminal.
Then we may find a pair (X', A"), where X' has Q-factorial terminal singularities, K x: + A/
is nef and kawamata log terminal, K(Kx + A) > k(Kx: + A'), and either
(1) X' is a Mori fibre space over a Q-factorial variety Y, and Kx: + A’ is the pullback of a
Q-divisor fromY, or
(2) Kx/ is nef.

Proof. By passing to a terminal model, we may assume X has Q-factorial terminal singularities.

Now run the Kx-MMP with scaling of A, at each stage using (2) of (2.3). O

2.5 Lemma. (1.2) holds in case (2) of (2.4), and in case (1) of (2.4), when'Y is either a point,

or P, or a curve and Kx + A is not numerically trivial.

Proof. If Kx is nef, then [nKx| is non-empty for some n, by [16]. The other cases are obvi-

ous. [
Thus we may assume 7: X — Y is a Mori fibre space, Kx + A is pulled back from Y, and
either 7 a conic bundle (3.8), or a del Pezzo fibration (4.4).
§3 CoNic BUNDLES

The main results of this section are (3.8) and (3.10).
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We fix some notation. Let Iy, I, ..., I, be a partition of the set of integers between 1 and £.

Let aq,as9,...,ar be a sequence of rational numbers, such that 0 < a; < 1, which sum to 2. Set
Qg = Z ;.
iel,

We are interested in solutions to the linear equations
(3.1) a; = Z bij
J

where the b;; are non-negative rational numbers, and symmetric in ¢ and j.

We are now ready to state the main combinatorial result.

3.2 Lemma. Suppose a1,y ...,q, are all at most one.

Then (3.1) has a solution, where b;; =0 if i and j belong to the same indexing set I,.

Proof. Note that the conditions on the numbers a; define a convex set. Thus we only need to
check the result on the extremal points. They are a; = a; = 1, all others zero, when the result

is immediate. [

We introduce some more notation. Let (X, A) be a pair, such that A is a Q-Weil divisor
and let 7: X — Y be a morphism between normal projective varieties with general fibre P!.
Suppose Y is Q-factorial and Kx + A is pulled back from Y.

We will be interested in Q-divisors B such that

We will decompose A as F'+ M, where no component of F' dominates Y, and every component
of M does, and we will assume that M is a boundary, with no reduced part. We will call a
Q-Weil (resp. effective) divisor G an enzyme (resp. effective enzyme), if no component of G
dominates Y, and Kx/y + M + G is Q-Cartier and pulled back from Y. An enzyme G defines

a compound divisor B, by the formulae:
Kx/y + M+ G=7"Lg and F-G=7*"D

where D is the Weil divisor given by (1.7). Note that any B € |B| is automatically a solution
to (3.3). Note also that if 7 is a Mori fibre space, we may take G to be the trivial divisor, in
which case we will call 8 the standard compound divisor. Note that the standard compound

divisor is always bigger than any compound divisor defined by an effective enzyme.
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3.4 Definition-Lemma. Suppose we have a commutative square

X — X
g

E

Y — Y,
f

of Q-factorial normal varieties. Let G be any enzyme, B the corresponding divisor and B’ the
log pullback of B.

If we define a divisor G' by the formula
KXI/YI +MI +Gl = g*(Kx/y +M+G),

then G’ is the enzyme that defines B'.
Proof. Clear. [

3.5 Lemma. Suppose every component of M maps birationally onto Y, and w is a Mori fibre
space.

Then there is a sufficiently divisible positive integer m, which depends only on the coefficients
of M, such that the base locus of the linear system |mL| (L = Lg) is supported on those points
P, where M restricted to 7' (P)req 18 not a boundary.

Proof. Suppose M = . a;M;, where M has irreducible components My, M, ..., M.
Now, given any partition of the integers from 1 to k, pick solutions to (3.1) (whose existence
is guaranteed by (3.2)), and a sufficiently divisible integer m, so that (m/2)b;; is an integer.

