ON THE EXISTENCE OF THE SELF MAP v ON THE
SMITH-TODA COMPLEX V(1) AT THE PRIME 3

MARK BEHRENS AND SATYA PEMMARAJU

ABSTRACT. Let V(1) be the Smith-Toda complex at the prime 3. We prove
that there exists a map v§ : 144V (1) — V(1) that is a K(2) equivalence. This
map is used to construct various vz-periodic infinite families in the 3-primary
stable homotopy groups of spheres.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let V(0) denote the mod 3 Moore spectrum. Let V(1) be the Smith-Toda
complex obtained by taking the cofiber of the self map vy : £4V(0) — V(0) which
induces multiplication by vy in K(1)-homology. This is an example of a type 2
complex. The periodicity theorem of Hopkins and Smith [10] states that there
exists a vo-self map v : TVV (1) — V(1) which is a K(2)-equivalence. The purpose
of this paper is to provide a minimal such vs-self map. The main theorem of this
paper is stated below.

Theorem 1.1. There exists a self-map
vy - DMV (1) =5 V(1)
whose effect on K (2) homology is multiplication by v3.

The strategy of proving the theorem is straightforward and computational. We
first prove that the element v§ in the Adams spectral sequence (ASS) for computing
m+(V (1)) is a permanent cycle. We then prove that this map extends over V(1).
We use the ASS instead of the Adams-Novikov spectral sequence (ANSS) because
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2 MARK BEHRENS AND SATYA PEMMARAJU
vy is in Adams filtration 9, whereas it has Adams-Novikov filtration 0. Therefore
there are less potential targets for a differential supported by vJ in the ASS than
in the ANSS. The ASS E,-term is also easier to compute.

Our method of showing that vJ is a permanent cycle in the ASS is to consider
all of the elements of the ASS which could be targets of differentials supported by
v§ which would not be detected in the ASS for eos A V(1). We then will show
all of these potential targets either support non-trivial differentials, or are killed
on earlier pages of the spectral sequence. This requires knowledge of the ASS of
eos AV (1), as well as the E, term of the ASS converging to m,(V(1)).

The spectrum eo, is a connective cover of the spectrum EQ, discussed in [5].
This spectrum should be regarded as a chromatic level 2 analog to the spectrum bo.
The spectrum eo- is a ring spectrum, and thus there is a Hurewicz homomorphism

h:V(1) = eos AV (1).

For our proof of Theorem 1.1, we need to know what the ASS for eos A V(1) looks
like, and what the effect of the Hurewicz homomorphism is on Adams FEs terms,
and this is accomplished in Section 2. The reader who like to avoid a digression on
eoy-theory is invited to skip Section 2 and simply refer to Figure 2.2 and Proposi-
tion 2.5 for the relevant information. All of the methods in this section derive from
unpublished work of Hopkins, Mahowald, and Miller. In retrospect, the resolution
we use to compute Ext(eox A V(1)) should be compared to that of Ravenel [16, ch.
7).

In Section 3 we compute the Es-term of the ASS for V(1) through the 144-stem
(the degree of v3). We rely on Tangora’s computer generated tables [22] of H*(P,)
where P, is the polynomial part of the dual Steenrod algebra. The periodic lambda
algebra [7] allows us to compute the Es term H*(A.//E[r,1]) via a Bockstein
spectral sequence (BSS). In some instances Christian Nassau’s computer generated
Ext tables were of welcome assistance.

Differentials in the ASS are computed by using the Hurewicz image in the homo-
topy of the spectrum eoy. In addition, we will prove a modified ‘Leibnetz rule’ for
differentials in the ASS for V(1). This product rule is our main tool for calculating
difficult differentials in the ASS for V(1). The product rule is presented in Sec-
tion 5. It is a generalization of a formula for Adams d»’s that was communicated
to us by Brayton Gray. Such technology is essential because V(1) is not a ring
spectrum, so its ASS is not a spectral sequence of algebras. However, the S-module
structure of V(1) does make the ASS a spectral sequence of modules over the ASS
for computing 7, (S), and this is used occasionally to propagate differentials.

We make heavy use of the computation of the 3-primary stable stems through
the 108 stem presented in [16]. We use these computations as input for the Atiyah-
Hirzebruch spectral sequence (AHSS) to make selective computations of m, (V' (1))
in certain ranges. These computations are described in Section 6

Section 8 is devoted to proving that vJ is a permanent cycle in the ASS for V (1),
and therefore detects an element of 7, (V(1)).

It now remains to extend v over V(1). This is simplified by a certain splitting
of the complex D(V (1)) A V (1), where D(V (1)) is the Spanier-Whitehead dual.
This splitting is the subject of Section 4. The splitting is also needed to prove the
product rule.

Using the attaching map structure of one of the wedge summands, the obstruc-
tion to the extension of v3 over V(1) is identified as an element of . (V(1)). In
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showing that this obstruction is zero, it is helpful to know what power 3 has the
property that A% : £19%V/(1) — V(1) is null. In Section 7, we show that the map is
null precisely when k£ > 5.

In Section 9, we proceed by considering all of the elements in the ASS that might
survive to the obstruction to extending v over V' (1), and show that they all either
support differentials, or are the targets of differentials. Thus the map vJ extends
to a self map of V' (1), completing our proof of Theorem 1.1.

We will now indicate the construction of some vs-periodic elements of the stable
stems which arise from the self-map v3. The authors learned of these constructions
from Katsumi Shimomura (compare with [18]). Theorem 1.1 allows us to deduce
that certain elements of the ANSS for the sphere must be permanent cycles. In
particular, we have the following consequence.

Corollary 1.2. The elements §3; are permanent cycles in the ANSS fori =0,1,2,5,6
(mod 9).

Proof. For dimensional reasons, vy is a permanent cycle of the ANSS which detects
a map

vy 1 S8 5 V(1).
By [15], or Remark 8.2, the element v5 in the ANSS is a permanent cycle which
detects a map

vy : S8 - V(1).
We denote the Spanier-Whitehead dual of vs by

vy 2DV (1) = 20V (1) — S°.

Let v : V(1) — S% be projection onto the top cell. The elements 3; in Corollary 1.2
are constructed by the following compositions.

Bog : M6 <y 31441-617(7) AN S0V(1) % 80
Bopgn - SHH10 22, gasi—oyy(q) 2y pooy(q) 2, go
Borga 2 SHE20 12, srsseioy ) B, oy (g 2, g0
Borys : SUMLETL Ty sy (1) M5 w6y(q) ¥y g0

ﬂ9t+6 . Sl44t+90 ﬁ El44t+10V(1) ’U_gt) EIOV(].) E) SO
o

It should be the case that the elements B9;t3 exist, but we are unable to deduce
this from the existence of our self map on V(1). Oka [15] indicates that if the
complex M (3,v3) has a v§ self map then the elements Bg;13 exist. Shimomura’s
computations of 7.(L2V(0)) [20] demonstrate that the elements fg;5 are present
in 7, (L2(S°)). Shimomura [19] proves that 3; cannot be a permanent cycle for i =
4,7,8 (mod 9). In [18], many relations amongst the §;’s are investigated contingent
on the existence of the self-map constructed in this paper. In particular, Shimomura
proves that if the elements 3;3{ are permanent cycles for i = 1 (mod 9), then they
are non-trivial. These elements are permanent cycles by Corollary 1.2. They should
be regarded as the substitutes for the the Adams-Novikov elements Bg¢4, which
fail to exist.
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Some remarks as to how this paper came to be written are in order. The main
result of this paper was the subject of the second author’s dissertation completed at
Northwestern University under the direction of Mark Mahowald. The first author
required the result for his dissertation work at the University of Chicago under the
direction of J. Peter May. Certain errors and gaps in the original work needed to be
corrected. In the original thesis, the second author’s main technique for obtaining
differentials in the ASS was to lift differentials from the ANSS using a technical
lemma, called the ‘ladder lemma’. We were unable to make the proof of this lemma
rigorous, and so the product rule (Theorem 5.1) is used instead for many of the
differentials.

The authors would like to thank Mark Mahowald for his constant encouragement,
and assistance in this project. We also thank Katsumi Shimomura, for his useful
correspondence concerning the construction of the (3;’s from the self map. The
first author would also like to thank his advisor, J. Peter May, for many useful
conversations related to this project. We are also appreciative of many useful
comments made by the referee, including pointing out a substantially simpler proof
of Lemma 8.12.

Conventions. Throughout this paper we shall always be working in the stable
homotopy category localized at the prime 3, and all homology will be with Fs3
coeflicients. We shall use the following abbreviations.

ASS: Adams spectral sequence

ANSS: Adams-Novikov spectral sequence
BSS: Bockstein spectral sequence

AHSS: Atiyah-Hirzebruch spectral sequences

The dual Steenrod algebra will be denoted by A,. If X is a spectrum, we will often
use the notation Ext(X) to represent Exty4, (F3, H (X)), the E5 term of the ASS
for computing m.(X). We will denote the E, term of this ASS by E,.(X). We shall
use the notation = to indicate two quantities are equal up to multiplication by a
unit in F3.

Finally, in Section 3 we give many elements in H*(P,) names which are derived
from their May spectral sequence names. In all but one case, the sign of the
element corresponding to a name coincides with the element whose Curtis algorithm
representative has a leading term with a positive sign. The one exception we make
is the element called k¢ in bidegree (2,20). We work under the sign convention
that k¢ is detected by the lambda algebra element —AgA3. The reason we make
this exception is so that certain relations (Equation 3.1) are more uniform.

