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1. Introduction

Note: This is a preliminary draft. In particular, parts of the last section
are in the process of being written!

The Adams-Novikov spectral sequence based on a connective spectrum E (E-ANSS)
is perhaps the best available tool for computing stable homotopy groups. For
example, HFp and BP give the classical Adams spectral sequence and the Adams
Novikov spectral sequence respectively.

To begin to compute with the E-ANSS, one needs to know the structure of the
smash powers E∧k. When E is one of HFp, MU , or BP , the situation is simpler
than in general, since in this case E ∧ E is an infinite wedge of suspensions of E
itself, which allows for an algebraic description of the E2-term. This is not the case
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for bu, bo, or tmf , in which case the E2 page is harder to describe, and in fact, has
not yet been described in the the case of tmf .

Mahowald and his collaborators have studied the 2-primary bo-ANSS to a great
effect: it gives the most efficient calculation of the v1-periodic homotopy in the
sphere spectrum [LM87, Mah81]. The starting input in that calculation is a com-
plete description of bo∧ bo as an infinite wedge product of spectra that are a smash
product of certain finite complexes with bo (as in [Mil75] and others). The finite
complexes involved are the so-called integral Brown-Gitler spectra.

Mahowald has worked on a similar description for tmf ∧ tmf , but concluded that
no analogous result could hold. In this paper we use his insights to explore four
different perspectives on 2-primary tmf-cooperations. While we do not arrive at a
complete and closed-form description of tmf ∧ tmf , we believe our results have the
potential to be very useful as a computational tool.

(1) The E2 term of the 2-primary Adams spectral sequence for tmf∧tmf admits
a splitting in terms of bo-Brown-Gitler modules:

Ext(tmf ∧ tmf) ∼=
⊕
i

Ext(Σ8itmf ∧ boi).

(2) Modulo torsion, TMF∗TMF is isomorphic to a subring of the ring of integral
two variable modular forms.

(3) K(2)-locally, the ring spectrum (TMF∧TMF)K(2) is given by an equivariant
function spectrum:

(TMF ∧ TMF)K(2) ' Map(G2/G48, E2)hG48 .

(4) TMF∗TMF injects into a certain product of homotopy groups of topological
modular forms with level structures.

TMF ∧ TMF ↪→
∏
i∈Z,
j≥0

TMF0(3j)× TMF0(5j).

The purpose of this paper is to describe and investigate the relationship between
these different perspectives.

1.1. Conventions. In this paper we shall always be implicitly working 2-locally.
Homology will be taken with mod 2 coefficients, unless specified otherwise. We
will use Ext(X) to abbreviate ExtA∗(F2, H∗X), the E2-term of the Adams spectral
sequence (ASS) for π∗X, and will let C∗A∗(H

∗X) denote the corresponding cobar
complex. Given an element x ∈ π∗X, we shall let [x] denote the coset of the ASS
E2-term which detects x.

2. Motivation: analysis of bo∗bo

In analogy with the four perspectives described in the introduction, there are four
primary perspectives on the ring of cooperations for real K-theory.
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(1) The spectrum bo ∧ bo admits a decomposition (at the prime 2)

bo ∧ bo '
∨
i≥0

bo ∧HZi,

where HZi is the ith integral Brown-Gitler spectrum.
(2) There is an isomorphism KO∗KO ∼= KO∗ ⊗KO0

KO0KO, and KO0KO is
isomorphic to a subring of the ring of numerical functions.

(3) K(1)-locally, the ring spectrum (KO ∧ KO)K(1) is given by the function
spectrum:

(KO ∧KO)K(1) ' Map(Z×2 /{±1},KO∧2 ).

(4) KO∗KO injects into a product of copies of KO:

KO ∧KO ↪→
∏
i∈Z

KO.

2.1. Integral Brown-Gitler spectra. The decomposition of bo ∧ bo above is a
topological realization of a homology decomposition (see [Mah81], [Mil75]). Endow
the monomials of the A∗-comodule

H∗HZ = F2[ξ̄2
1 , ξ̄2, ξ̄3, . . .]

with a multiplicative weight by defining wt(ξ̄i) = 2i−1. The comodule H∗HZ ad-
mits an increasing filtration by integral Brown-Gitler comodules HZi, where HZi
is spanned by elements of weight less than 2i. These A∗-comodules are realized by
integral Brown-Gitler spectra HZi, so that

H∗HZi ∼= HZi.

There is a decomposition of A(1)∗-comodules:

H∗bo = (A//A(1))∗ ∼=A(1)∗

⊕
i≥0

Σ4iHZi

. This results in a decomposition on the level of Adams E2-terms

Ext(bo ∧ bo) ∼=
⊕
i≥0

Ext(Σ4ibo ∧HZi)

∼=
⊕
i≥0

ExtA(1)∗(Σ
4iHZi).

This algebraic splitting is topologically realized by a splitting

bo ∧ bo '
∨
i≥0

bo ∧HZi.

The goal of this section is to calculate the images of the maps

bo ∧HZi −→ bo ∧ bo

in the decomposition above in order to illustrate the method used in our analysis
of tmf ∧ tmf. Even in this case our perspective has some novel elements which
provide a conceptual explanation for formulas obtained by Lellmann and Mahowald
in [LM87].
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2.2. Exact sequences relating HZi. Just as with HZi we define boi to be the
the submodule of

(A//A(1))∗ ∼= F2[ξ̄4
1 , ξ̄

2
2 , ξ̄3, . . .]

generated by elements of weight less than 4i. These submodules are discussed more
thoroughly at the beginning of Section 4. With these in hand we have the following
exact sequences:

Lemma 2.1. There are short exact sequences of A(1)∗-comodules

0→ Σ4jHZj → HZ2j → boj−1 ⊗ (A(1)//A(0))∗ → 0,(2.2)

0→ Σ4jHZj ⊗HZ1 → HZ2j+1 → boj−1 ⊗ (A(1)//A(0))∗ → 0.(2.3)

(Here boi is the subspace of H∗bo spanned by monomials of weight ≤ 4i.)

Proof. These short exact sequences are the analogs for integral Brown-Gitler mod-
ules of a pair of short exact sequences for bo-Brown-Gitler modules (see Propo-
sitions 7.1 and 7.2 of [BHHM08]). The proof is almost identical to that given in
[BHHM08]. On the level of basis elements, the maps

Σ4jHZj → HZ2j

Σ4jHZj ⊗HZ1 → HZ2j+1

are given respectively by

ξ̄2i1
1 ξ̄i22 · · · 7→ ξ̄a1 ξ̄

2i1
2 ξ̄i23 · · · ,

ξ̄2i1
1 ξ̄i22 · · · ⊗ {1, ξ̄2

1 , ξ̄2} 7→ (ξ̄a1 ξ̄
2i1
2 ξ̄i23 · · · ) · {1, ξ̄2

1 , ξ̄2}

where a is taken to be 4j − wt(ξ̄2i1
2 ξ̄i23 · · · ). The maps

HZ2j → boj−1 ⊗ (A(1)//A(0))∗

HZ2j+1 → boj−1 ⊗ (A(1)//A(0))∗

are given by

ξ̄4i1+2ε1
1 ξ̄2i2+ε2

2 ξ̄i33 · · · 7→
{
ξ̄4i1
1 ξ̄2i2

2 ξ̄i33 · · · ⊗ ξ̄2ε1
1 ξ̄ε22 , wt(ξ̄4i1

1 ξ̄2i2
2 ξ̄i33 · · · ) ≤ 4j − 4,

0, otherwise,

where εs ∈ {0, 1}. �

Define
ExtA(1)∗(X)

v1-tor
:= Image

(
ExtA(1)∗(X)→ v−1

1 ExtA(1)∗(X)
)
.

The following lemma follows from a simple induction, using the fact that HZ1 is
given by

ξ̄2 ◦
Sq1

ξ̄2
1 ◦

Sq2

1 ◦.
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Lemma 2.4. We have

ExtA(1)∗(HZ⊗i1 )

v1-tor
∼=
{

Ext(bo〈i〉), i even,

Ext(bsp〈i−1〉), i odd.