Given any solution to (3.1) we have

(KX/Y + M) = (1/2) Zbij(KX/Y + Mi + Mj).
iJ
But by adjunction
7T*(I{X/Y + M; + M])|Mz = F*(MJ|M1)

Since the relative Picard number is one, C' = (1/2) >, bijm. (M, - M;) is then a solution to (3.3).

Fix a point P, where M restricted to 77 !(P)req is a boundary. Let Q1,Q2,...,Q, be the
points of X, over P, through which any components of M pass. Define a partition of the integers
from 1 to k as follows:

I, = {i| M; passes through Q, }.
11



Then for the solution to (3.1) already fixed for this partition, and the corresponding solution
to (3.3), P does not belong to the support of mC. O

Perhaps a simple example will explain (3.2) and (3.5). Let X be the surface P! x P!, and =
be a projection. Let M = >.(1/2)M;, consist of four sections of w. Let P be a point of P*,
over which M; meets M5 in ()1 and M3 meets My in ()5. Then a; = ay = 1, and one solution
to (3.1), as in (3.2), is by = bgq = 0, every other b;; = 1/4.

3.5.1 Remark. If Kx + M is canonical then 7~ !(P),.q is a boundary for any codimension one
point P of Y, and so (3.5) implies that |mL| has no base components. In particular if Kx + A

is also subkawamata log terminal, then the standard compound divisor is a pure subboundary.

3.6 Lemma. Suppose the pair (X,A) is subkawamata log terminal, and 'Y is Q-factorial. Let
G be an effective enzyme and B the corresponding compound divisor.

Then ‘B is a pure subboundary.

Proof. Passing to a terminal model, we may assume Kx + M is terminal. Taking iterated
pullbacks of the form M; — Y, for every component M; of M, we may find a finite morphism
of normal varieties f: Y/ — Y such that every component of the fibre product of M that
dominates Y’, maps birationally onto Y’. Since we are free to throw away points of Y, we may
assume X, Y and Y’ are all smooth. By (1.6), (3.4) and (1.5) and relabeling we may assume
from the start that Kx + M is terminal, and every component of M maps birationally onto Y.
Now run the (Kx + M)-MMP and then the Kx-MMP trivial with respect to Kx + M, over Y.
The steps of all these programs are automatically Kx + A trivial, since Kx + A is pulled back
from Y. Finally we have a Mori fibre space X — Y’, where Y/ — Y is generically finite, and
Kx + M is canonical. Suppose the standard compound divisor is 8" and the log pullback of 8
is B’. Now B” is a pure subboundary (see (3.5.1)). But B’ is the compound divisor defined by
the effective enzyme G. Thus B” > B’ and (1.3) implies B’ is a pure subboundary.
Now apply (1.5). O

3.7. Theorem. Suppose Kx + A is subkawamata log terminal and B is the compound divisor
defined by an effective enzyme G.

Then (Y,*B) is subkawamata log terminal.

Proof. By passing to a terminal model, we may assume K x +M is terminal. Let f: Y/ — Y be
any birational morphism. By (1.4) it suffices to show the log pullback 9B’ is a pure subboundary.
Blowing up further, we may assume Y’ is smooth and that the exceptional locus of W — X,

for some desingularisation W of X x Y’ lies over the exceptional locus of f. Let D be the strict
Y

transform of M, g: X' — X a terminal model for Ky + D, and G’ the enzyme defined in (3.4).
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Since the exceptional locus of g lies over the exceptional locus of f, the negative part of G’ lies
over the exceptional locus of f. It follows that there is an f-exceptional divisor E such that
G" =G + 7'"(E) is an effective enzyme. Since G" is effective, (3.6) implies the corresponding

compound divisor is a pure subboundary.
Since D" and D' differ by E, we may apply (1.3). O

3.8 Corollary. Suppose Kx + A is kawamata log terminal.
Then (3.3) has a solution B, such that the pair (Y, B) is kawamata log terminal.