2. THE ADAMS SPECTRAL SEQUENCE OF eos A V(1)

In this section we will define eox A V(1) and compute its ASS. The method of
computing the Ey term of the ASS is to produce a finite complex Y(2) such that
upon smashing it with eoy A V(1) we get a wedge of k(2)’s. We know the ASS of
this object, and we recover the Es term of the ASS for m.(eos A V(1)) by forming
a periodic resolution of S° out of copies of Y (2). There is nothing original in this
section. Most of the material here was first discovered by Hopkins, Mahowald, and
Miller, but remains unpublished.
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Let E-> be the Hopkins-Miller spectrum at p = 3. It represents a Landweber
exact cohomology theory whose coefficient ring is

Es, = W, [[ua]][u, u™"]

where |u1| = 0 and |u] = —2. Here Wy, is the Witt ring with residue field Fy. Fix
a primitive 8" root of unity @ in Fy. We will refer to it’s Teichmiiller lift in Wg,
also as w. The element w satisfies the relation

wWH+w+2=0
in Fg. The spectrum Fs is a BP-ring spectrum, and the map ® : BP — FE, has

the following effect on coefficient rings.

®(v;) = u%uy

B(vy) =u®
®(v;) =0, fori>2

Let S, be the Morava stabilizer group. It is the automorphism group of the Honda
height 2 formal group law Fy over Fy, and is contained in the non-commutative
algebra
Ws, (S)/(S* = p,Sa = 0(a)S)
as the multiplicative group of units. Here o is the a lift of the Frobenius map.
The Galois group Gal = Gal(Fy /F3) acts on S, by acting on Wg,. It is cyclic of
order 2 generated by the Frobenius automorphism ¢. One may form the semi-direct
product
Gz = SQ x Gal.

The spectrum Fj is an E, ring spectrum, and the group Gu acts on Ey via Eo
maps. The spectrum E, and the A, action of S, are presented in [17]. There is a
maximal finite subgroup G2 < S2 of order 12 which is isomorphic to C5 x Cy. It
is generated by an element s of order 3, and an element ¢ of order 4, given by the
following formulas.

1
s= —5(1+w5)
t=w?

These elements, as well as specific formulas for their action on Es,, are given in
[6]. The subgroup G2 is not invariant under the Galois action, so following [6]
we instead investigate a maximal finite subgroup Ga24 < Gy (of order 24) which
contains G712 and fits into the following (non-split) short exact sequence.

1> G2 = Goy > Gal > 1

The subgroup G244 is generated by the elements s, ¢, and 1, where we define
Y =wo € Ga.

The spectrum EQO, is defined to be the homotopy fixed point spectrum ESG“. A
complete computation of the homotopy of EQO,, and its ANSS, is given in [6]. In
[5], Goerss, Henn, and Mahowald compute the ANSS for EO,,(V (1)), but their
approach must be modified since they use Gy instead of Ga4. Their results may
be conveniently summarized in Figure 2.1. In this figure, dots represent additive
F3; generators, lines of length 3 represent multiplication by «y, lines of length 7
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FIGureE 2.1. EO,,(V (1)) is generated as a free module over
F; [v;E o/ ?] on the above pattern.

represent the Toda Bracket (a1, a1, —), and lines of length 10 represent multiplica-
tion by f;. These products are given by the S-module structure. The homotopy is
periodic with periodicity generator in /2 of degree 72 on the displayed pattern.

We want an Adams spectral sequence, but unfortunately the wvs-periodicity in
EO; makes its homology trivial. We therefore need to take a connective cover.
There is a nice connective cover of EQy called eos which has been constructed
by Hopkins, Mahowald, and others. Since the details of this construction are quite
involved, we will instead define eos AV (1) to be the connective cover of EO; AV (1).

Since there is a gap in the homotopy of EOy A V(1) between the 56 stem and
the 72 stem (and hence by the periodicity of EO2’s homotopy groups there is
a gap between the —16 stem and 0 stem), taking the connective cover removes
the periodic copies of the homotopy in negative dimensions. We remark that the
reason that we cannot just define eo, to be the connective cover of EQ, is that the
there are infinitely many copies of BP(1) in the homotopy supported on negative
periodicity generators whose unwanted homotopy eventually appears in positive
degrees. Smashing with V(1) kills all of this troublesome v;-periodic homotopy.

We will now produce a finite complex Y (2) which, when smashed with EQOa,
splits as a wedge of Morava K-theories. Let v : S* — BO be a generator of
74(BO) = 7. The map v extends to a loop map 7o : 25° = BO. Let J;(S*) <
Q5% be the ! filtration of the James construction [11]. Then ~ restricts to a map
vi : Ji(S*) = BO. Let Y (i) be the Thom spectrum (.J;(S*)). Then the homology
of the ring spectrum Y (o00) is given by

H.(Y(00)) = F3[bs]

where by has degree 4. The homology H, (Y (%)) is the additive subgroup generated
by bk for 0 < k < i.

There are maps Y (i) AY (j) — Y (i+j) induced from the maps J;(S*) x J;(S*) —
Ji+j(S*). The complex Y (1) is just the Thom spectrum (S*)7, and it is a two cell
complex whose top cell is attached to the bottom cell by the attaching map which
is the image of v under the J-homomorphism. Therefore, Y (1) = S° U,, e*. Tt
follows that the dual Steenrod operation P} acts on H,(Y (1)) by the formula

Pl(by) = 1.
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Using the map Y (1) AY (1) - Y (2), we obtain the following formulas for the dual
action of the Steenrod algebra on H. (Y (2)).

Pi(by) =1
PL(b3) = 2by
PZ(b3) =1

In particular, we have the CW decomposition Y (2) = S U,, e Usq, €5.
Our interest in Y (2) arises from the following proposition.

Proposition 2.1. There is a splitting
EO; ANV(1) AY(2) ~ K(2) V 23K (2).

Proof. One can easily compute m.(EO2 A V(1) A Y(o0)) from the AHSS arising
from the cellular filtration of Y (00), but the associated graded arising from this
filtration gives too much ambiguity for our purposes. We therefore will use instead
the homotopy fixed point spectral sequence

H*(Ga4; 7 (B2 AV (1) AY(00))) = m(EO2 AV (1) AY (00))
where
T (Ba AV (1) AY (00)) = Fy[u,u™", by].
In [6], the action of Ga4 on Es,(V (1)) is given by the following formulas.

The elements s,t € G12 correspond to the automorphisms

5(z) = z +p, v 2w = z + w2 + O(2*)

t(r) = T’z
of the Honda height 2 formal group F> over Fy[u,u™!], with 3-series [3]r, = u~82°.
Under the canonical map of Thom spectra Y (co) = MU, by maps to the element
of the same name in

(E2 A V(l))*(MU) = ]Fg [U,U_l][bl,bg,b3, . ]

where the generators b; coincide with those of Adams in [1, I1.4.5]. These b; corre-
spond to the coefficient of z**! in a strict map of formal groups, and as such, we
have

Sx(ba) = by + u 2w
tx(b2) = by
Yy (b2) = ba.
Therefore, the fixed points are given by
T (By AV (1) AY (00))924 = Fa[(@u™4)*, b3 — @2byu™] € Fy [, by].
Define a4 = W?u~* and ag = b3 —w?bu~*. In [5, 1.4], the Ey term of the homotopy
fixed point spectral sequence for EO, A V(1) is computed to be

H*(Gaou;me(BEa ANV (1)) = F3[af', 5] ® E[a]
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where 8 = {a,a,a). The cellular filtration of Y (occ0) gives an Atiyah-Hirzebruch
type spectral sequence that allows one to compute H*(Ga4; 7« (Ex AV (1) AY (0)))
from this. The d4’s in this spectral sequence are multiplication by «a, and the dg’s
are given by the application of the Massey product (a,a,—). Thus we conclude

that
H*(Gog;m (B2 AV(1) AY(0))) = {g*(Ez AV (1) ANY (00))%24, z i 8

and

7« (EO2 AV (1) AY (00)) = Fs[af!, ag).
The spectrum EQO; A Y (00) is a ring spectrum whose homotopy is concentrated in
Adams-Novikov filtration 0, and since the obstruction for V(1) to be a ring spectrum
lies in positive Adams-Novikov filtration (4.1), EOy A V(1) A Y (o) is also a ring
spectrum. Its homotopy is concentrated in even degrees, so it is complex-orientable
[1]. The complex orientation

6 :BP — By AV(1) AY(00)
for which 6, (v;) = 0 for i # 2 and 6. (v2) = u 8 lifts to a complex orientation
§:BP — EO, AV(1) AY(0).
Here the effect on homotopy is given by 6, (v;) = 0 and 6, (v3) = —a2. There are
maps (for e =0,1)
12548 againg
ST ANBP —— EO2 AV(1) AY (0)
that extend to maps
¢12j+8€ : 212j+8€K(2) — E02 A V(].) A Y(OO)
These maps give a splitting
EO; AV(1) AY (00) = \/ ' (K(2) v E°K (2)) .
i=0
The composite
EO; AV(1)AY(2) = EO, AV(1) AY (0) = K(2) VERK(2)

(the second arrow is projection onto the first two wedge summands) is an equiva-
lence. |

Corollary 2.2. There is a splitting
eoa N\V(1)AY(2) ~ k(2) vV Z8k(2).

Proof. The spectrum k(2) V 38k(2) is the connective cover of K (2)V 28K (2). The
Atiyah-Hirzebruch spectral sequence for (eoa A V(1)).(Y (2)) is easily computed,
and one finds

(€02 AV (1) ANY (2)) = Fz[ad].
Therefore, eoa A V(1) A Y(2) is the connective cover of EO2 A V(1) AY(2). The
previous proposition and the uniqueness of the connective cover combine to give
this corollary. |

Remark 2.3. Hopkins and Miller, in [9], prove the following stronger result.
eoy NY(2) = BP(2); VS8 BP(2)}
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We will now construct a resolution of the sphere spectrum out of suspensions of
Y'(2). There are cofiber sequences

S 5 Y (2) = 2'Y (1)
Y(1) =5 Y(2) = S8

where the first maps are the evident inclusions. Splicing these together gives the
following 2-periodic resolution of S°.