Here, X〈i〉 denotes the ith Adams cover.

We deduce the following well known result (cf. [LM87, Thm. 2.1]).

Proposition 2.5.

ExtA(1)∗(HZi)
v1-tor

∼=
{

Ext(bo〈2i−α(i)〉), i even,

Ext(bsp〈2i−α(i)−1〉), i odd.

Here, α(i) denotes the number of 1’s in the dyadic expansion of i.

Proof. This may be established by induction on i using the short exact sequences
of Lemma 2.1, by augmenting Lemma 2.4 with the following facts.

(1) All v0-towers in ExtA(1)∗(HZi) are v1-periodic. This can be seen as ExtA(1)∗(HZi)
is a summand of Ext(bo∧ bo), and after inverting v0, the latter has no v1-
torsion. Explicitly we have

v−1
0 Ext(bo ∧ bo) = F2[v±1

0 , u2, v2].

(2) We have

ExtA(1)∗((A(1)//A(0))∗ ⊗ boj)

v0-tors
∼=

ExtA(0)∗(boj)

v0-tors
∼= F2[v0]{1, ξ4

1 , . . . , ξ
4j
1 }.

This follows from the fact that

ExtA(0)∗(HZj)
v0-tors

∼= F2[v0],

which, for instance, can be established by induction using the short exact
sequences of Lemma 2.1.

�

2.3. The cooperations of KU and bu. In order to put the ring of cooperations
for bo in the proper setting, we briefly review the story for bu. We begin by
recalling the Adams-Harris determination of KU∗KU [Ada74, Sec. II.13]. We have
an arithmetic square

KU ∧KU //

��

(KU ∧KU)∧2

��

(KU ∧KU)Q // ((KU ∧KU)∧2 )Q,
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which results in a pullback square after applying π∗

KU∗KU //

��

Mapc(Z×2 , π∗KU∧2 )

��

Q[u±1, v±1] // Mapc(Z×2 ,Q2[u±1]).

Setting w = v/u, the bottom map in the above square is given by

f(u, v) = unf(1, w) 7→ (λ 7→ unf(1, λ)) .

We therefore deduce that KU∗KU = KU∗ ⊗KU0 KU0KU, and continuity implies
that

KU0KU = {f(w) ∈ Q[w±1] : f(k) ∈ Z(2), for all k ∈ Z×(2)}.

Note that we can perform a similar analysis for KU∗bu: since bu and KU are K(1)-
locally equivalent, applying π∗ to the arithmetic square yields a pullback square
with the same terms on the right hand edge.

KU∗bu //

��

Mapc(Z×2 , π∗KU∧2 )

��

Q[u±1, v] // Mapc(Z×2 ,Q2[u±1]).

We therefore deduce that KU∗bu = KU∗ ⊗KU0
KU0bu, with

KU0bu = {g(w) ∈ Q[w] : g(k) ∈ Z(2), for all k ∈ Z×(2)}.

Consider the related space of 2-local numerical polynomials:

NumPoly(2) := {h(x) ∈ Q[x] : h(k) ∈ Z(2), for all k ∈ Z(2)}.
The theory of numerical polynomials states that NumPoly(2) is the free Z(2)-module
generated by the basis elements

hn(x) :=

(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
.

We can relate KU0bu to NumPoly(2) by a change of coordinates. A function on

Z×(2) can be regarded as a function on Z(2) via the change of coordinates

Z(2)
≈−→ Z×(2)

k 7→ 2k + 1

Observe that

k(k − 1) · · · (k − n+ 1)

n!
=

2k(2k − 2) · · · (2k − 2n+ 2)

2nn!

=
(2k + 1)((2k + 1)− 3) · · · ((2k + 1)− (2n− 1))

2nn!
.

We deduce that a Z(2) basis for KU0bu is given by

gn(w) =
(w − 1)(w − 3) . . . (w − (2n− 1))

2nn!
.

(Compare with [Ada74, Prop. 17.6(i)].)
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From this we deduce a basis of the image of the map

bu∗bu ↪→ KU∗KU.

In [Ada74, p. 358] it is shown that this image is the ring

bu∗bu

v1-tor
= (KU∗bu ∩Q[u, v])AF≥0,

where AF ≥ 0 means the elements of Adams filtration ≥ 0. Since the elements 2,
u, and v have Adams filtration 1, this image is equivalently described as

bu∗bu

v1-tor
= KU∗bu ∩ Z(2)[u/2, v/2].

To compute a basis for this image we need to calculate the Adams filtration of
the elements of this basis {gn(w)}. Since w has Adams filtration 0 we need only
compute the 2-divisibility of the denominators of the functions gn(w). As usual in
this subject, for an integer k ∈ Z let ν2(k) be the largest power of 2 that divides k
and let α(k) be the number of 1’s in the binary expansion of k. Then

ν2(n!) = n− α(n)

and so

AF(gn) = α(n)− 2n.

The following is a list of the Adams filtration of the first few basis elements:

n binary AF(gn)
0 0 0
1 1 −1
2 10 −3
3 11 −4
4 100 −7
5 101 −8
6 110 −10
7 111 −11
8 1000 −15

It follows (compare with [Ada74, Prop. 17.6(ii)]) that the image of bu∗bu in KU∗KU
is the free module:

bu∗bu

v1-tor
= Z(2){2max(0,2n−m−α(n))umgn(w) : n ≥ 0,m ≥ n}.

The Adams chart in Figure 2.3 illustrates how the description of bu∗bu given above
along with the Mahler basis can be used to identify bu∗bu as a bu∗-module inside
of KU∗KU.
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Figure 2.1. bu∗bu
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2.4. The cooperations of KO and bo. Adams and Switzer computed KO∗KO
along simlar lines [Ada74, Sec. II.17]. There is an arithmetic square

KO ∧KO //

��

(KO ∧KO)∧2

��

(KO ∧KO)Q // ((KO ∧KO)∧2 )Q.

This results in a pullback when applying π∗:

KO∗KO //

��

Mapc(Z×2 /{±1}, π∗KO∧2 )

��

Q[u±2, v±2] // Mapc(Z×2 /{±1},Q2[u±2]).

(One can use the fact that KU∧2 is a K(1)-local C2-Galois extension of KO∧2 to
identify the upper right hand corner of the above pullback.) Continuing to let
w = v/u, the bottom map in the above square is given by

f(u2, v2) = u2nf(1, w2) 7→
(
[λ] 7→ u2nf(1, λ2)

)
.

We therefore deduce that KO∗KO = KO∗ ⊗KO0
KO0KO, with

KO0KO = {f(w2) ∈ Q[w±2] : f(λ2) ∈ Z×2 , for all [λ] ∈ Z×2 /{±1}}.
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Again, KO∗bo is similarly determined: since bo and KO areK(1)-locally equivalent,
applying π∗ to the arithmetic square yields a pullback square with the same terms
on the right hand edge:

KO∗bo //

��

Mapc(Z×2 /{±1}, π∗KO∧2 )

��

Q[u±2, v2] // Mapc(Z×2 /{±1},Q2[u±2]).

We therefore deduce that KO∗bo = KO∗ ⊗KO0 KO0bo, with

KO0bo = {f(w2) ∈ Q[w2] : f(λ2) ∈ Z2, for all [λ] ∈ Z×2 /{±1}}.

To produce a basis of this space of functions we use the q-Mahler bases developed
in [Con00]. First note that there is an exponential isomorphism

Z2

∼=−→ Z×2 /{±1} : k 7→ [3k].