Proof. Apply (3.7) to the trivial effective enzyme. O

3.9 Corollary. Let m: X — C' be a projective morphism where X is a threefold and C is
curve. Suppose S, the geometric generic fibre, admits a morphism to P!, and the restriction of
Kx + A to S is kawamata log terminal and trivial.

Then k(Kx/c +A) > 0.

Proof. We can assume that every component of A surjects onto C. Note that we are free to
take any transform of A under a birational morphism, and prove the Corollary for the new A.
Passing to a terminal model, we can assume Kx + A is terminal on the general fibre. So we
may desingularise (this will not affect the general fibre) and assume X is smooth.

Since S is ruled, there is a finite base change C' — C, so that the generic fibre is ruled.
Let (X', A’) be the pair defined in (1.6) (with M = A). Now resolve the rational map of X'
to C' x P!, and take A’ to be the strict transform. Again passing to a terminal model (and
renaming) we may assume (X, A) is terminal, and X maps to C x P!.

Running the (Kx + A)-MMP and the Kx-MMP over C x P!, we may assume Kx + A is
pulled back from a surface S, ruled over C. By (3.8), Kx + A is the pullback of Kg + B, which
is kawamata log terminal, and nef on the general fibre of S over C.

Now run the (Kg + B)-MMP and the Ks-MMP over C. (3.8) then implies that Kg/c + B

is effective. O

3.10 Corollary. Let m: X — Y be a Mori fibre space, where X 1is a threefold and suppose
Kx + A is nef, kawamata log terminal, and pulled back from Y . Suppose the general fibre is not
P2.

Then k(Kx + A) > 0.

Proof. If Y is a surface, then use (3.8) and log abundance for surfaces.

Otherwise the geometric generic fibre S of 7 is a del Pezzo surface. Now if Y is rational, the
result follows by (2.5). Thus we may assume Y is not rational, and so it is enough to consider
Kx,y + A. Since S is not P2, S admits a ruling. Now apply (3.9). O

13



§4 DEL PEZzZO FIBRATIONS
Let w: X — C be a Mori fibre space over a curve.

4.1 Lemma. Suppose X is factorial and the geometric generic fibre of m is P".

Then 7 18 a smooth P"-bundle.

Proof. Since the generic fibre of 7 is a Severi-Brauer variety and the function field of C' is a
C-field, there is birational map of X to P" x C, which is an isomorphism on the general fibre.
But then there is a line bundle L, such that Kx + (r + 1)L is pulled back from C. The result

now follows by a standard application of vanishing and Fujita’s A-genus, cf. [3]. O

4.2 Lemma. Suppose C is irrational, the pair (X, A) is kawamata log terminal, and Kx + A
18 numerically trivial.
Then —K x is nef but not big and C is elliptic. Moreover if the general fibre is P? then m is

a smooth P?-bundle.

Proof. Since X has Picard number two, the closure of the cone of curves has two edges. Suppose
the edge not corresponding to 7 is generated by «.

If —Kx -« is not zero, then for some small rational €, Kx 4+ (1+¢€)A is kawamata log terminal,
but dots o negatively. But then « is generated by a rational curve that dominates C', impossible.
Thus —Kx -a = 0. Now if K¢ -a = —Kx/¢ - a is positive then —Kx,¢ is big and nef and
Kawamata-Viehweg vanishing (1-2-5 of [10]) implies h'(wc) = h!(7*we) = 0, impossible.

Hence C' is elliptic and —K x is nef, but not big.

Suppose the general fibre of 7 is P2. By (6.3) X is Gorenstein (x(Ox) = x(O¢) = 0, by

relative Kawamata-Viehweg vanishing) and so factorial. Now just apply (4.1). O

4.3 Lemma. Suppose X is the projectivisation of a vector bundle E of rankr +1, Kx + A is
kawamata log terminal and K x + A is numerically trivial.
Then k(Kx + A) = 0.