S0 <—— 33V (1) g1o 183y (1) 520
Y (2) $3Y(2) $10Y(2) 183y (2) Y20y (2)

The homology long exact sequences associated to this resolution break up into short
exact sequences as a result of the following lemma.

Lemma 2.4. The maps
H.(eos NV (1)) = Hy(eos AV (1) AY (2))
H,(eoo NV(1)AY (1)) = H.(eoo AV(1) AY(2))
are injective.
Proof. The natural map of Thom spectra Y (co) — MU makes MU a Y (00)-ring

spectrum, and therefore the Eilenberg-MacLane spectrum HF3; = H is a Y (00)-ring
spectrum. Thus there is a retraction

g HAY(©Q) — > HAY(00) —> 1
Id

and we may conclude that H.(eos AV (1)) = H.(eoo AV (1) AY (2)) is an inclusion.
The complex Y (2) is, up to suspension, Spanier-Whitehead self-dual, and so we
also have that the projection map H,(eos A V(1) AY (2)) = H,(Z8eo0s AV (1)) is
surjective, hence, the previous map in the cofiber sequence

H.(eoa N V(1) ANY (1)) = Hi(eo2 ANV (1) ANY(2))
must be injective. |

We may therefore apply Exta, (F3, Hi(eox A V(1) A =)) to this resolution, and
get long exact sequences, hence a spectral sequence. Our spectral sequence takes
the form (for e = 0,1)

(2.1) EFTest = Ext®t(eop AV (1) AZIOFF3¢y (2)) = Ext®H2htett2kte oo, AV (1))

Applying Corollary 2.2, and using the known computation Ext(k(2)) = F3[vs] where
|va| = (1,17), we may express the E; term of 2.1 by

E}** =F;(vs, 8] ® Ela, a).

The tridegrees of these elements are |vs| = (0,1,17), |a| = (0,0,8), |8] = (2,0, 10),
and |a| = (1,0,3). The only possible differentials are

di(ef'via) = B0
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FIGURE 2.2. The ASS for w.(eo2 A V(1)) is a free module over
F3[v3] on the displayed pattern.

but this d; arises from the composite Y'(2) — S8 — 28V (2). The element vla €
Ext(eoa AV (1)AY (2)) is born on the zero cell of Y (2), and so must map to zero when
projected onto the 8-cell of Y (2). Therefore, the spectral sequence 2.1 collapses at
E;, and we are left with a computation of the Fs-term of the ASS for 7, (e02 AV (1)).

The differentials in the ASS are easily inferred from the differentials in the ANSS
computed in [5]. Figure 2.2 displays the complete ASS chart. In this chart, Fs-
generators are represented by dots, a multiplication is displayed with solid lines, and
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the Massey product {(«, @, —) is displayed with dotted lines. Solid lines of negative
slope represent Adams differentials. The z-axis represents the t — s degree, and the
y-axis represents the homological degree s.

We remark that the ASS for eo» A V(1) is additively identical to the ANSS. The
only difference is that v, has Adams filtration 1, whereas it has Adams-Novikov
filtration 0.

We finish this section with a computation of the effect of the eos Hurewicz
homomorphism on the ASS. We will use the resolution of S° by the ring spectrum
Y (00). Mahowald, in [12], investigates a geometric Thom isomorphism

Y (00) AY (00) ~ Y (00) A (253)
under which we may make the identification
mx(eo2 ANV (1) AY (00) AY (00)) = F3[ay, ag, 7]

Here r has degree 4. We may regard F3 [a4, ag, ] as being contained in F3[u~!, b2] ®
IF5 [b2] where a4 and ag are contained in the first factor as described earlier, and the
element r corresponds to 1 ® by. The main result of [12] states that the right unit
of the associated Hopf algebroid

(Fs[aa, ag), F3[a4, as,r])

is given by the following formulas where b, maps to bs ® 1 + 1 ® bs.
T« (€02 AV (1) ANY (00)) X (02 AV (1) AY(00) A Y (0))
I}

1
F3 [04, aa] Fg [Cl4, ag, 7‘]

Aag) =A@ ™) =% @1

= ay
Aag) = A3 —@%byu™) = (03 —@?u b)) @ 1 — @20 @by + 1@ b3
=ag — 47 + r’

The Hurewicz image of hg is represented by r, and the Hurewicz image of hq is
represented by 2. The d; supported by ag identifies the Hurewicz image of hy with
hoas = - a. This observation may be used to prove the following proposition.

Proposition 2.5. The Hurewicz homomorphism
h: Ext(V (1)) — Ext(eo2 AV (1))
is described by
h(ho) = a h(bo) = B h(v2) = v2
h(h1) = aia h(go) = Ba

3. CALCULATION OF THE ADAMS E; TERM Extg, (F5, H.(V (1))
The ASS for computing 7.(V (1)) has as its Ea term
Extya, (F3, H.(V(1)))
As a comodule over the dual Steenrod algebra, we have

H,(V(1)) = Elro, 7]
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This is a subalgebra of the Steenrod algebra, but V(1) is not a ring spectrum, so
this algebra structure is not the consequence of a geometric multiplication. For the
purposes of computing Ext, though, we may use the algebra structure. A change of
rings isomorphism identifies the E» term of the ASS as the cohomology of a Hopf
algebra.

EXtA* (]F3aE[T0;Tl]) = EXtA*//E'[To,T1](IF3aF3) = H*(A*//E[ToaTl])‘
We may identify
A.//E[r, 1] = P[£1,62,...] ® E[1,73,...].

The cohomology of this Hopf algebra is the cohomology of the subalgebra of the
periodic lambda algebra (see [7] for a description of the periodic lambda algebra)
given by

K(l) = ()\,’,1}]' 11>0,5 > 2) CA.

We only need the Es term of the Adams spectral sequence through the dimension of
vy, which is 144. Since the dimension of v, is 160, the cohomology of K(Z) coincides
with H*(P,) ® PJvs] in the range we are interested in.

Figure 3.1 displays H*(P,). It was produced from Tangora’s Curtis tables in [22].
The y axis is the homological degree s, and the z-axis is ¢ — s, where ¢ is the internal
degree. Solid lines of different slopes indicate multiplication by hg and h;. Dotted
lines indicate the Massey product {—, ho, ho). The element by = {(hg, ho, hg), 50 by
multiplication can be read off as composites of hy multiplication and application
of the above Massey product. Rectangles indicate that a generator supports a
polynomial algebra on by, that is, all multiples of by on the generator are non-zero
in the calculated range, but they have not been written down in an effort to make
the chart less cluttered. The Massey product representatives are the ones produced
by using the full tags produced by the Curtis algorithm.

In Figure 3.1, certain generators have been given names. In our summary of
conventions at the end of Section 1, we indicated that the signs of these elements will
be chosen (with the exception of k) so that the leading term of the corresponding
element of the lambda algebra has coefficient +1. The following table summarizes
this choice of signs for some of the low dimensional generators, by comparing our
name, the lambda algebra name, and a Massey product representation.

Generator | Lambda Name | Massey Product

bo XA+ Ao (ho, ho, ho)
9o A2 A3 (ho, ho, h1)
ko —Ag A3 (ho, b1, h1)
b1 A6 A3 + A3)g (h1, h1, h1)

There are certain relations which may be read off of Figure 3.1 up to sign. We
indicate the proper sign of some of the low dimensional relations. By choosing the
sign of kg as we have, these relations look more uniform.

h1bo = hogo
(3.1) hi1go = hoko
h1ko = hoby
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Figure 3.2 is a chart of the BSS
Exta, //Blro,m.7] (F3,F3) ® Plos] = EXtA*//E[To,Tl](]F37F3)

It is straightforward to calculate the differentials of this spectral sequence com-
pletely by explicitly finding the differentials in the periodic lambda algebra K(l)
and then finding the representatives in the Curtis table.

In Figure 3.2, the E;-term consists of H*(A.//E[r0,T1,72]) ® P[vs] which is
isomorphic to H*(P,) ® P[vs,v3] in our range of computation. It is implicit in
the chart that every generator supports a P[vs], but all vo multiples are omitted
unless they are targets of differentials, or otherwise contribute to hidden extensions.
When vy multiples are displayed, they are represented by dash-dot lines. Hidden
extensions are represented by dashed lines, and differentials are represented by
negatively sloped solid lines.

We now have computed the E» term of the ASS. It is displayed in Figure 3.3.
Unlike in Figure 3.2, in this chart v, is not implicit unless specifically indicated.
Small solid dots on the chart represent, like all of the previous charts, Fs-basis
elements. Small circles represent polynomial algebras on vy. Otherwise va multi-
plication is represented explicitly by dash-doted lines. It should be noted that if
an element is represented by a circle, it does not mean that that element supports
infinitely many non-trivial multiplications by vs. It just means that throughout the
indicated range, all multiplications by v2 are non-trivial.

4. THE SPLITTING OF D(V (1)) AV(1)
The complex V(1) may be visualized with the following cell diagram.

0 1 5 6
TN

o ——0 oO——oO

Here the uncurved lines represent the Bockstein § (attaching map -3) and the

curved line represents the Steenrod operation P! (attaching map «;). The top

V(0) is attached to the bottom V' (0) by vy, but this is not explicitly indicated in

the cell diagram. Let D(V (1)) ~ X~V (1) be the Spanier-Whitehead dual of V(1).

In this section we will decompose D(V (1)) A V(1) into irreducible subcomplexes.

Since V(1) is self dual, we will have also provided a splitting of V(1) A V(1).
Define finite complexes Y7 and Y5 as follows.