Taking w = 3k, we have w2 = 9k, or in other words, the functions f(w2) that we
are concerned with can be regarded as functions on 2Z2. They take the form

f(9k) : 2Z2
∼= 1 + 8Z2 −→ Z2,

where 1 + 8Z2 ⊂ Z×2 is the image of 2Z2 under the isomorphism given by 3k.

To apply the q-Mahler basis of [Con00] with q = 9 it is important that |9− 1|2 < 1.
The q-Mahler basis is a basis for numerical polynomials with domain restricted to
2Z2. In the notation of [Con00] we have that

f(9k) =
∑
n

cn

(
k

n

)
9

cn ∈ Z(2),

where (
k

n

)
9

=
(9k − 1)(9k − 9) · · · (9k − 9n−1)

(9n − 1)(9n − 9) · · · (9n − 9n−1)
.

Let us set

fn(w2) =
(w2 − 1)(w2 − 9) · · · (w2 − 9n−1)

(9n − 1)(9n − 9) · · · (9n − 9n−1)
.

Then

f(w2) =
∑
n

cnfn(w2) cn ∈ Z(2).

We deduce that a basis for KO0bo is given by the set {fn(w2)}n≥0.

As in the KU-case, it turns out that the image of bo∗bo in KO∗KO is given by

bo∗bo

v1-tor
= (KO∗bo ∩Q[u2, v2])AF≥0.

In order to compute a basis for this we once again need to know the Adams filtration
of fn. One can show that

ν2((9n − 1)(9n − 9) · · · (9n − 9n−1)) = ν2(n!) + 3n

= 4n− α(n).
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Figure 2.2. bo∗bo
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It follows that we have

bo∗bo

v1-tor
= Z(2){2max(0,4n−2m−α(n))u2mfn(w) : n ≥ 0, m ≥ n, m ≡ 0 mod 2}

⊕ Z(2){2max(0,4n−2m−1−α(n))2u2mfn(w) : n ≥ 0, m ≥ n, m ≡ 0 mod 2}

⊕ Z/2
{
u2mfn(w)ηi :

n ≥ 0, m ≥ n, m ≡ 0 mod 2,
i ∈ {1, 2}, α(n)− 4n+ 2m+ i ≥ 0

}
.

Here is a list of the Adams filtration of the first several elements in the q-Mahler
basis:

n fn in terms of gi AF(fn)
0 g0 0
1 g2 + g1 −3
2 1

15g4 + 2
15g3 + 1

15g2 −7

With this information we can now give an Adams chart of bo∗bo.

2.5. Calculation of the image of bo∗HZi in KO∗KO. We now compute the
image (on the level of Adams E∞-terms) of the composite

bo∗HZi → bo∗bo→ KO∗KO.

Since v−1
1 bo∗Σ

4iHZi ∼= KO∗, it suffices to determine the image of the generator

e4i ∈ bo4i(Σ
4iHZi).

Because the maps

bo ∧ Σ4iHZi → bo ∧ bo

are constructed to be bo-module maps, everything else is determined by 2 and
v1 = u-multiplication. Consider the diagram induced by the maps bo → bu,
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bu→ HF2, and BP→ bu:

bo ∧ Σ4iHZi //

��

bo ∧ bo //

��

bu ∧ bu

��

BP∗BP

xx

oo

HF2 ∧ Σ4iHZi // HF2 ∧ bo // HF2 ∧HF2.

On the level of homotopy groups the bottom row of the above diagram takes the
form

F2{ξ̄4i
1 , . . .} ↪→ F2[ξ̄4

1 , ξ̄
2
2 , ξ̄3, . . .] ↪→ F2[ξ̄1, ξ̄2, ξ̄3, . . .].

Since we have

bo∗Σ
4iHZi → (HF2)∗Σ

4iHZi
e4i 7→ ξ̄4i

1 ,

it suffices to find an element bi ∈ bo4ibo such that

bo∗bo→ (HF2)∗bo

bi 7→ ξ̄4i
1 .

Clearly we can take b0 = 1 ∈ bo0bo. Note that we have

BP∗BP→ (HF2)∗HF2

t1 7→ ξ̄2
1 .

From the equation

ηR(v1) = v1 + 2t1

we deduce that we have

BP∗BP→ bu∗bu

t1 7→
v − u

2
= ug1(w).

Thus we deduce that

bu∗bu→ (HF2)∗HF2

v − u
2
7→ ξ̄2

1

and thus

bu∗bu→ (HF2)∗HF2(
v2 − u2

2

)i
7→ ξ̄4i

1 .

Since

22i−α(i)u2ifi(w) ∼=
(
v2 − u2

2

)i
modulo terms of higher AF

we see that we have

bo∗bo→ (HF2)∗bo

22i−α(i)u2ifi(w) 7→ ξ̄4i
1 .

We therefore can take

bi = 22i−α(i)u2ifi(w).
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We have therefore arrived the following well-known theorem (see [LM87, Cor. 2.5(a)]).

Theorem 2.6. The image of the map

Ext(bo ∧ Σ4iHZi)
v1-tors

→ Ext(bo ∧ bo)
v1-tors

is the submodule

F2[v0]{vmax(0,4i−2m−α(i))
0 u2mfi(w) : m ≥ i, m ≡ 0 mod 2}

⊕ F2[v0]{vmax(0,4i−2m−1−α(i))
0 v0u

2mfi(w) : m ≥ i, m ≡ 0 mod 2}

⊕ F2

{
u2mfi(w)ηj :

m ≥ i, m ≡ 0 mod 2,
j ∈ {1, 2}, α(i)− 4i+ 2m+ j ≥ 0

}
.

Remark 2.7. These are the colors in Figure 2.4.

2.6. The embedding into
∏

KO. Finally we consider the maps of KO-algebras
given by the composite

ψ̃3k

: KO ∧KO
1∧ψ3k

−−−−→ KO ∧KO
µ−→ KO.

These result in a map of KO-algebras

KO ∧KO
∏
ψ̃3k

−−−−→
∏
k∈Z

KO.

Remark 2.8. The map above has a modular interpretation. Let

Spec(Z)//(Z/2)→Mfg

pick out Ĝm with the action of [−1]. Then the derived global sections of Spec(Z)//(Z/2)
are KO. The spectrum KO ∧KO is the global sections of the pullback

(Spec(Z)×Mfg
Spec(Z))//(Z/2× Z/2).

For k ∈ Z we may consider the map of stacks

Spec(Z)//(Z/2)→ (Spec(Z)×Mfg
Spec(Z))//(Z/2× Z/2)

sending Ĝm to the object [3k] : Ĝm → Ĝm. As k varies this induces the map
∏
ψ̃3k

.

Proposition 2.9. The map

KO∗KO
∏
ψ̃3k

−−−−→
∏
k∈Z

KO∗

is an injection.

Proof. Consider the diagram

KO∗KO

∏
ψ̃3k

//

��

∏
k∈Z KO∗

��

(KO∗KO)∧2

∏
ψ̃3k

//
∏
k∈Z(KO∗)

∧
2

Mapc(Z×2 /{±1}, (KO∗)
∧
2 ) // Map(3Z, (KO∗)

∧
2 ),
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where the bottom horizontal map is the map induced from the inclusion of groups

3Z ↪→ Z×2 /{±1}.
The vertical maps are injections, since⋂

i

2iKO∗KO = 0, and
⋂
i

2iKO∗ = 0.

The bottom horizontal map is an injection since 3Z is dense in Z×2 /{±1}. The result
follows. �

We began by investigating the wedge decomposition∨
i

bo ∧ Σ4iHZi
'−→ bo ∧ bo.

We end this section by explaining how the map

KO ∧KO
∏
ψ̃3k

−−−−→
∏
k∈Z

KO

is compatible with the Brown-Gitler decomposition.