Proof. By (4.2), C is elliptic, and —Kx is nef. Thus Ag = —Kx/¢ is nef, in the notation of
[14]. Thus (3.1) of [14] implies that E is semistable. Taking an étale cover of C, we may assume
that F has trivial determinant. But then E is the direct sum of indecomposable vector bundles,
each of which has a filtration by isomorphic line bundles, see [1].
Suppose mA is integral. This corresponds to an element of H°(C,Sym"+tV™(E*) @ M),
where M is a line bundle of degree zero on C. Moreover we only need to show that M is torsion.
Suppose not. Choose M’ so that M'®™ Y — Af and let F = E* ® M'. With this choice of

M, Sym(r"'l)m(E*) QM = Sym(TH)m(F). F has a filtration by line bundles Ly, L1, La, ..., L,
14



of degree zero, induced by the direct sum decomposition of E. Let R be the subvector space
of V.= Q' *! generated by all (r + 1)-tuples (ag, a1, as,...,a,) such that L  LT* ® - - - ® L&r
is trivial. By assumption R does not contain (1,1,...,1). Let W be the dual of V. Pick a
non-zero element vy of W, with integer coefficients, which annihilates R, and is non-negative on
(1,1,...,1). Set a = (a,a,...,a) — v, where a is the largest entry of . Then every component
of o is a non-negative integer, and at least one component of « is zero. We may assume this
component is the first.

Choose coordinates xg, x1,Z2,- .., 2, on the general fibre, which is a copy of P", compatible
with the direct sum decomposition of F. Then mA restricts to a hypersurface, given by a
polynomial f of degree (r + 1)m. If we write f as a polynomial in the zg, z1,z2,...,Z,, then
each monomial of f corresponds to an element of R, since the co-ords z; and the line bundles
are compatible with the direct sum decomposition of E. Note that o has the value am(r + 1)
on each of these monomials (so that in particular « is not zero).

Let A” be the affine space where x # 0, so with coordinates x1/xo, ..., Z,/zo. Since the first
component of « is zero, « gives a weight on monomials in the z;/xo. As in Chapter II, §4 of
[19], we consider the toric blowup B — A" defined by a. By the Proposition on page 373 of
[19], the log discrepancy of the exceptional divisor with respect to Kpr + Alpr is

a(l,1,...,1) — (1/m)a(f(1,21/x0, - - -, 2 /20)) = —7(1,1...,1) <0,

a contradiction. O

4.4 Theorem. Let m: X — C be a del Pezzo fibration, which is a Mori fibre space. Suppose

Kx + A is nef, kawamata log terminal, and pulled back from C.
Then k(Kx + A) > 0.

Proof. By (3.10), we may assume 7 has general fibre P2. But then we may apply (2.5), (4.2)
and (4.3). O

This completes the proof of (1.2).

§5 THE MINIMAL MODEL PROGRAM REVISITED.

In this section, we will prove (1.1) in the special case that Kx + A is kawamata log terminal
(see (5.3), (5.4) and (5.8)).
We first state a simple, but very useful result (cf. §2).

5.1 Lemma. Suppose the pair (X, A) has Q-factorial kawamata log terminal singularities, and

W is an effective Q-divisor such that Kx + A+ W is nef.
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Then either

(1) there is a (Kx + A)-extremal ray R, which is Kx + A + W trivial, or
(2) Kx + A+ (1 — €)W is nef, for any small positive rational €.

Proof. Simple consequence of (2.1). O

5.2 Remarks.

(1) In dimension three or less, (since we need the log MMP, see [21] and [12]), we may use
(5.1) to define a special minimal model program, whose steps are Kx + A + W trivial.

(2) Suppose we have a morphism p: X — Y (or (Kx + A + W)-flop) and divisor D’ such
that Kx + A + W = p*(D’). Then Kx + A + W is semi-ample iff D’ is. In particular
if p is a divisorial extremal contraction or flop associated to the (Kx + A)-MMP, which
is Kx + A + W trivial, then we may take D' = Ky + T = Ky + 7. (A + W).