Y; = cofiber (E’1V(1) % 24V (0) LN Eiev(l))
Y, = cofiber (E_QV(I) = E_5V(1))

Here v is projection onto the top V' (0). Figure 4.1 displays cell diagrams of these
complexes.
We will prove the following

Proposition 4.1. There is a splitting
DVA)AV(1) =Y VYs.

Proof. Since D(V (1)) A V(1) ~ 75V (1) A V(1), it suffices to split the latter.
Consider the twist map

V() AV(L) = V(1) AV(1)
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Y Y

1 2

FIGURE 4.1. The irreducible subcomplexes of D(V (1)) A V(1)

The map 7 decomposes V(1) A V(1) into +1 and —1 eigenspaces T and 7. We
claim that these are ¥%Y; and X.6Y3, respectively. More precisely, the self-maps
(14 7)/2 and (1 — 7)/2 are idempotents on V(1) A V (1), and thus give a splitting

VA)AV() ~Ty VT-.

The structure of T_ is straightforward from the action of the Steenrod algebra.
To prove the existence of the ; attaching map in 77, we will use the secondary
cohomology operation ¢ corresponding to the Adem relation P2P' = (. This
secondary operation detects £1. In [23], Thomas proves the Cartan formula

$(wy) = ¢(2)y + 2¢(y) + (P B(2))(BP*B(y)) + (BP' B())(P' B(y))-

Let e; denote the generator of H*(V (1)) in dimension 7. Evaluating ¢ on eg A e,
we get

dleoNeg) =0Neg+eg A0+ e5Neg+egAes =es Aeg+ eg Aes.

Similarly, we see ¢(e1 Aeg + eg Aer) = —eg A eg. O

5. THE PRODUCT RULE

The statement of the product rule will require some notation related to Adams
resolutions which we will give presently. Let H be the fiber of the unit 5 : S° — H,
where H is the Eilenberg-MacLane spectrum HF;. The standard Adams reso-

lution is defined by letting W, = F(S) and then defining W, to be the cofiber
F(S)/F(HT). In particular, Wy oo = W, = F(S) and Wy = H A F(s)_ For a
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spectrum X the resolution may be written as

X WinX<=—WoAX <~—---

| l |

Woa AN X WianANX Wai ANX

The ASS for 7. (W, A X) is a truncated version of the ASS for m,(X); it is the
spectral sequence obtained by only including the E}7 terms for s <i < s+ r, and
omitting differentials supported on E}7 for ¢ < s. There are several important
maps relating the spectra W .

Tork : Wegre = Wik

Gs,rk t Wsrir = Wsp

Os,rk : Wep = EWsirk

Hsq,s0,r * Wsl,r A Wsz,T — W31+32,r

i is induced by the product on E. The remaining maps are compatible in all of the
ways one might expect them to be, and the sequence

f g 3
Ws+7‘,k - Ws,r+k - Ws,r — EWs+r,k

is a cofiber sequence.
It is easy to see that an element z € (W1 A X) persists to the E, term of the
ASS if and only if it lifts to an element & € (W, , A X). In fact, we have

Im{wt,S(str N X) — '/ths(Ws,l N X)}
{7y s p1 (Womre AX) B s (Wo A X) = 1 s (Wea A X))
and d,(x) is computed as 0(&) € m(Wsgr1 A X).

Define, for z; in 7. (V (1)),
F(z1,22) =71 - T2 + (-1)1?77 - 73 € m. (V(0))

where 7; is the image of z; in 7, (V(0)) under the projection V(1) — %°V(0), T; is
the image of Z; in 7,(S) under the projection V(0) — S*. If z; € m. (W5, » AV (1)),
then F'(z1,z2) will be regarded as an element of 7. (Ws, 15, A V(0)).

s,t __
ESt =

Theorem 5.1 (Product Rule). Suppose z; € E;(V (1)) persist to the E,-term of
the ASS and 1 - F(z1,22) = 0, thought of an element of 7. (Wsyo ,—2 A V(1)) (the
product is induced from the V' (0)-module structure of V' (1)). Then it follows that
B1- F(z1,22) € m(Woyo,—1 A V(1)) lifts to an element G(21,22) in mu(Wsyr1 A
V(1)) and we have the following formula for d,(z1z2).

dr(.’L'l.’EQ) = (dr,-.’El) - To + (—1)|m1|$1 - (der) — G(.’El,.’ll'g)

Example 5.2. We will use the product rule to compute ds(v3). The element v, is a

permanent cycle for dimensional reasons. We have 73 = 1 = h; and U3 = 1 = by.
Here we have given the ASS names of these elements. Therefore,

G(’Ug,’l)z) = (h1b0 + bohl)bo = —hlbg
so the product rule says that

d3('l}§) = d3(’l}2)’l}2 + 1)2d3(1)2) — G('UQ,UQ) = hlbg
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One can also use the Hurewicz homomorphism V(1) — eo2 A V(1) to get this
formula.

Proof of product rule. Let X be the cofiber of 81 : 1%V (0) — V(1). The closest
substitute for a product on V(1) is the map

p:VI)AV() = X

formed by projecting onto the wedge summand X6Y; (Proposition 4.1) and collaps-
ing out the bottom two cells of the top V(1). If y; are elements of 7, (V' (1)), then
the image of y; Ay2 € . (V(1) AV (1)) under the composition

V() AV(1) = X — Z1V(0)

is F'(y1,y2)-
We shall need various filtered forms of X. Define X, = W, , A X, and define

X s,r and X s,» to be the following cofibers.

SO, L AV(0) 2% Wepora AV(L) = X,
SO, AV(0) 2% W1 AV(L) = Xy

Note that the maps $; above may be chosen to raise the s-index by 2 because they
have Adams filtration 2. Then we have the following cofiber sequences (by Verdier’s
axiom).

Xor = Xop = Wea AV(1)

Xor = Xop = SWopp1 AV(1)

Xs,r—i—l — Xs,r — EXs—l—r,l

Xyrp1 = Xop = S2W,oprn AV(0)

Since the Adams filtration of 3; is greater than 0, there is an equivalence HAX ~
HAV(1)VvHAZHUV(0), thus X, splits in a similar manner. We need a splitting
map that behaves well with respect to the other maps floating about. Consider the
splitting j induced on the cofibers below (the rows are cofiber sequences).

Kot —— X, , —= Z W1 AV(0)

o

Xs,r—i—l Xs,r EXS'H‘J Id

)

| |

S2W,yp1 AV(0) == S12W, 1,1 A V(0)
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We consider j to be a nice splitting, because the projection v it induces onto the
other wedge summand fills in the following triad of cofiber sequences.

(5.1) Xyri1 X,, YPW,opr1 AV(0)
\ |
" » Y
Xs,r-i—l Xs,r o EXS_+7"1
Bgl v
Y
* — EWS+T’1 A V(].) e EW3+T,1 A V(l)

Let Z; € me(Ws, ) be lifts of z; € m.(Ws, 1). Let s = 51 + s2. It is useful to keep
in mind the following diagram.

Ws 1 A V(l) <g— We,r A V(l) 3 SWsir1 A V(l)

< ! )
; i ]

SWe,y4r1 A Weyr A V(1))
Wsl 1A W32,1 A V(l)(z) <Q— Wslﬂ‘ A WSZJ‘ A V(l)(2) —8> VEWzi 'rr/\ Wszj’i : A Vglgu)

The element 71 A 25 € Tu(Ws, 1 A W, 1 AV (1)P) lifts to 71 ATz € Tu(Wiy » A
We,r AV(1)(2). We then have

6(5{/\ :'E-Q/) = dr(ml) N To + (_1)|z1\m1 A dr($2).

The element z; - z2 is equal to v o pu(x1 A 22) € (W51 AV (1)). We want to
compute d,(z1 - x2), which means we first need to lift z1 - 22 to m.(Ws,, A V(1)).
Now u(Z1 Ax3) is a lift of u(z1 Az2), but this element will not lift to a lift of z1 - 22
without a little modification. The following sequence is exact.

Te(Ksr) = Tac11 (Wer AV(0)) 25 1y (Wagnmea A V(1))

Our assumption that £1 - F(21,%2) € mu(Wsyo,r—2 A V(1)) is trivial implies that
F(z1,x5) lifts to an element F' € 7, (X,,,). Let y be the image of F' in X, ,, and
define

z=pu(x1 NT3) —y € W*(XS,T)-

We claim that (1) z lifts to 2 € m. (W, A V(1)), and (2) Z is a lift of z; - 22 €
T«(Ws1 AV (1)).

With regard to claim (1), we need only check that the image of z in m (ZH W, . A
V(0)) is zero. The image of both p(z1AZ3) and y in m (S W, AV (0)) is F(z7, 73),
therefore the image of z, their difference, is zero. Claim (2) is established by noting
that the sequence

T (Xs,r) = T Xs,r) = m(Ws2 AV(1))
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is exact. Therefore the image of y in 7, (Ws 2 AV (1)) is zero, so its image vo g(y) €
T« (Ws,1 AV (1)) is zero. So, we have

9(z) =vouiog(z) =vog(z) =vopu(rs Azs) = 71 - 72
and claim (2) is established.
We are left with identifying 9(z). We have
0Z =vod(u@I ATs) —y) = dp(z1) - 22 + (=1) %1z - dy(2) — v 0 A(y)

We must evaluate v o 9(y). In Diagram 5.1 the boundary maps 0, and 0, are
displayed. There is a map of cofiber sequences relating 9; to 0 in the commutative
diagram displayed below.