Proposition 2.10. The composites

bo ∧HZi → bo ∧ bo→ KO ∧KO
ψ̃3i

−−→ KO

are equivalences after inverting v1.

Proof. This follows from the fact that fi(9
i) = 1. �

Remark 2.11. In fact, the matrix representing the composite∨
i

bo ∧HZi → bo ∧ bo→ KO ∧KO
∏
ψ̃3k

−−−−→
∏
k∈Z

KO

is upper triangular, as we have

fi(9
k) =

{
0, k < i,

1, k = i.

3. Recollections on topological modular forms

3.1. Generalities. The remainder of this paper is concerned with determining as
much information as we can about the cooperations in the homology theory tmf
based on connective topological modular forms, following our guiding example of
bo. Even more than in the bo case, other players will come up. First of all, we
will extensively use the periodic spectrum TMF , which is the analogue of KO. In
particular, we will use that this form TMF of topological modular forms arises as
the global sections of the Goerss-Hopkins-Miller sheaf of ring spectra Otop on the
moduli stack of smooth elliptic curvesM. As the associated homotopy sheaves are

πkOtop =

{
ω⊗k/2, if k is even,

0, if k is odd,
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there is a descent spectral sequence

Hs(M, ω⊗t)⇒ π2t−sTMF.

Morally, the connective tmf should arise as global sections of an analogous sheaf
on the moduli stack of all cubic curves (i.e. allowing nodal and cuspidal singular-
ities); however, this has not been formally carried out. Nevertheless, tmf can be
constructed as an E∞ ring spectrum from TMF as a result of the gap in the ho-
motopy of a third, non-connective and non-periodic, version of topological modular
forms associated to the compactification of M.

Rationally, every smooth elliptic curve C/S is locally isomorphic to a cubic of the
form

y2 = x3 − 27c4x− 54c6,

with the discriminant ∆ = c34− c26 invertible. Here ci is a section of the line bundle
ω⊗i over the étale map S → M classifying C. This translates to the fact that
MQ ∼= ProjQ[c4, c6][∆−1], which in turn implies that (TMF∗)Q = Q[c4, c6][∆−1].
The connective version has (tmf∗)Q = Q[c4, c6].

Topological modular forms are, of course, not complex orientable, and just like in
the case of bo, we will need the aid of a related orientable spectrum. The periodic
TMF admits ring maps to several families of orientable (as well as non-orientable)
spectra which come from the theory of elliptic curves. Namely, an elliptic curve C is
an abelian group scheme so in particular it has a subgroup scheme C[n] of points of
order n for any positive integer n. When n is invertible, C[n] is locally isomorphic to
the constant group (Z/n)2. Rooted in this fact are the various additional structures
that one can assign to an elliptic curve. In this work we will be concerned with two
types, the so-called Γ1(n) and Γ0(n) level structures.

A Γ1(n) level structure on an elliptic curve C is a specification of a point P of
(exact) order n on C, whereas a Γ0(n) level structure is a specification of a cyclic
subgroup H of C of order n. The corresponding moduli problems are denoted
M1(n) andM0(n). Assigning to the pair (C,P ) the pair (C,HP ) where HP is the
subgroup of C generated by P determines an étale map of moduli stacks

g :M1(n)→M0(n).

Moreover, there are two morphisms

f, q :M0(n)→M[1/n]

which are étale; f forgets the level structure whereas q quotients C by the level
structure subgroup. Composing with g we obtain analogous maps fromM1(n). We
can take sections of Otop over the forgetful maps and obtain ring spectra TMF1(n)
and TMF0(n), ring maps TMF [1/n]→ TMF0(n)→ TMF1(n) as well as maps of
descent spectral sequences

H∗(M[1/n], ω⊗∗) +3

��

π∗TMF [1/n]

��

H∗(M?(n), ω∗) +3 π∗TMF?(n),
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obtained by pulling back. In particular, for any odd integer n we have such a
situation 2-locally.

We use the ring map f : TMF [1/n] → TMF0(n) induced by the forgetful f :
M0(n) → M[1/n] to equip TMF0(n) with a TMF [1/n]-module structure. With
this convention, the map q : TMF [1/n]→ TMF0(n) induced by the quotient map
on the moduli stacks does not respect the TMF [1/n]-module structure. However,
one can uniquely extend q to

TMF [1/n]
q

//

��

TMF0(n)

TMF [1/n] ∧ TMF [1/n].

Ψn

55
(3.1)

Another way to define Ψn is as the composition of f ∧ q with the multiplication on
TMF0(n).

Finally, we will be interested in the morphism

φ[n] :M[1/n]→M[1/n].

This is the étale map induced by the multiplication-by-n isogeny on an elliptic
curve, and the induced map φ[n] : TMF[1/n]→ TMF[1/n] can be thought of as an
“Adams operation” on TMF[1/n].

In Section 6 below, we will make heavy use of the maps Ψ3 and Ψ5. Their usefulness
is due to the relative ease with which their behavior on non-torsion homotopy groups
can be computed.

3.2. Details on tmf1(3) as BP 〈2〉. The significance of bu in the computation of
bo∗bo was that at the prime 2, bu is a truncated Brown-Peterson spectrum BP 〈1〉
with a ring map bo → bu which upon K(1)-localization becomes the inclusion of
homotopy fixed points (KU 2̂)hC2 → KU 2̂ and in particular, the image of KO2̂ →
KU 2̂ in homotopy is describable as certain invariant elements. By work of Lawson-
Naumann [LN12], we know that there is a 2-primary form of BP 〈2〉 obtained from
topological modular forms; this will be our analogue of bu in the tmf -cooperations
case.

Lawson-Naumann study the (2-local) compactification of the moduli stackM1(3).
Given an elliptic curve C (over a 2-local base), it is locally isomorphic to a Weier-
strass curve of the form

y2 + a1xy + a3y = x3 + a4x+ a6.

A point P = (r, s) of order 3 is an inflection point of such a curve; transforming
the curve so that the given point P is moved to have coordinates (0, 0) puts C in
the form

y2 + a1xy + a3y = x3.(3.2)

This is the universal equation of an elliptic curve together with a Γ1(3) level
structure. The discriminant of this curve is ∆ = (a3

1 − 27a3)a3
3, and M1(3) '

ProjZ(2)[a1, a3][∆−1]. Consequently, π∗TMF1(3) = Z(2)[a1, a3][∆−1]. Lawson-

Naumann show that the compactification M̄1(3) ' ProjZ(2)[a1, a3] also admits a
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sheaf of E∞-ring spectra, giving rise to a non-connective and non-periodic spectrum
Tmf1(3) with a gap in its homotopy allowing to take a connective cover tmf1(3)
which is an E∞ ring spectrum with

π∗tmf1(3) = Z(2)[a1, a3].

This spectrum is complex oriented such that the composition of graded rings

Z(2)[v1, v2] ⊂ BP∗ → (MU(2))∗ → tmf1(3)∗

is an isomorphism [LN12, Theorem 1.1], where the vi are Hazewinkel generators.
Of course, the map BP∗ → tmf1(3)∗ classifies the p-typicalization of the formal
group associated to the curve (3.2), which starts as [Sil86, IV.2], [?].

F (X,Y ) = X + Y − a1XY − 2a3X
3Y − 3a3X

2Y 2 +−2a3XY
3

− 2a1a3X
4Y − a1a3X

3Y 2 − a1a3X
2Y 3 − 2a1a3XY

4 +O(X,Y )6,

We used Sage to compute the logarithm of this formal group law, from which we

read off the coefficients li [Rav86, A2.1.27] in front of X2i

as

l1 =
a1

2
, l2 =

a3
1 + 2a3

4
,

l3 =
a7

1 + 30a4
1a3 + 30a1a

2
3

8
. . .