(3) Suppose X is terminal, and covered by rational curves C. Then Kx - C < 0, as is easily

seen by passing to the total space of the family C'.

5.3 Lemma. Let the pair (X, A) consist of a threefold X, with boundary A. Suppose Kx + A
1s nef and kawamata log terminal.
Then we may find a pair (X', A"), where X' has Q-factorial terminal singularities, Kx + A’

is nef and kawamata log terminal, K x + A is semi-ample iff Kx' + A’ is semi-ample and either

(1) X' is a Mori fibre space over a variety Y, and Kx: + A’ is the pullback of a Q-divisor
fromY, or
(2) Kx'+(1—€)A’ is nef, where € is any small non-negative rational number. In particular

X' is not covered by rational curves C, which are Kxr + A’ trivial (see remark (3)).

Proof. By passing to a terminal model, we may assume the pair (X, A) has Q-factorial terminal
singularities. Now run the K x-MMP, using extremal rays R which are Kx + A trivial, as in (1)
of (5.2), at each stage replacing (X, A) with (Y,TI'), asin (2) of (5.2). O

First let us deal with (1).

5.4 Lemma. Let: X — Y be a Mori fibre space, where X is a threefold and suppose K x + A
18 nef, kawamata log terminal, and pulled back from Y .

Then Kx + A is semi-ample.

Proof. Suppose Kx + A = 7*(Ky + B). We want to show that Ky + B is semi-ample.
If Kx + A is numerically trivial, we may apply (1.2). If v(Kx + A) =1 and Y is a curve

then Ky + B is ample, and so semi-ample.
16



Finally, if Y is a surface, then (3.8) implies that the pair (Y, B) is kawamata log terminal,

and we may apply log abundance for surfaces. [l

(2) is a little more difficult. We start with a reduction step, that is valid in all dimensions.
The following is a standard conjecture, that is implied by (1.1) in dimension three. In the proof

of (1.1) (see (5.6)) we will only need (5.5) in dimension two, where it is already known.

5.5 Conjecture. Let (X, A) be a kawamata log terminal pair of dimension at most n.

Then the minimal model program holds for Kx + A and if Kx + A is nef but not numerically
trivial, then kK(Kx + A) > 1.

The following is a simple adaptation of (7.3) of [5] and maybe be proved accordingly (see also
Chapter 15 of [12], which establishes a similar result for threefolds).

5.6 Lemma. Suppose Kx + A is nef, k(Kx + A) > k and (5.5) is true for n — k-dimensional
varieties, where n is the dimension of X.

Then Kx + A is semi-ample.

5.7 Lemma. Suppose the pair (X,S) is log terminal, where S is a reduced divisor, X is a
threefold, Kx + S is nef but not numerically trivial, and there is a divisor D € |/m(Kx + S)|,
whose support is exactly S. Suppose further that X is not covered by rational curves C, which
are Kx + S trivial.

Then k(Kx + S) > 1.

Proof. Let v =v(Kx + 5), and k = k(Kx + S).

We are going to adapt the arguments appearing in Chapters 13 (v = 1, cf. [15] and [8]) and
14 (v =2, cf. [8]) of [12].

If v = 1 then the argument is almost verbatim (see (13.3.1), (13.3.2) and the proof of (13.1.1)
of [12]).

If v = 2, first we run the Kx-MMP, trivial with respect to Kx + S (cf. (14.2) of [12]).
Thus we can assume that Kx + (1 — €)S is nef, for any small rational ¢, since in the log Mori
fibre case, X is covered by rational curves which are Kx + S trivial. Since the polynomial in e,
(Kx + (1 —€)S)3, vanishes for infinitely many e, its coefficients, K%, K% - S, Kx - §% and S3,
also vanish.