X r Xsr

)

EXS—H’,I

Therefore, Oy = 01 F. Furthermore, Diagram 5.1 reveals the relationship between
01 and 0>. Thus we have vod,; (F) = 02(F'), and we just need an explicit description
of the latter. The map of cofiber sequences

Witra AV (1) X, Kor e S W1 A V(1)
f[ ‘ L f
Warz,r—1 AV(1) X,. SUW,p AV(0) —5= SWapa,r1 AV(1)

tells us that 8y(F) is a lift of By - F(Z1,73) t0 m(Wapr1 A V(1)) and as such,
deserves to be called G(z1,z2). This completes our verification of the formula. O

Remark 5.3. The theorem holds under a weaker assumption. The proof of the
theorem does not require x; and x5 to survive to E,, but only that d(z1) - 22 +
(—1)!#1z; -8(x5) have Adams filtration greater than or equal to s +r. We will need
this technical generalization for some of our applications of the product rule.

6. SELECTED AHSS CALCULATIONS OF 7. (V (1))

In our calculation of differentials in the ASS it is helpful to know some of the
homotopy groups of V(1). The 3-component of the homotopy groups of spheres is
known completely through the 108 stem. A table summarizing these elements may
be found in [16, A3]. Thus one may write down the E;-term of the AHSS

Esl,t = @ Tit5(S) = ms(V (1))

s-cells of V(1)

in this range. The complex V(1) only has cells in dimensions 0, 1, 5, and 6. We
shall denote an element in the E! term by the notation [k] where v € 7.(S) and
k is the cell supporting it. The differentials are determined by the attaching maps,
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and are given by the following formulas.

. 3y[k-=1] k=1,6
di(v[k]) =
101kD {0, otherwise
. Jaiy[l] k=5
dy(v[k]) =
1([E]) {0 otherwise

<’77 37 al)[]'] k=6
ds (v[k]) = < (v,01,3)[0] k=5
0 otherwise

While a complete determination of the AHSS through the 108 stem should be
a relatively straightforward task, we restrict ourselves to a few vicinities where we
need the data. These partial charts are given on the next few pages, and are referred
to in subsequent sections.

All but two of the differentials are immediate. We do not know if the dot-
ted differential (1) exists in (6.4) because we are unsure of whether or not 33 €
+(B5,a1,3). We will see in the proof of Lemma 9.7 that the differential (1) must
exist. The only other differential which isn’t clear is d5(2gs[5]) in (6.3). We compute

a1<3,a1,x68) = 3(&1,&1,1‘68) 75 0.

This is a hidden extension in the ANSS for 7.(S°) in the computations in [16].
The indeterminacy of (3, a1, zgs) is trivial, and the indeterminacy of (ay, a1, Zes) is
contained in ay -m72(S%) = 3-775(S°), so it doesn’t enter into the above computation.
We conclude that (3, a1, z6s) # 0, so it has no choice but to be a non-zero multiple

of B35

Portions of the AHSS for m.(V (1))

(6.1) Stem 55 Stem 56 Stem 57 Stem 58
ar14[0] aa[1] B315] p316]
B3 [0] Biaa(l] a13[6]
BeI5] a3[5]
B237 1 [6] Bs[6]

(cont’d on next page)



(6.2)

(6.3)

Portions of the AHSS for 7.(V (1)), cont’d

Stem 63 Stem 64 Stem 65 Stem 66 Stem 67 Stem 68
a16(0] a1g[1] B3 B104[0] B3 Bron[1] a17[0] z68[0]
\
B251[1] ays5/2[5] <~ a1s5/2(6] B3 1 [5N0617[1]
a16[5]
B3 51(6]
Stem 68 Stem 69 Stem 70 Stem 71 Stem 72 Stem 73
z3[0] zes[1] B3P [5] awgysl0] . B3AE[0] B3B3
=~ \
ay7[1] =<— a44]6] \0‘18/3[1] zg8(5]
\
a16[5] a17[5] a7[6]
B3 51(6]

(cont’d on next page)

Sa 4O IONHLSIXH HHL NO

€T
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Portions of the AHSS for 7.(V (1)), cont’d

(6.4) Stem 77 Stem 78 Stem 79
B3 B115] B3[0] ai20[0]
cwpldl  BEE o A
Bs[5]
(6.5) Stem 87 Stem 88 Stem 89
r22[0] aza(1] Y201 [5]
Be2[1] a1 /2[5] BsP1[5]
Be3[5] Be3[6] 021/2[6]
(Bs, 01, 01)[6]
72[6]
(6.6)
Stem 97 Stem 98 Stem 99
o2 (5] B [5] — o [0]
Be/3P119] Beoi 5] (zo2, 11, 1)[0]
023[6] Lg2[6] Y2 P10 [5]
(BsPr, a1, 1)[6] Be/351[6] BsB315]
723116 Bsa [6]
G 6]

Stem 80
azoll]
a19[5]

B3B8t au[5]

ﬂ%ﬁ;al [5]

Ps[6]

Stem 90
Bs[0]

Be /30 [5]
(B3, e, 1)[5]
Y201 6]
Bs1[6]

Stem 100
B2p510]
as5[1]
(92, 01, 01)[1]
024/2(5]
Be/3Bra1[5]
Y2 Bron [6]

Bs51[6]
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7. THE ORDER OF THE f; ACTION ON V(1)
In this section we will prove the following proposition.
Proposition 7.1. The map
BTV (1) - V(1)
induced from smashing the map 89 : S50 — S with V(1) is null.
Corollary 7.2. Regarding 7.(V (1)) as a module over 7, (S), we have the relation
BL-z=0
for all z € m.(V(1)).

We remark that in 7.(S) we have the relation 3¢ = 0, and 3} is non-zero. The
power of 3} in Proposition 7.1 is minimal, since in 7, (V (1)) the image of the element,
Bt under the inclusion of the bottom cell is non-trivial.

Corollary 7.2 follows from Proposition 7.1 since the element 37 - z may be ex-
pressed as the following composite.

5
§30+k 2y w0y (1) 21, v
We will first prove the following lemma.
Lemma 7.3. The element 3} in m50(V (1)) is trivial.

Proof. There are no elements in the 50 stem of Adams filtration greater than bj.
Therefore, it suffices to show that the element b3 in the ASS for 7, (V (1)) is the
target of a differential. In the ASS for 7.(eos A V(1)) there is a differential

dg (v3ho) = bg.

Using the results of Proposition 2.5, we may conclude that if v3hg supports no
shorter differentials in the ASS for V' (1), then it must kill 4. Upon investigating
the F» term of the ASS for V (1), we see that there is no element in smaller Adams
filtration that could be the target of a shorter differential. |

Proof of Proposition 7.1. We will demonstrate that the Spanier-Whitehead adjoint
of A7
Bi S - D(V(1)) A V(1)
is null. Let X be the fiber of the composite
V(1) = $5V(0) 25 £-5v(0)

where the first arrow is projection onto the top V' (0). By Proposition 4.1, X may
be regarded as a subcomplex of Y7, which may in turn be regarded as a subcomplex
of D(V (1)) AV(1). We wish to show that the composite

5
§50 Pi, 60y X oy vy < D(V(1)) AV(D)

is null. We will show that the shorter composite S°° — Y; is null.
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Consider the following diagram, whose two bottom rows are cofiber sequences.

550
e
T S0 §
5
2 -57(0) X V(1)
£V (1) Y 1%46)

In this diagram, the map S®° — V(1) is null by Lemma 7.3. Therefore the lift f
exists making the diagram commute. We will complete the proof of the proposition
once we establish the following

Claim. The image of the map 756(V (0)) — 756(V (1)) is trivial.

The claim follows easily from the AHSS for m.(V(0)) and 7.(V(1)). A portion
of the AHSS for =, (V(0)) is displayed below.

Stem 55 Stem 56 Stem 57
O£14[0] O£14[].]
52%041[0] /33041 [1]

There are no differentials, and w56 (V (0)) is of rank 2. We now consider the image
in V(1). The same portion of the AHSS for V(1) is displayed in (6.1), in which
the same generators of m56(V (0)) have been killed by differentials, and the claim
follows. |

8. PROOF THAT v§ IS A PERMANENT CYCLE

In this section we will prove that the element vJ is a permanent cycle in the ASS
for m,(V(1)). We will let h: V(1) = eoa A V(1) be the Hurewicz homomorphism.
We will first use the product rule (5.1) to determine da(v3).

Lemma 8.1. There are the following differentials on v in the ASS.

d*('UQ) =0 d3(U§) = hlb% dz(Ug) = —bokohl
dg(vg) = —bokohlvg dg(vg) = —bok‘ohl’l}g dQ(Ug) = bokohlvg
dz(’Ug) = bokohlvg dQ(Ug) = bokohlvg dz(’l}g) =0

Proof. These formulas are just obtained by iterated application of the product rule.
The differential d3(v3) is computed in this manner in Example 5.2. One then uses
the following formulas in the ANSS, which are derived in [16, 5.1.20]

ok = Br = khivt~'  (mod v;)

= k
U§ =Bk = (2) ’Ug_Qko + kv§_1b0 (mod 3,v1)
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to inductively determine d.(vi*!) from d.(v§). We should point out that this
formula differs by a sign from the formula in [16] because the elements we are
referring to as by and kg are normalized differently. O

Remark 8.2. In [15], Oka demonstrates that v3 is a permanent cycle in the ANSS
for m.(V (1)). Above, we have shown that it supports a dp in the ASS for 7, (V (1)).
In fact, there is a differential

d2(v3bogo) = bokoh1vs

and v§ & v3bggo is a permanent cycle in the ASS. This differential is established in
Lemma 9.5.

We must eliminate the possibility that v§ supports a d,. for » > 2. We will make
a list of all elements in the ASS in the 143-stem of Adams filtration greater than
11. It is given in the table below, with references to the lemma that takes care of
it, as well as the Adams filtration (AF).