Now the formula [Rav86, A2.1.1] pln =
∑

0≤i<n

liv
2i

n−i (in which l0 is understood to

be 1) allows us to recursively compute the map BP∗ → tmf1(3)∗. For the first few
values of n, we have that

v1 7→ a1 v2 7→ a3 v3 7→ 7a1a3(a3
1 + a3) . . .

We can do even more with this orientation of tmf1(3), as

BP∗BP → tmf1(3)∗tmf1(3)

is a morphism of Hopf algebroids.

Recall that BP∗BP = Z(2)[v1, v2, . . . ][t1, t2, . . . ] with vi and ti in degree 2(2i − 1)
and right unit ηR : BP∗ → BP∗BP determined by the fact [Rav86, A2.1.27] that

ηR(ln) =
∑

0≤i≤n

lit
2i

n−i

with l0 = t0 = 1 by convention. On the other hand,

tmf1(3)∗tmf1(3)Q = Q[a1, a3, ā1, ā3]

and the right unit tmf1(3)∗ → tmf1(3)∗tmf1(3) sends ai to āi. With computer
aid from Sage and/or Magma, we can recursively compute the images of each ti in
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tmf1(3)∗tmf1(3); as an example, we include here the first three values

t1 7→
1

2
(ā1 − a1),

t2 7→
1

8
(4ā3 + 2ā3

1 − a1ā
2
1 + 2a2

1ā1 − 4a3 − 3a3
1), and

t3 7→
1

128
(480ā1ā

2
3 − 16a1ā

2
3 + 480ā4

1ā3 − 16a1ā
3
1ā3 + 8a2

1ā
2
1ā3 − 16a3

1ā1ā3

+ 32a1a3ā3 + 24a4
1ā3 + 16ā7

1 − 4a1ā
6
1 + 4a2

1ā
5
1 − 4a3ā

4
1 − 11a3

1ā
4
1 + 32a1a3ā

3
1

+ 24a4
1ā

3
1 − 32a2

1a3ā
2
1 − 22a5

1ā
2
1 + 32a3

1a3ā1 + 20a6
1ā1 − 496a1a

2
3 − 508a4

1a3 − 27a7
1)

and rather than urging the reader to analyze the terms, we simply point out the
exponential increase of their number. What will allow us to simplify and make
sense of these expressions is using the Adams filtration in 3.4 below.

3.3. The relationship between TMF1(3) and TMF and their connective
versions. As we mentioned already, the forgetful map f : M1(3) → M is étale;
moreover, f∗ω = ω. As a consequence, we have a Čech descent spectral sequence

E1 = Hp(M1(3)×M(q+1), ω∗)⇒ Hp+q(M, ω∗),

giving in particular that the modular forms H0(M, ω∗) can be computed as the
equalizer of the diagram

H0(M1(3), ω∗)
p∗1 //

p∗2

// H0(M1(3)×MM1(3), ω∗),(3.3)

in which p1 and p2 are the left and right projection maps. The interpretation is
that theM-modular forms MF∗ are precisely the invariantM1(3)-modular forms.

To be more explicit, note thatM1(3)×MM1(3) classifies tuples ((C,P ), (C ′, P ′), ϕ)
of elliptic curves with a point of order 3 and an isomorphism ϕ : C → C ′ of elliptic
curves which does not need to preserve the level structures. This data is locally
given by

(3.4)

C : y2 + a1xy + a3y = x3

C ′ : y2 + a′1xy + a′3y = x3

ϕ : x 7→ u−2x+ r y 7→ u−3y + u−2sx+ t,

such that the following relations hold

(3.5)

sa1 − 3r + s2 = 0

sa3 + (t+ rs)a1 − 3r2 + 2st = 0

r3 − ta3 − t2 − rta1 = 0.

(Note: For more details on this presentation of M1(3), see the beginning of [Sto,
§4]; the relations follow from the general transformation formulas in [Sil86, III.1]
by observing that the coefficients aeven must remain zero.)

Hence, the diagram (3.3) becomes

Z(2)[a1, a3]⇒ Z(2)[a1, a3][u±1, r, s, t]/(∼)
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(where ∼ denotes the relations (3.5)) with p1 being the obvious inclusion and p2

determined by

a1 7→ u(a1 + 2s)

a3 7→ u3(a3 + ra1 + 2t).

which is in fact a Hopf algebroid representing M(2). Note that we do not need to
localize at 2 but only to invert 3 to obtain this presentation.

As a consequence of this discussion we can explicitly compute that the modular
forms MF∗ are the subring of MF1(3)∗ generated by

c4 = a4
1 − 24a1a3, c6 = a6

1 + 36a3
1a3 − 216a2

3, and ∆ = (a3
1 − 27a3)a3

3,

(3.6)

which in particular determines the map TMF∗ → TMF1(3)∗ on non-torsion ele-
ments.

3.4. Adams filtrations. The mapsBP∗ → tmf1(3)∗ andBP∗BP → tmf1(3)∗tmf1(3)
respect the Adams filtration (henceforth AF), which allows us to determine the AF
in the right hand sides. Recall that

AF (vi) = 1, i ≥ 0

where as usual, v0 = 2. Consequently, AF (a1) = AF (a3) = 1, which in turn implies
via (3.6) that AF (c4) = 4, AF (c6) = 5, AF (∆) = 4. More precisely, modulo higher
Adams filtration we have

c4 ∼ a4, c6 ∼ 216a2
3 ∼ 8a2

3, ∆ ∼ a4
3.

Note that the Adams filtration of each ti is zero.

3.5. Supersingular elliptic curves and K(2)-localizations. At the prime 2,
there is a unique isomorphism class of supersingular elliptic curve; one representa-
tive is the Weierstrass curve

C : y2 + y = x3

over F2. Recall that a supersingular elliptic curve is one whose formal completion at
the identity section Ĉ is a formal group of height two.1 Under the natural mapM→
Mfg from the moduli stack of elliptic curves to the one of formal groups sending
an elliptic curve to its formal completion at the identity section, the supersingular
elliptic curves (in fixed characteristic) are sent to the (unique up to isomorphism,
by Cartier’s theorem) formal group of height two in that characteristic.

Let Mss denote a formal neighborhood of the supersingular point C of M, and
let Ĥ(2) denote a formal neighborhood of the characteristic 2 point of height two

of Mfg. Formal completion yields a map Mss → Ĥ(2) which is used to explicitly
describe the K(2)-localization of TMF (or equivalently, tmf) in terms of Morava
E-theory.

1As opposed to an ordinary elliptic curve whose formal completion has height one. These two
are the only options.
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The formal stack Ĥ(2) has a pro-Galois cover by Spf W(F4)[[u1]] for the big Morava
Stabilizer group G. The Goerss-Hopkins-Miller theorem implies in particular that
this quotient description of Ĥ(2) has a derived version, namely the stack Spf E2//G2,
where E2 is a Lubin-Tate spectrum of height two. As we are working with elliptic
curves, we take the Lubin-Tate spectrum associated to the formal group Ĉ over F2,
and G2 = AutF2(Ĉ).

Let G denote the automorphism group of C; it is a finite group of order 48 given
as an extension of the binary tetrahedral group with the Galois group of F4/F2.
Then G embeds in G2 as a maximal finite subgroup and Spf E2 is a Galois cover
Mss for the group G. In particular, taking sections of the structure sheaf Otop over
Mss gives the K(2)-localization of TMF which is equivalent to EhG2 . Moreover,
we have K(2)-local equivalences

(TMF ∧ TMF )K(2) ' Homc(G2/G,E2)hG '
∏

x∈G\G2/G

E
h(G∩xGx−1)
2 .

The decomposition on the right hand side is interesting though we will not pursue
it further in this work. The interested reader is referred to Peter Wear’s explicit
calculation of the double coset in [?].