Clearly the following two conditions are equivalent:
(1) Kx + (1 —¢€)S is nef, for small positive rational e,
(2) For every curve C, such that(Kx +S)-C =0, then Kx - C > 0.

But this is half of property (5) of (14.2) of [12], and the other half, with properties (1)—(4)

can be checked as in the proof of (14.2).
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However the argument of Chapter 14 of [12] needs to be altered in one important place.
(14.3.1) and (14.3.2) go through, but the argument of (14.3.3) fails, since the crucial inequality

L' - & (% (log B')) > 0,

deduced from (10.13) does not apply in our case (X may be uniruled). Instead we apply (6.1),

Now we are able to deal with case (2) of (5.3).

5.8 Lemma. Suppose Kx + (1 —¢€)A is nef and kawamata log terminal for small, non-negative
rational €, where X is a terminal threefold.

Then Kx + A is semi-ample.

Proof. Let v =v(Kx + A), and k = k(Kx + A).

If v = 3, then Kx + A is big, and we may apply 3-1-1 of [10]. If » = 0, then we may apply
(1.2).

Otherwise, using (5.6), we just need to show that x > 1.

By (1.2), [m(Kx + (1 — €)A)| is non-empty. Thus we may find D € |m(Kx + A)|, such that
D contains the support of A. Now pick a log resolution 7: Y — X of the pair (X, Djeq). Let
FE denote the union of the m-exceptional divisors, with coefficient one, and define a divisor I' by
the formula:

Ky +T=7n"(Kx+A)+ E.

Since Kx + A is kawamata log terminal, it follows that the support of I' contains E. Hence
|m(Ky +T')| contains a divisor G, whose support S contains I'yeq. In particular Y is not covered
by rational curves C, which are Ky + S trivial. Running the (Ky + S)-MMP, we may assume
Ky + S is nef, where v(Ky + S) = v and k(Ky + S) = k (cf. the proof of (13.2) of [12]).

Now apply (5.7) to deduce that x > 1. O

86 BOGOMOLOV STABILITY AND MORI’'S BENDING AND BREAKING TECHNIQUE

We fix some notation for this section.

Let X be a normal projective variety of dimension n over an algebraically closed field of
characteristic zero. Let Dy, Do, ..., D, be a sequence of nef Cartier divisors, Hq, Hsy, ..., H, a
sequence of Q-ample divisors, and H an ample divisor.

Following [14], we may define the slope, p(F) and stability of a reflexive sheaf F with respect

to D1, Da,...,Dy_1. See [14] for more details.
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In the case where X has quotient singularities in codimension two (for example if X has log
terminal singularities), let ¢; be the second chern class of the sheaf Q}(, which is a )-sheaf in
codimension two (see Chapter 10 of [12], for more details on ()-sheaves).

The aim of this section, is to prove the following:

6.1 Theorem. Suppose Dy -Ds---D,, =0, and —Kx - D1 - Dy ---D,,_1 is non-negative.
Then either
(1) X is covered by a family of rational curves C, such that D,, - C =0, or
(2) TX is (Dy,Da,...,D,_1)-semi-stable, and —Kx - Dy - Do ---D,,_1 is zero.
Moreover, in case (2), if X has quotient singularities in codimension two and Dy - Dy---Dy_4
18 not numerically trivial, then

n—1

¢oDi-Dg---Dyy_og> K§(-D1-D2---Dn_2.
n

Proof. For the last statement apply (6.5). We now show that either (1) or (2) holds. Suppose
(2) does not hold. Then ¢1(F) - Dy - Dg---Dy_1 > 0, where F is the maximal destabilising
subsheaf of T'X.
Now for Hy, Hs, ..., H, close enough to D1, Ds,...,Dy, ¢1(F)-Hy-Hsy---H,_ 1 > 0. Thus
(9.0.2) of [12] (see also [17]) implies the existence of a family of rational curves C such that
H,. C< 2nHy-Hy---H, '
Hy-Hy---Hp_y - c1(F)
But, as Hq, Ho, ..., H, approach Dy, Do, ..., D,, the right hand side goes to zero and the left

hand side approaches the non-negative integer D,, - C. O
This result has some interesting Corollaries.