AF | Element [ Lemma
29 hgb(l)4 8.3
23 90 ho’U% bg 8.3
22 b1 h()'l)g bg 8.4

18 | hoblud 8.3
7)1'1)2()5 8.5
vshy b 8.6
17 kohovgbg 8.9
’l’hkobg 8.10

13 ’Ughobgvg 8.13
12 gghobovg 8.3

T govsb3 8.15
’U3k’0h0’l)%bg 8.14

Lemma 8.3. If z € E»(V (1)) is an element of the ASS for V (1), and its Hurewicz
image h(z) € E2(eoa AV (1)) is non-zero, then x cannot be the target of a differential
supported by v3.

Proof. We have h(d,(v3)) = d.h(v3), but h(v)) € Ex(eoz A V(1)) is a permanent
cycle, so d,(v9) must be in the Hurewicz kernel. O

Lemma 8.4. Suppose that y € Fg(V(1)). Then hobdy = 0 in Eg(V(1)). Similarly,
if z € Ez(V(1)), then b2 = 0 in E7;(V(1)). In particular, if z is an element of
E»(V(1)) and & = hobdy or x = b§z for y or z as before, than z is not the target of
a non-trivial d,. for r > 6 or r > 7, respectively.

Proof. The element hob3 dies in Eg(S%) (this is just the Toda differential dsb; =
hob3). Similarly, there is a differential dg(hobovs) = b giving the relation b5 = 0 in
E;(S°). Then use the S°-module structure of V(1). O

The following lemmas take care of the other possible targets. We work from high-
est to lowest Adams filtration to eliminate the possibility of intervening differentials
as we go along.
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Lemma 8.5. In E5(V (1)) there is a non-trivial differential
ds (mw2b§) = kovaby’.

Proof. In E5(S°), we have dsm; = kob3. The element vyb§ is a permanent cycle
in the ASS for V(1), so the differential follows from the S-module structure of
V(). 0

Lemma 8.6. In E,(V (1)) there is a non-trivial differential
d4(1)3h1b8) = bgkg

Proof. Our AHSS calculations (6.3) prove that m72(V(1)) = 0. Therefore, the
ASS for m,.(V(1)) should have no non-trivial permanent cycles in the 72-stem.
The E> term contains k3b3, bikov2, and bgv3. The element bv3 supports a non-
trivial d3, and dsmive = bikova. The only possibility for eliminating k3bZ is for
ds(vshibo) = k3bZ. Therefore dy(bivshy) = k2bj. O

For Lemma 8.9 we need to know the differentials supported by vigo for small i.
These are given below.

Lemma 8.7. We have the following Adams differentials on gov} in E,.(V(1)).
da(govz) = b3ho  ds(gov3) = bgkoho  da(gov3) = —gobokoha
ds(govy) =0 ds(gov3) = v3bgkoho

Remark 8.8. The element govj is actually a permanent cycle, and this should be

regarded as anomalous. The AHSS element which it corresponds to is {85, a1, a1 )[1],

and this bracket is defined only because of the anomalous relation a185 = 0 in
7 (S)-

Proof. We will first explain how the term G(govi,v2) and the term G(govi,v?) in

the product rule is computed. The Adams-Novikov element which detects govd is
given by

U;boho - ivg_lkoho (mod 'l)1).
(We will just work modulo (v1) since we will be mapping everything into V(1)

for the product rule anyways.) The Adams-Novikov element which detects gov} is
given by

(2) 1};_2167090 + iv;_lbogo (mod v).

We recall from Lemma 8.1 the following formulas.

vy = hy 1)% = —hyve

T2 = bg v3 = ko — bovs

Using the relations 3.1 and the relation vabihy = 0, we may apply the product
rule (5.1) iteratively to get the requisite differentials. Specifically, first apply the
product rule to gg - v2, to get da(vago), then apply the product rule to (govs) - v2 to
get d3(gov?). In E5(S°), go supports a da, and v supports a do in E5(V (1)), thus
d2(v3go) may be deduced from the S-module pairing of Adams spectral sequences.
The problem is, we can no longer apply the product rule to v multiplication to get
d3v3go. However, we may instead apply the product rule to the product v32 - v2go
to get the formula for ds(vige) and similarly to v2 - v5ge to get the formula for
d3 (v3 go)- U
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In particular, we have the following lemma, which follows immediately.
Lemma 8.9. In E5(V (1)) there is a differential
ds(v§b3g0) = kohovsbj.
Lemma 8.10. In E5(V (1)) there is a differential
ds (v3hobim) = mukob§.

Proof. We need to compute the differential supported by v§ho. Observe that the
differential dg (v3ho) = bj in the ASS for eos AV (1) lifts to a differential in Eg(V(1)).
The element v3ho must be a permanent cycle since there is nothing for it to kill.
Hence, by the product rule,

bg = dG(Ugho) = —G(Ugho,’UQ) = —bo(hovgbo - ho’l)ghl).

We conclude that the image of hov2 in m,(V (1)) is £83. The image of hov2 in
m(V (1)) has to be in Adams filtration greater than or equal to that of the image

of hovZ, and so we may conclude that the image of hov3 is actually zero. Whereas
d3(v3) is non-zero, the differential (d3(v3))v3ho is zero, and there are no permanent
cycles in higher Adams filtration. Therefore (8(v3)) - v3ho = 0, and we are in a

position to use the version of the product rule explained in Remark 5.3. Since %
is detected by kg, we have
ds(viho) = —G(v2, v2ho) = —bo(3 - v2ho + V2 - 3ho) = —bo(ko - B) = —kobl.

We then use the S-module structure of V' (1), and the differential dsn; = kob3 to
obtain

ds(m - v3hobd) = tkohob3vs + 11 kobS.
By Lemma 8.9, k‘ohobgv‘z1 is the target of a ds. O
We will need a couple of lemmas to prove Lemmas 8.13 and 8.14.
Lemma 8.11. In E4(V (1)) there is a differential
ds(vshobo) = b1 b3.

Proof. In the Adams spectral sequence for 7, (V' (1)) in the vicinity of the 65 stem,
we have the following elements and differentials.

Stem 63 Stem 64 Stem 65 Stem 66
bgho < bggovz bghovg bgvg
.
bgvghl b1 bg b%hg kov (1) bék’o
A ~.

4

blbOhOUQ - /U2 bgblhl %'_ U%go

vshy v3hgbg by ’U%

Here we know for dimensional reasons that by, ko, ve, hov3, and hokovo are per-
manent cycles, and so all bg multiples of them are permanent cycles. We have the
solid differentials from Lemmas 8.1 and 8.7. The only means by which the correct
homotopy can be achieved is for one of the dotted differentials (1) to exist and the
dotted differential (2) to exist. The differential (2) is the desired differential. O
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Lemma 8.12. The element vgbl is a permanent cycle.

Proof. In [16] the element S35 is shown to exist in mg>(S?). It is detected modulo
the ideal (3,v1) in the ANSS by the element +v3b;. Thus, the image of B3 in
mga(V (1)) is detected in the ASS by the element +wv3b;, and this element must
therefore be a permanent cycle. |

Lemma 8.13. In E5(V (1)) there is a non-trivial differential
dg (v3h0bévg) = 'Z)Qh()’fhk()bé.

Proof. In Lemma 8.11, we showed that da(vshebg) = 0. In Lemma 8.1, we showed
that

dQ(US) = —bokoh1 = —bob1ho.

We also know @, and hence @, are trivial in Ey (they are in higher Adams fil-
tration). We will now use the product rule (5.1) to compute the differential on
(vshobo) - v3. The term G(vshgbg,v3) is trivial in E; by the previous considera-
tions. The following manipulations are made possible with the hidden extension
ho - (vshobo) = b1govs-
dg((’l}3h0b0) . ’Ug) = (’U3h0b0) . (boblhg)

= bl gobov2

= vahomkobo
Now multiply by b3. O
Lemma 8.14. In E5(V (1)) there is a non-trivial differential

d5 (’ngohovgbg) = blbgvg

Proof. In E»(V(1)), there is a Massey product
(81) Ugblbg (S (blbg,vl,vfhg).

We are regarding the elements in the Massey product as detecting the following
maps in homotopy.

biby < Bafar[5] : BV (0) » V(1)
v < vy 2HV(0) = V(0)
v2hy < B3 : T8V (0) = V(0)
This Massey product therefore detects the Toda bracket

(8.2) (B2B3cn[5], v1, Bs).

We saw in Lemma 8.11 that b3by = 0 in E5(V(1)). Therefore, the Toda bracket
is detected in a higher Adams filtration modulo an indeterminacy contained in the
subgroup
[Z%V(0), V(1)] o fs.

We computed mgo(V (1)) and m79(V (1)) using the AHSS (6.3). Both of these
groups are rank 1, generated by zgs[l] and (3811[5], respectively. So we have
[£%9V(0),V(1)] is of rank 2, generated by elements 353101 [5]: and zes[1]o. Here,
the subscripts 0,1 are used to indicate what cell of the source V(0) the element is
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born on. We will conclude that the indeterminacy is zero using the V' (0)-module
structure of V(1).

(8:3) B3Brau[s] © Bs = fs - B3 reu[5lo = 0
(8.4) wes[1lo © B3 = (Bs[1] - wes[1])o = 0
Equation 8.3 follows from the relation 8308 = 0 in m.(S).
In Equation 8.4, we mean the product of S3[1] € m43(V(0)) and zgs[1] € 79 (V (1))
under the module map g : V(0) AV(1) — V(1). The following diagram commutes.