4. The Adams spectral sequence for tmf∗tmf and bo-Brown-Gitler
modules

4.1. Brown-Gitler modules. (Mod 2) Brown-Gitler spectra were introduced in
[BG73] to study obstructions to immersing manifolds, but immediately found use
in studying the stable homotopy groups of spheres [Mah77], [Coh81] and many
other places. As discussed in Section 2, Mahowald, Milgram, and others have used
integral Brown-Gitler modules/spectra to decompose the ring of cooperations of
bo [Mah81], [Mil75], and much of the work of Davis, Mahowald, and Rezk on tmf-
resolutions has been based on the use of bo-Brown-Gitler spectra [MR09],[DM10],
[BHHM08]. In this section we recapitulate and extend this latter body of work.

Generalizing the discussion of Section 2, we consider the subalgebra of of the dual
Steenrod algebra

(A//A(i))∗ = F2[ξ̄2i+1

1 , ξ̄2i

2 , . . . , ξ̄
2
i+1, ξ̄i+2, . . . ].

We have

H∗HF2
∼= A∗,

H∗HZ ∼= (A//A(0))∗,

H∗bo ∼= (A//A(1))∗,

H∗tmf ∼= (A//A(2))∗.

The algebra (A//A(i))∗ admits an increasing filtration by defining wt(ξ̄i) = 2i−1;
then every element has filtration divisible by 2i+1. The Brown-Gitler submodule
Ni(j) is defined to be the subspace spanned by all monomials of weight less than
or equal to 2i+1j, which is also an A∗-subcomodule.
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The modules N−1(j) through N1(j) are known to be realizable by the mod-2 (clas-
sical), integral, and bo-Brown-Gitler spectra respectively, and are usually denoted
by (HF2)j , HZj , and boj , since we have

HF2 ' lim−→(HF2)j

HZ ' lim−→HZj
bo ' lim−→ boj

For clarifying notation we shall continue the convention we adopted in Section 2
and use underline notation to refer to the corresponding sub-comodules of the dual
Steenrod algebra, so that we have

(HF2)j := H∗(HF2)j = N−1(j)

HZj := H∗HZj = N0(j)

boj := H∗boj = N1(j)

It is not known if tmf-Brown-Gitler spectra tmfj exist in general, though we will
still define

tmfj := N2(j).

The spectrum N3(1) is not realizible, by the Hopf-invariant one theorem.

There are algebraic splittings of A(i)∗-comodules:

(A//A(i))∗ ∼=
⊕
j

Σ2i+1jNi−1(j).

This splitting is given by the sum of maps:

Σ2j+1

Ni−1(j)→ (A//A(i))∗

ξ̄i11 ξ̄
i2
2 · · · 7→ ξ̄a1 ξ̄

i1
2 ξ̄

i2
3 · · ·

(4.1)

where the exponent a above is chosen such that the monomial has weight 2i+1j. It
follows that there are algebraic splittings

Ext(HZ ∧HZ) ∼=
⊕

Ext(Σ2j(HF2)j),(4.2)

Ext(bo ∧ bo) ∼=
⊕

Ext(Σ4jHZj),(4.3)

Ext(tmf ∧ tmf) ∼=
⊕

Ext(Σ8jboj).(4.4)

These algebraic splittings can be realized topologically for i ≤ 1 [Mah81]:

HZ ∧HZ '
∨
j

Σ2jHZ ∧ (HF2)j ,

bo ∧ bo '
∨
j

Σ4jbo ∧HZj .

However, the corresponding splitting was shown by Davis, Mahowald, and Rezk
[MR09], [DM10] to fail for tmf:

tmf ∧ tmf 6'
∨
j

Σ8jtmf ∧ boj .

Indeed, they observe that in tmf ∧ tmf the homology summands

Σ8tmf ∧ bo1, and Σ16tmf ∧ bo2
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are attached non-trivially. We shall see in Section 7 that our methods recover this
fact.

4.2. Rational calculations. Note that we have

tmf∗tmfQ ∼= Q[c4, c6, c̄4, c̄6].

Consider the (collapsing) v0-inverted ASS⊕
i

v−1
0 ExtA(2)∗(Σ

8iboi)⇒ tmf∗tmf ⊗Q2.

In this section we explain the decomposition imposed on the E∞-term of this spec-
tral sequence from the decomposition on the E2-term. In particular, given a torsion-
free element x ∈ tmf∗tmf, this will allow us to determine which bo-Brown-Gitler
module supports it in the E2-term of the ASS for tmf ∧ tmf.

Recall from Section 3 that tmf1(3) ' BP〈2〉. In particular, we have

H∗(tmf1(3)) ∼= A//E[Q0, Q1, Q2].

We begin by studying the map between v0-inverted ASS’s induced by the map
tmf → tmf1(3).

v−1
0 Ext∗,∗A(2)∗

(F2) +3

��

π∗tmf ⊗Q2

��

v−1
0 Ext∗,∗E[Q0,Q1,Q2]∗

(F2) +3 π∗tmf1(3)⊗Q2

We have

v−1
0 Ext∗,∗E[Q0,Q1,Q2]∗

(F2) ∼= F2[v±1
0 , v1, v2]

where the vi’s have (t− s, s) bidegrees:

|v0| = (0, 1)

|v1| = (2, 1)

|v2| = (6, 1)

Recall from Section 3 that π∗tmf1(3)Q = Q[a1, a3], and that

v1 = [a1],

v2 = [a3].

We of course have π∗tmfQ = Q[c4, c6], with corresponding localized Adams E2-term

v−1
0 Ext∗,∗A(2)∗

(F2) ∼= F2[v±1
0 , c4, c6]

where the [ci]’s have (t− s, s) bidegrees:

|[c4]| = (8, 4)

|[c6]| = (12, 5)
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Recall also from Section 3 that the formulas for c4 and c6 in terms of a1 and a3

imply that the map of E2-terms of spectral sequences above is injective, and is
given by

[c4] 7→ [a4
1],

[c6] 7→ [8a2
3].

(4.5)

Corresponding to the isomorphism

π∗tmfQ ∼= HQ∗tmf

there is an isomorphism of localized Adams E2-terms

v−1
0 ExtA(2)(F2) ∼= v−1

0 ExtA(0)((A//A(2))∗).

Since the decomposition

A//A(2)∗ ∼=
⊕
j

Σ8jboj

is a decomposition of A(2)∗-comodules, it is in particular a decomposition of A(0)∗-
comodules, and there is therefore a decomposition

(4.6) v−1
0 ExtA(2)∗(F2) ∼=

⊕
j

v−1
0 ExtA(0)∗(Σ

8jboj)

Proposition 4.7. Under the decomposition (4.6), we have

v−1
0 ExtA(0)∗(Σ

8jboj) = F2[v±1
0 ]{[ci14 ci26 ] : i1 + i2 = j}

⊂ v−1
0 ExtA(2)∗(F2).

Proof. Statement (2) of the proof of Lemma 2.5 implies that we have

v−1
0 ExtA(0)∗(boj)

∼= F2[v±1
0 ]{ξ̄4i

1 : 0 ≤ i ≤ j}.
Using the map (4.1), we deduce that we have

v−1
0 ExtA(0)∗(Σ

8jboj)
∼= F2[v±1

0 ]{ξ̄8i1
1 ξ̄4i2

2 : i1 + i2 = j}
⊂ ExtA(0)∗((A//A(2))∗).