6.2 Corollary. Suppose —K x is nef of numerical dimension m, X has canonical singularities
Suppose further that D1, Do, ..., Dy_pm_1 are nef divisors such that =K% - Dy - Dy --- Dy,
18 not numerically trivial.

Then éo - (~Kx)™ YDy -Dy-+-Dy_p_1 18 non-negative.
Proof. Apply (6.1), (see (3) of (5.2)). O

6.3 Corollary. Let X be a projective Q-factorial canonical threefold, such that —Kx 1is nef,
but not big, and x(Ox) = 0.

Then X is Gorenstein.

Proof. First we prove that cics is non-negative. If Kx is numerically trivial there is nothing to
prove. If K% is not numerically trivial, then apply (6.2). Otherwise apply (6.2), with D; any

ample divisor. Thus c;cs is non-negative.
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But recall that the Riemann-Roch formula for a threefold with canonical singularities implies
x(Ox) = (1/24)c1c + z,

where z is zero iff X is Gorenstein (see (10.3) of [19]). O

We need a little more notation. We may put a total order on Q[a], the rational polynomials
in the variable a, by declaring f < g, if there exists a positive number ¢, such that f(a) < g(a),
forall0<a<e.

6.4 Lemma. Let P be any subset of Q[a], such that the degree, the coefficients and the denom-
inator of any coefficient are bounded from above.

Then (P, <) satisfies the ascending chain condition, and for every g € P, there is a fized
positive number €, such that f < g implies f(a) < g(a), for all0 < a <€, and any f in P.

Proof. Elementary and easy. [

6.5 Lemma. Let E be a sheaf of rank r, a any small positive number, and H; the polarisation
D; +aH.

Then the Harder-Narasimhan filtration of E, with respect to (Hy, Hs, ..., H, 1) is indepen-
dent of a.

Furthermore, if E is (D1, Da, ..., D,_1)-semi-stable and a Q-sheaf in codimension two, and
Dy -Dy---D,_1 is not numerically trivial then

r—1
. c2(E)-Dy-Dy---Dy_s.

¢2(E)-Dy-Dy---Dyp_g >

Proof. Let Ag + Aja+---+ A,_1a"" !, be the expansion of H; - Hy--- H,,_1 in powers of a.
For any subsheaf F of E, the numbers c¢;(F) - A; are universally bounded from above, as A; is
the sum of (n — 1)-fold products of nef divisors. Thus (6.4) applied to the set of all possible
slopes, u(F), considered as polynomials in a, implies that the maximal destabilising subsheaf
of F is independent of a, and so by induction on the rank of E, the same is true for the
Harder-Narasimhan filtration.

Now suppose E is a @)-sheaf in codimension two. Let S be the general intersection of suffi-
ciently high multiples of Hq, Hs,..., H,_2. It is proved in [13] that the restriction to S, of the
Harder-Narasimhan filtration of E w.r.t (Hy, Ha, ..., H,_1) is the Harder-Narasimhan filtration
of E w.r.t H,_,. Moreover the quotients of this filtration are )-sheaves (see the proof of (10.12)
of [12]).
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Thus for any quotient of the filtration, by applying the Bogomolov inequality on S (see (10.11)
of [12]), and then taking the limit as a goes to zero, we may deduce the Bogomolov inequality
w.r.t (D1, Da,...,Dy_5).

Thus by induction on the length of the filtration, we may suppose we have a saturated subsheaf
F of E of rank k, with the same slope as E, such that the Bogomolov inequality for F' and E/F
holds. Now if we set D = (1/k)c1(F) — (1/(r — k))c1(E/F), then D - Dy - Dy ---D,,_1 =0, and
so by applying the Hodge Index Theorem on S and taking the limit, D? - D, - Dy ---D,,_5 < 0.