T43(V(0)) ® e (V(0)) — = m112(V(0))

l l

ma3(V (0)) ® mee (V' (1)) — m112(V (1))

Since zgg[1] € mg9 (V' (1)) is born on the 1-cell, we may lift it to an element zgg[1] €
me9(V (0)). Thus in order to show there is no indeterminacy it suffices to show
that B3[1] - zes[l] = 0 € m112(V(0)). At this point we remind the reader that
by our descriptions of the elements fs[1] and zgs[1] as elements in 7.(V (1)), we
mean that their images under the projection on to the top cell are 83 and zgsg,
respectively. These elements are not necessarily uniquely determined in ,(V (0)),
but any two representatives will differ by the image of an element of m,(S) under
the inclusion of the bottom cell of V(0). Now mge(S) = 0, so zgg[l] is uniquely
determined. However, m43(5) is generated by a11, so any two elements of m43(V(0))
which project to 3 on the top cell must differ by +a41[0] € m43(V (0)). Under the
product map V(0) A V(0) = V(0), all homotopy carried by the smash product of
the 1-cells is annihilated. We will necessarily have 33[1] - zgg[1] = 0 € m112(V (0))
for all possible representatives of 83[1] if we can show

0111[0] . .’L'Gg[l] =0¢€ 7T112(V(0))'

This is straightforward: in 743(V (0)) we have a11[0] = v{%a1[0], and a1 -z6s = 0 €
7«(S). Thus the Toda bracket 8.2 has no indeterminacy.

We conclude that the Toda bracket 8.2 must be zero in 7, (V (1)) modulo higher
Adams filtration. There are only three elements in the correct range to kill the
corresponding Massey product 8.1, and these elements are v3vzhobg, y2v3, and
vskohov3. In Lemma 8.13, we proved that v3vzhgby supported a non-trivial ds.
The element y,v3 must support a non-trivial ds; this follows from the S-module
pairing and the ds supported by v2 that was proved in Lemma 8.1. Thus we must
have

ds (vskohov3) = v3b1b)

and the lemma is proven after multiplying both sides by b3. |
Lemma 8.15. In E»(V (1)) there is a differential
d2(n190v3b3) = 11 gokobh = k1bg.

Proof. This lemma, follows immediately from the S-module pairing of Adams spec-
tral sequences. We know b2n; survives to E5(S) and we have computed da(gov3)
in E2(V (1)) as part of Lemma, 8.7. O
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We have established that every possible target of a differential supported by v
is either the target of a shorter differential or the source of a differential. We may
conclude that v§ is a permanent cycle.

9. PROOF THAT v§ EXTENDS OVER V(1)

In this section we will prove that if v : S'* — V(1) is a map detected by the
element vJ € E>(V (1)), then it extends over V(1) to a self-map
0 IV (1) o V().
Applying Spanier-Whitehead duality, this is equivalent to finding an extension cor-
responding to the dotted arrow in the diagram below.

DV (1) AV(1)

7 l

gla4 T V(1)

The inclusion of the wedge summand Y; of D(V(1)) A V(1) (Proposition 4.1) has
the property that the composite

Yi—=DV(Q)AV(1) - V(1)
is just projection onto the top V(1). It therefore suffices to extend v over the
complex Y; as displayed below.

Y

5144"'.—9> V(1)

Vg
l(;
V(1)
The vertical column forms a cofiber sequence where § is given as the composite
V(1) & 2°V(0) 2 £75V(0) & =8V (1).

Here, v is projection onto the top V(0) and ¢ is inclusion of the bottom V' (0). Thus
there is a solution to the extension problem if and only if the composite § o v = 0.
The map § is also given by the composite

B

V(1) — 2V (0) —— 5V (1) —= S5V (1)

6,
Here ¢’ is the geometric v1-Bockstein. In this section we will prove
(9.1) Br-8'(v3) =0
from which it follows that § o v§ = 0, and thus v§ extends over V'(1).

Since v§ has Adams filtration 9, §'(v]) has Adams filtration > 9. We may
calculate ¢’ in Ext using the periodic lambda algebra. We have

d(v3) = vi Aoz
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thus we have
A

Ko A

Vs Lx

v —— 0¥ dgr ——0

and so 0% (v9) = 0 viewed as an element of E»(V(1)). We may conclude that the
Adams filtration of §'(v) is > 10. Our strategy to prove that £y - §'(v3) = 0 is to
make a list of all of the elements in E>(V (1)) in Adams filtration greater than or
equal to 10 in the 139-stem. We then will prove that each of these elements is either
not a permanent cycle, or is killed by a differential or at least has the property that
composition with 3 is zero. A list of the elements, as well as the lemmas that deal
with it, is given below.

AF | Element | Lemma
26 h()'l)Qb(l)Z 8.4
25 | kohoby! 8.4
20 goho’Ugbg 9.1
19 blhov%bg 94
15 vShobR 9.7, 9.8
nvib3 9.7,9.9
’U3h1U2b8 97, 9.9
14 nlkonbé 97, 9.10
ngohobg 97, 9.11
U3k0h1bg 97, 910, 9.11
13 | (K1, ho, ho) b3 9.12
10 1}3h0bg'11‘21 9.13

Lemma 9.1. If z is an element of E,(V (1)) whose Hurewicz image h(z) € E,.(eo2 A
V(1)) supports a non-trivial differential, then z cannot be a permanent cycle.

Proof. This is obvious; h is a map of spectral sequences. O
We shall need the following lemma.

Lemma 9.2. There is the following pattern of differentials in the ASS for 7, (V' (1))
in the vicinity of the 68-stem.

Stem 67 Stem 68 Stem 69
Vo bé hl bg Jo bg V2 ho
A
n1bo bovg ko bohiv3
Ug ho 1}2 kg hoby U%
mhi giha

Here only one of the dotted differentials occurs.

Remark 9.3. We will find later (see the proof of Lemma 9.7) that in fact nhy
must be a permanent cycle, and thus the dotted differential supported on byv3kg
must be the non-trivial one.
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Proof. We will first deduce the following portion of the ASS chart for m.(V (1)).

Stem 56 Stem 57 Stem 58 Stem 59
bévg bg h1 ()] bégo V2 bg h()
¥y ..
™ (1) ngo . hlvg
.'91

The differential on 7; follows from the differential in E5(S). The differential on
bov3 is a consequence of Lemma 8.1. Since the AHSS calculation (6.1) told us that
m57(V(1)) = 0, we may conclude that one of the dotted differentials (1) exists.
Also, we have shown that msg(V(1)) has rank 1, hence something must kill bdgo.
Both vabghg and kobgho are permanent cycles, so the only candidate to support the
dotted differential (2) is hiv3. Note that this differential is present in the ASS for
eo2 ANV (1).

Moving up to the vicinity of the 68-stem of the ASS, the two solid differentials
in the statement of the lemma are propagated by by multiplication. Our AHSS
calculations (6.2) tell us that mg7(V (1)) = 0. Now vokZ must be a permanent cycle
since vo kg is a permanent cycle for dimensional reasons. Since vy béhl must vanish,
one of the dotted differentials must occur. We have computed 7gg(V' (1)) to be of
rank 2, so there can be no more differentials originating from the 69 stem. O

Lemma 9.4. The element by hov3b] € Eg(V (1)) must be zero.

Proof. In Lemma 9.2 we showed that v2b,hg € E,(V (1)) is a permanent cycle. The
result then follows from the fact that in E7(S) there is a relation b§ = 0. O

We are now in a position to prove the differential promised in Remark 8.2. We
will need this differential later in this paper.

Lemma 9.5. In E»(V (1)), there is a non-trivial differential
do(v3g0) = koh1v3 = byhovs.

Proof. Our AHSS computations (6.3) show that mgg(V (1)) has rank 1. In the proof
of Lemma 9.2, we computed all of the Adams differentials in E,(V (1)) supported
in the 69 stem. That data is used to compute the following portion of the ASS for
m(V(1)).

Stem 68 Stem 69 Stem 70
b3 90 bivaho b7
bivs \bg ho kolibg govs

bov3 ko boh1v3 b3vaby
vo ki hobiv32 - hobon:
i iy -..._........_v3gO

The differential supported by b2gov3 is a consequence of Lemma 8.7. The differential
supported by bvab; is a consequence of the Toda differential on b, in E5(S) and
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the S-module structure of V(1). One more element in the 69 stem must be the
target of an Adams differential, and the only possibility is the dotted differential.
This is the differential we wanted. |

There is an elaborate pattern of activity in Adams filtration 13-15 in the 139-
stem. We would like to understand which elements in this range of filtrations
are permanent cycles, and which aren’t, and this is accomplished in Lemma 9.7.
As a consequence, certain linear combinations of the possible obstructions to the
extension of v§ will be eliminated. First we need the following differential.

Lemma 9.6. In E5(V (1)), there is a non-trivial differential
d3 (1}3h11)2) = bo771h1-

Proof. In Lemma 8.6, we showed that vzh; supports a non-trivial d4 and thus is
a d3 cycle. We now apply the product formula (5.1) to deduce the differential on
vzhy - v2. Computer assisted lambda algebra calculations yield the formula

vshy = —g1 € E2(V(0)).

We wish to compute vshy, which is obtained by computing the Bockstein on g;.
Now g is a dj-cycle when it is considered as an element of E;(S?), so we need
to compute the Adams differential of g; in E,(S°) to get this Bockstein. We use
the main theorem of Bruner ([3, VI.1.1]) to understand the relationship between
Steenrod operations in Ext and differentials in the ASS. Using Bruner’s formula,
we may compute

(9-2) d2(g1) = d2(P°(g0)) = vo - BP°(g0) = vom:-

Here we should point out that our indexing of the Steenrod operations is different
from that of Bruner’s, but conforms to the perhaps more common indexing as
given in [13]. The element vy detects the degree p map on spheres. The Steenrod
operation SP°(go) = m1 is computed using the May spectral sequence for H*(P,).
Specifically, The element go is detected by by hs ghi,9o. On the May Es-term, we
compute (using the Cartan formula)

BP°(hah1,0) = BP%(hay0) - P*(h1,0) — P%(hay) - BP°(h1,0) = baoh1,1 — ha1biyo

and ﬂ:(b270h1’1 — hgylblyo) detects m.