Consider the diagram:

(4.8) H∗tmf // H∗tmf1(3) BP∗BPoo

��

HZ∗tmf

OO

��

// HZ∗tmf1(3)

OO

��

tmf1(3)∗tmf1(3)oo

��

HQ∗tmf // HQ∗tmf1(3) tmf1(3)∗tmf1(3)Qoo

The map

BP∗BP→ H∗tmf1(3) ∼= F2[ξ̄2
1 , ξ̄

2
2 , ξ̄

2
3 , ξ̄4, . . .]

sends ti to ξ̄2
i . Thus the elements

ξ̄8i1
1 ξ̄4i2

2 ∈ H∗tmf

t4i11 t2i22 ∈ BP∗BP
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have the same image in H∗tmf1(3). However, using the formulas of Section 3, we
deduce that the images of t1 and t2 in

tmf1(3)∗tmf1(3)Q = Q[a1, a3, ā1, ā3]

are given by

t1 7→ (ā1 + a1)/2,

t2 7→ (4ā3 − a1ā
2
1 − 4a3 − a3

1)/8 + terms of higher Adams filtration.

Since the map

tmf1(3)∗tmf1(3)Q → HQ∗tmf1(3) = Q[a1, a3]

of Diagram (4.8) sends āi to ai and ai to zero, we deduce that the image of t1 and
t2 in HQ∗tmf1(3) is

t1 7→ a1/2,

t2 7→ a3/2 + terms of higher Adams filtration.

It follows that under the map of v0-localized ASS’s induced by the map tmf →
tmf1(3):

v−1
0 ExtA(2)∗(F2)→ v−1

0 ExtE[Q0,Q1,Q2]∗(F2)

we have

ξ̄8i1
1 ξ̄4i2

2 7→ [a1/2]4i1 [a3/2]2i2 .

Therefore, by (4.5), we have (in v−1
0 ExtA(0)∗((A//A(2))∗))

ξ̄8i1
1 ξ̄4i2

2 = [c4/16]i1 [c6/32]i2

and the result follows. �

Corresponding to the Künneth isomorphism for HQ, there is an isomorphism

v−1
0 ExtA(0)∗(M ⊗N) ∼= v−1

0 ExtA(0)∗(M)⊗F2[v±1
0 ] ExtA(0)∗(N).

In particular, since the maps

v−1
0 Ext(tmf ∧ Σ8jboj)→ v−1

0 Ext(tmf ∧ tmf)

can be identified with the maps

v−1
0 ExtA(0)∗((A//A(2))∗)⊗F2[v±1

0 ] v
−1
0 ExtA(0)∗(Σ

8jboj)

→ v−1
0 ExtA(0)∗((A//A(2))∗)⊗F2[v±1

0 ] v
−1
0 ExtA(0)∗((A//A(2))∗)

we have the following corollary.

Corollary 4.9. The map

v−1
0 Ext(tmf ∧ Σ8jboj)→ v−1

0 Ext(tmf ∧ tmf)

obtained by localizing (4.4) is the cannonical inclusion

F2[v±1
0 , [c4], [c6]]{[c̄4]i1 [c̄6]i2 : i1 + i2 = j} ↪→ F2[v±1

0 , [c4], [c6], [c̄4], [c̄6]].
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4.3. Exact sequences relating the bo-Brown-Gitler modules. In order to
proceed with integral calculations we use analogs of the short exact sequences of
Section 2. Lemmas 7.1 and 7.2 from [BHHM08] state that there are short exact
sequences

0→ Σ8jboj → bo2j → (A(2)//A(1))∗ ⊗ tmfj−1 → Σ8j+9boj−1 → 0(4.10)

0→ Σ8jboj ⊗ bo1 → bo2j+1 → (A(2)//A(1))∗ ⊗ tmfj−1 → 0(4.11)

of A(2)∗-comodules. These short exact sequences provide an inductive method of

computing ExtA(2)∗(boj) in terms of ExtA(1)∗ computations and ExtA(2)∗(boi1).

We briefly recall how the maps in the exact sequences (4.10) and (4.11) are defined.
On the level of basis elements, the maps

Σ8jboj → bo2j

Σ8jboj ⊗ bo1 → bo2j+1

are given respectively by

ξ̄4i1
1 ξ̄2i2

2 ξ̄i33 · · · 7→ ξ̄a1 ξ̄
4i1
2 ξ̄2i2

3 ξ̄i34 · · · ,
ξ̄4i1
1 ξ̄2i2

2 ξ̄i33 · · · ⊗ {1, ξ̄4
1 , ξ̄

2
2 , ξ̄3} 7→ (ξ̄a1 ξ̄

4i1
2 ξ̄2i2

3 ξ̄i34 · · · ) · {1, ξ̄4
1 , ξ̄

2
2 , ξ̄3}

where a is taken to be 8j − wt(ξ̄4i1
2 ξ̄2i2

3 ξ̄i34 · · · ). The maps

bo2j → (A(2)//A(1))∗ ⊗ tmfj−1,(4.12)

bo2j+1 → (A(2)//A(1))∗ ⊗ tmfj−1(4.13)

are given by

ξ̄8i1+4ε1
1 ξ̄4i2+2ε2

2 ξ̄2i3+ε3
3 ξ̄i44 · · · 7→{

ξ̄8i1
1 ξ̄4i2

2 ξ̄2i3
3 ξ̄i44 · · · ⊗ ξ̄4ε1

1 ξ̄2ε2
2 ξ̄ε33 , wt(ξ̄8i1

1 ξ̄4i2
2 ξ̄2i3

3 ξ̄i44 · · · ) ≤ 8j − 8,

0, otherwise,

where εs ∈ {0, 1}. The only change from the integral Brown-Gitler case is that
while the map (4.13) is surjective, the map (4.12) is not. The cokernel is spanned
by the submodule

F2{ξ̄4
1 ξ̄

2
2 ξ̄3} ⊗ Σ8j−8boj−1 ⊂ (A(2)//A(1))∗ ⊗ tmfj−1.

We therefore have an exact sequence

bo2j → (A(2)//A(1))∗ ⊗ tmfj−1 → Σ8j+9boj−1 → 0

We give some low dimensional examples. We shall use the shorthand

M ⇐
⊕

Mi[ki]

to denote the existence of a spectral sequence⊕
Exts−ki,t+kiA(2)∗

(Mi)⇒ Exts,tA(2)∗
(M).
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In the notation above, we shall abbreviate Mi[0] as Mi. We have:

Σ16bo2 ⇐ Σ16(A(2)//A(1))∗ ⊕ Σ24bo1 ⊕ Σ32F2[1]

Σ24bo3 ⇐ Σ24(A(2)//A(1))∗ ⊕ Σ32bo2
1

Σ32bo4 ⇐ (A(2)//A(1))∗ ⊗
(
Σ32tmf1 ⊕ Σ48F2

)
⊕ Σ56bo1 ⊕ Σ56bo1[1]⊕ Σ64F2[1]

Σ40bo5 ⇐ (A(2)//A(1))∗ ⊗
(
Σ40tmf1 ⊕ Σ56bo1

)
⊕ Σ64bo2

1 ⊕ Σ72bo1[1]

Σ48bo6 ⇐ (A(2)//A(1))∗ ⊗
(
Σ48tmf2 ⊕ Σ72F2 ⊕ Σ80F2[1]

)
⊕ Σ80bo2

1 ⊕ Σ88bo1[1]⊕ Σ96F2[2]

Σ56bo7 ⇐ (A(2)//A(1))∗ ⊗
(
Σ56tmf2 ⊕ Σ80bo1

)
⊕ Σ88bo3

1

Σ64bo8 ⇐ (A(2)//A(1))∗ ⊗
(
Σ64tmf3 ⊕ Σ96tmf1 ⊕ Σ112F2 ⊕ Σ104F2[1]

)
⊕ Σ112bo2

1[1]⊕ Σ120bo1 ⊕ Σ120bo1[1]⊕ Σ128F2[1]

(4.14)

In practice, these spectral sequences seem to tend to collapse. In fact, in the range
computed explicitly in this paper, there are no differentials in these spectral se-
quences, and the authors have not yet encountered any differentials in these spectral
sequences. These spectral sequences do collapse with v0-inverted, for dimensional
reasons.