Using this, it is an easy calculation to deduce the Bogomolov inequality for E. [

6.6 Remark. The authors are extremely grateful to Qihong Xie for pointing out an egregious
error in a previous version of this paper, where the hypothesis that Dy - Dy --- D, _1 is not
numerically trivial was absent. The problem lies in the last but one line of (6.5). Restricting
to S, we have a divisor D and a nef divisor G and we want to conclude that if D - G < 0 then
D? < 0. This is an almost immediate consequence of the HIT, if G is not numerically trivial,

but it is surely a problematic implication in the case that G is trivial.

§7 KAWAMATA LOG TERMINAL TO LOG CANONICAL

To finish the proof of (1.1), we need to deal with the case that the pair (X, A) is log canonical
(cf. [9]). We start with a Lemma similar to (2.4) and (5.3).

7.1 Lemma. Suppose the pair (X, A) is nef and log canonical, where X is a complete threefold.
Then we may find a log canonical pair (X',A" = S' + B'), where X' is projective and Q-
factorial where K x+ + A’ is semi-ample iff Kx + A is and either

(1) X' is a log Mori fibre space over a variety Y, where Kx: + A’ is the pullback of a
Q-divisor from Y, and some component of S' dominates Y', or
(2) Kx'+B'+(1—€)S' is nef and kawamata log terminal, where € is a small positive rational

number.

Proof. Passing to a log terminal model, we may assume the pair (X, B) has Q-factorial kawamata
log terminal singularities. Now run the (Kx + B)-MMP, with extremal rays that are Kx + A
trivial. [

We first deal with case (1).

7.2 Lemma. Suppose the pair (X, A) has Q-factorial log canonical singularities, where X is a
threefold and m: X — Y is a Mori fibre space over Y, such that Kx + A is the pullback of a

Q-Cartier divisor D and some component S’ of S dominates Y .
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Then Kx + A s semi-ample.

Proof. We want to show D is semi-ample. But this is clear, since (Kx + A)|gs is semi-ample,

by abundance for semi log canonical surfaces. [J

To deal with (2) of (7.1), we need a simple restatement of a vanishing Theorem due to
Kawamata ((3.2) of [5]), which in turn is a refinement of a Theorem due to Kollar ((2.2) of [11]).
(7.3) may be derived from (3.2) of [5], in the same fashion as 1-2-5 is derived from 1-2-3 of [10].

7.3 Lemma. Suppose the pair (X, A) is kawamata log terminal, and L is an integral Q-Cartier
divisor, such that L— (K x+A) is semi-ample. Suppose D and D' are effective integral Q-Cartier
divisors, such that D + D' € |{m(L — (Kx + A)|, for some m.

Then the homomorphisms induced by multiplication by D,

¢4 HY(X,0x (L)) — HYX,O0x(L+ D))

are all injective.
The following is case (2) of (7.1):

7.4 Corollary. Suppose (X, S+ B) is a log canonical threefold, where S is reduced and Kx +
(1 —€)S + B is nef and kawamata log terminal, where € is any small positive rational number.
Then Kx + S + B is semi-ample.

Proof. Pick a sufficiently positive integer k, so that Kx +(1—1/k)S+ B is nef and kawamata log
terminal. let m be a sufficiently positive integer. Set W = m(Kx + S + B). If m is sufficiently
divisible then W|g is base point free by log abundance for surfaces and it is proved in §5 that
m(Kx + S+ B) — (m/k)S is base point free. Thus the base locus of W — S is supported on S.

Looking at the restriction exact sequence
0—O0Ox(W-S5)— Ox(W) — Og(W) — 0.
it is enough to show that we can lift any section of H°(S, Os(W)). But the map
¢s : H'(X,0x(W - S)) — H'(X,0x(W))

is injective, by (7.3) applied to L=W — 5. O
This completes the proof of (1.1).
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