We conclude from Equation 9.2 that vsh; = 171. We then apply the product
formula, keeping in mind that v3 = h; and T3 = by, and get

ds(vshy - va) = —bo(En1h1 — g1bo) = bonhy.



36 MARK BEHRENS AND SATYA PEMMARAJU

Lemma 9.7. We have the following differentials in the 139 stem of the ASS for
V(1) in Adams filtrations 13-15.

da(m1v3bg) = bgham
d3(v3h1b§va) = bjham
ds(vShobg) = bIhyimy  or vShg is a permanent cycle
ds (v5kohoby) = bokOUZ
ds (1 kovaby) = by kavs
ds(vskobjhy) = blkavs
An F3-basis of permanent cycles in this range of Adams filtration is listed below.
vShobgy + a1 (mv3b]) + as(vshybSvs)
7711)2b ﬂ:vghlbOUQ
vSkohobl + v3kobdhy
nlkovzbé + ngobghl
(k1,ho, ho)b]

Here a; and as are elements of F3. We are unable to determine the + signs or the
coefficients a;. A diagram of this portion of the ASS chart is given below for the
reader’s convenience.

AF Stem 138 Stem 139

14 Ug ko ho bg

t m kovabg
U3 k‘() bg hl

13 (k1, ho, ho)b}

Proof. The method of proof is to divide these elements by a maximal power of
bo, and then multiply by by successively until all of the elements in question are
present in the Es term. We begin with the vicinity of the 79 stem. In our AHSS
calculations (6.4), we computed 77g(V (1)) and 779(V (1)) modulo one differential
which we were unable to determine (this is the dotted differential labeled (1) in
(6.4)). We conclude that either m7g(V (1)) has rank 2 and 779(V (1)) has rank 1, or
7w78(V (1)) has rank 1 and 779(V (1)) is trivial. We will see shortly however that the
latter is the case, i.e. that the dotted differential (1) must exist. We display below



ON THE EXISTENCE OF v$ 37

the ASS in the same range.

Stem 77 Stem 78 Stem 79 Stem 80
Vo b h1 bg Jo Vo bO ho bs
b boholi wiB \koboholib:" e
bO m kg b2 (2 bO h1 bO () b1
'U% h() b() bo V2 kg bl U% bo ho m bg ho
3 N
U2k0h0 - 771h1b0 I — ’U3h1U2 bo’l}ggo
(2).”'””"1)31&‘0 v3

By comparing with the ASS chart in the vicinity of the 68-stem in the proof of
Lemma 9.2, we see that the elements bo’Usz, vabSho, kobjho, and bivibohg are per-
manent cycles and the elements v3b3 and v3b3h; support the indicated differentials.
The differential on v3hjvy was the subJect of Lemma 9.6. In Lemma 9.2, we were
unable to determine whether vgbéhl was killed by bov3ko or 771h1- Since n1h1b0 is
the target of a differential, this ambiguity is now resolved: dy(v3kobZ) = v2b3h;.
The differential supported by b3gov3 was established in Lemma 8.7. The differen-
tial supported by b3veb; follows from the Toda differential on by in E.(S°). The
differentials supported by bgvsge and v5 were proven in Lemmas 9.5 and 8.1, re-
spectively. There is nothing remaining in stem 79, so we conclude that m79(V (1))
is trivial. Therefore the dotted differential (1) exists in the AHSS chart (6.4). The
AHSS chart now tells us that m75(V (1)) is of rank 1, and the only way for the ASS
to produce the same answer is for there to exist the dotted differential (2) since
neither b2n; nor vihoby are permanent cycles.

We now multiply everything by by and move into the vicinity of the 89 stem.
The ASS chart is displayed below.

Stem 87 Stem 88 Stem 89 Stem 90
b0h1 Vg Ogo Vg boho
b6y holi v3bg \ko by holivz b3 g0
T b3 U5 kobo h1b3 b1v2b0
v3b3ho bivokd b1v3b3hg mbdho
bohovs ko bghl T vin \bovggo
vy wakobo bovavshi vibo
hyvsko vako
(k1,ho, ho) v3gi
vzhahg

All of the indicated differentials follow from our computations near the 79 stem
except for the one supported by hjvskg. For that we consider the image under
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projection onto the top cell of V(1). We saw in the proof of Lemma 9.6 that

vshy = m1. We have

d(vshike) = d(vshiko) = d(miko) = kibjy = bZvak3.

This can only happen if ds(vshiko) = k3bgvz. Our AHSS calculations (6.5) tell us
that mge(V (1)) is of rank 2, so there can be no more differentials originating from
the 90 stem.

We now multiply once more by by and arrive in the crucial region around the 99
stem. Our AHSS computations (6.6) tell us that the rank of mgg(V (1)) is 3 and the
rank of mgg(V (1)) is 4. We turn now to the ASS.

Stem 97 Stem 98 Stem 99 Stem 100
0v2h1 0!]0 1]2b ho b10
b1b§ holi 368 \koboholi b390v3

0771 %ko v2b h1 ngbl

v3b3ho b3kava ﬁ v3b1b3 ho bghom

v3b3hoko byham = vavs b%h:\bovg 90
Rushoby i(} bg%kow\ ~ hout w3

v2Y2 ) govs boviny vakobo
bovshs viby ~ vamiko w3k

voky ~ bohivsko vihim

(92, ho, ho) hovay2

Aside from the differentials supported by (possibly) gov3, hov§, and vami ko, all of
the differentials displayed follow from our calculations near the 89 stem. If we had
only the differentials arising from by multiplication on elements in the vicinity of the
89 stem, we would have created groups of the correct rank in the 98 and 99 stem as
predicted from the AHSS. Therefore any additional differentials must preserve the
rank of the E,, term. We easily see that ds(veniko) = b3kivs from the differential
on 7; and the S-module structure of V(1).

The problem is that hovS§ could support a dy killing b3k3v2, and this would
make both van kg and bohivsko into permanent cycles. We claim that this cannot
happen. For suppose that dy(hov§) = b3k3vs. Then there is no linear combination
of elements containing hov§ which is a permanent cycle. Our AHSS calculation
indicates there is some element in mgg(V (1)) such that its image in mg3(S) under
projection onto the top cell of V(1) is Bga;- The only element which can account
for this is hov$. Therefore, if hgv§ is not a permanent cycle, it must support a d3
killing b3hym;. This poss1b111ty is indicated by the dashed differential (4).

Also, we cannot eliminate the possibility that ds(gov3) = v3bZhoko, since gov3 is
in the same Adams filtration as b3vsko. This possibility is indicated with the dashed
differential (3). Upon taking the pattern of differentials supported by the 99 stem
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and multiplying by b3, we get the promised pattern of differentials supported in the
139 stem. O

Lemma 9.8. Choose the correct coefficients a; € F3 so that vShobs + a1 (n1v3b3) +
az(vsh1b§vs) is a permanent cycle. The composite of any element that this perma-
nent cycle detects with 8; must be null.

Proof. The element vSho + a1(mv3bo) + a2(vshib3vs) is a permanent cycle by
Lemma 9.7. Now apply Corollary 7.2. Comparing with the elements present in
the 149 stem of E»(V (1)) we see that there is no possibility of a hidden 3, exten-
sion. O

Lemma 9.9. Choose the correct sign so that n;v3bj & vzhyb§v, is a permanent
cycle. This element must be the target of a differential.

Proof. The element 7;v3 +v3h1bovs is a permanent cycle (Lemma 9.7). Now apply
Corollary 7.2. O

Lemma 9.10. Choose the correct sign so that n; kgvabg & v3kob3h; is a permanent
cycle. The composite of any element that this permanent cycle detects with S
must be null.

Proof. Again, apply Corollary 7.2. Comparing with the elements present in the 149
stem of E5(V (1)) we see that there is no possibility of a hidden §8; extension. O

Lemma 9.11. Choose the correct sign so that v3kohob3 £ v3kobjh: is a permanent
cycle. This element must be the target of a differential.

Proof. In Lemma 9.5, it was established that v5 & v3goby was a permanent cycle,
therefore the element

h(] . (Ug + U3gob0) = h(ﬂ}g + U3h1bg

is a permanent cycle. Now dj(m1) = kob3 in the ASS for 7,(S). Using the S-module
structure of V (1), we deduce that there is a differential

ds(m - (hovy £ v3h1b3)) = vSkohobl + v3kobdhs.

Note that v3kohobg £ vskobih1 might be the target of a shorter differential, in which
case the conclusion of the lemma is still satisfied. O

Lemma 9.12. The element (ki, ho, ho)b3 must be the target of a differential.

Proof. This follows immediately from Corollary 7.2 and the fact that (k1, hg, ho) is
a permanent cycle (Lemma 9.7). |

Lemma 9.13. In E3(V (1)) there is a non-trivial differential
d2 ('U3h0bg’l}§) = 'U%ho’lh k’obg

Proof. In Lemma 8.11, we showed that d2(vshobg) = 0. In Lemma 8.1, we showed
that
d2(v§) = —bokohl’vg = —b0b1h01)2.
Computer assisted lambda algebra computations reveal that in Es, we have
vghobo = —hom

U3h0b0 =0
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We also have v§ = hyv3 and E = 0in E». We will now use the product rule (5.1)
to compute the differential on (v3hgbo) - va. The term

G(Ughobo,vg) = Ughobo 'E— Ughob(] g

is trivial in E5 because E and vshgbg are trivial in Fy. The following manipulations
are made possible with the hidden extension hg - (v3hobg) = b1 gove.
da((vshobo) - v3) = (vshobo) - (bobihova)

= b3 gobovs

’U%honl k‘()bo
Now multiply by bo. |
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