In principle the exact sequences (4.10), (4.11) allow one to inductively compute

ExtA(2)∗(boj) given ExtA(2)∗(bo⊗k1 ), where bo1 is depicted below.

ξ̄3 ◦
Sq1

ξ̄2
2 ◦

Sq2

ξ̄4
1 ◦

Sq4

1 ◦
The problem is that, unlike the A(1)-case, we do not have a closed form computation

of ExtA(2)∗(bo⊗k1 ). These computations for k ≤ 3 appeared in [BHHM08] (the cases
of k = 0, 1 appeared elsewhere). We include in Figures ?? through ?? the charts
for Σ8jboj , for 0 ≤ j ≤ 6, as well as Σ8bo2

1 in dimensions ≤ 64.

4.4. Rational behavior of the exact sequences. We finish this section with a

discussion on how to identify the generators of
ExtA(2)∗ (Σ8jboj)

v0−tors . On one hand, the
inclusion

ExtA(2)∗ (Σ8jboj)

v0−tors
� � // v−1

0 ExtA(2)∗(Σ
8jboj)� _

��

F2[v±1
0 , [c4], [c6]]{ξ̄8i1 ξ̄4i2 : i1 + i2 = j}

v−1
0 ExtA(2)∗((A//A(2))∗)
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(a) bo0 (b) Σ8bo2
1

Figure 4.1
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(a) Σ8bo1 (b) Σ16bo2

Figure 4.2
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(a) Σ24bo3 (b) Σ32bo4

Figure 4.3
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(a) Σ40bo5 (b) Σ48bo6

Figure 4.4
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discussed in Section 4.2 informs us that the h0-towers of ExtA(2)∗(Σ
8jboj) are all

generated by

hk0 [c4]p[c6]q ξ̄8i1
1 ξ̄4i2

2

for appropriate (possibly negative) values of k depending on i1, i2, p, and q.

The problem lies in that the terms

v−1
0 ExtA(2)(Σ

16j(A(2)//A(1))∗ ⊗ tmfj−1) ⊂ ExtA(2)∗(Σ
16jbo2j),(4.15)

v−1
0 ExtA(2)(Σ

16j+8(A(2)//A(1))∗ ⊗ tmfj−1) ⊂ ExtA(2)∗(Σ
16j+8bo2j+1)(4.16)

in the short exact sequences (4.10), (4.11) are not free over F2[v±1
0 , [c4], [c6]] (how-

ever, they are free over F2[v±1
0 , [c4]]).

We therefore instead identify the generators of v−1
0 ExtA(2)∗((A//A(2))∗) corre-

sponding to the generators of (4.15) and (4.16) as modules over F2[v±1
0 , [c4]], as

well as those generators coming (inductively) from

v−1
0 ExtA(2)∗(Σ

24jboj) ⊂ v−1
0 ExtA(2)∗(Σ

16jbo2j),(4.17)

v−1
0 ExtA(2)∗(Σ

24j+8boj ⊗ bo1) ⊂ v−1
0 ExtA(2)∗(Σ

16j+8bo2j+1).(4.18)

in the following two lemmas, whose proofs are immediate from the definitions of
the maps in (4.10), (4.11).

Lemma 4.19. The summands (4.15) (respectively (4.16)) are generated, as mod-
ules over F2[v±1

0 , [c4]], by the elements

ξ̄a1 ξ̄
8i1
2 ξ̄4i3

3 , ξ̄a−8
1 ξ̄8i1+4

2 ξ̄4i3
3 ∈ (A//A(2))∗

with i1 + i2 ≤ j − 1 and a = 16j − 8i1 − 8i2 (respectively a = 16j + 8− 8i1 − 8i2).

Lemma 4.20. Suppose inductively (via the exact sequences (4.10),(4.11)) that the
summand

v−1
0 ExtA(2)∗(Σ

8jboj) ⊂ v−1
0 ExtA(2)∗((A//A(2))∗)

is generated by generators of the form

{ξ̄i11 ξ̄i22 . . .}.
Then the summand (4.17) is generated by

{ξ̄i12 ξ̄i23 · · · }
and the summand (4.18) is generated by

{ξ̄i12 ξ̄i23 · · · } · {ξ̄8
1 , ξ̄

4
2}.

The remaining term

(4.21) v−1
0 ExtA(2)∗(Σ

24j+8boj−1[1]) ⊂ v−1
0 ExtA(2)∗(bo2j)

coming from (4.10) is handled by the following lemma.

Lemma 4.22. Consider the summand

v−1
0 ExtA(1)∗(Σ

24j−8boj−1) ⊂ v−1
0 ExtA(1)∗(Σ

16jtmfj−1) ⊂ v−1
0 ExtA(2)∗(Σ

16jbo2j)

generated as a module over F2[v±1
0 , [c4]] by the generators

ξ̄16
1 ξ̄8i1

2 ξ̄4i2
3 , ξ̄8

1 ξ̄
8i1+4
2 ξ̄4i2

3 ∈ (A//A(2))∗
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with i1 + i2 = j−1. Let xi (0 ≤ i ≤ j−1) be the generator of the summand (4.21),
as a module over F2[v±1

0 , [c4], [c6]] corresponding to the generator ξ̄4i
1 ∈ boj−1. The

we have

[c6]ξ̄8
1 ξ̄

8i1+4
2 ξ̄4i2

3 = v4
0xi2 + · · ·

in v−1
0 ExtA(2)∗(Σ

16jbo2j), where the additional terms not listed above all come
from the summand

v−1
0 ExtA(2)∗(Σ

24jboj) ⊂ v−1
0 ExtA(2)∗(Σ

16jbo2j).

Proof. This follows from the definition of the last map in (4.10), together with the
fact that with v0-inverted, the cell ξ̄4

1 ξ̄
2
2 ξ̄3 ∈ (A(2)//A(1))∗ attaches to the cell ξ̄4

1

with attaching map [c6]/v4
0 . �

Lemmas 4.19, 4.20, and 4.22 give an inductive method of identifying a collection
of generators for v−1

0 ExtA(2)∗(boj) which are compatible with the exact sequences
(4.10), (4.11). We tabulate these below for the decompositions arising from the
spectral sequences (4.14). For those summands of the form (A(2)//A(1))∗ ⊗ −
these are generators over F2[v±0 1, [c4]], for the other summands these are generators
over F2[v0, [c4], [c6]]:

bo0 : F2 : 1

Σ8bo1 : Σ8bo1 : ξ̄8
1 , ξ̄

4
2

Σ16bo2 : Σ16(A(2)//A(1))∗ : ξ̄16
1 , ξ̄8

1 ξ̄
4
2

Σ24bo1 : ξ̄8
2 , ξ̄

4
3

Σ32F2[1] : v−4
0 [c6]ξ̄8

1 ξ̄
4
2 + · · ·

Σ24bo3 : Σ24(A(2)//A(1))∗ : ξ̄24
1 , ξ̄16

1 ξ̄4
2

Σ32bo2
1 : {ξ̄8

2 , ξ̄
4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ32bo4 : Σ32(A(2)//A(1))∗ ⊗ tmf1 : ξ̄3
12, ξ̄24

1 ξ̄4
2 , ξ̄

16
1 ξ̄8

2 , ξ̄
8
1 ξ̄

12
2 , ξ̄16

1 ξ̄4
3 , ξ̄

8
1 ξ̄

4
2 ξ̄

4
3

Σ48(A(2)//A(1))∗ : ξ̄16
2 , ξ̄8

2 ξ̄
4
3

Σ56bo1 : ξ̄8
3 , ξ̄

4
4

Σ64F2[1] : v−4
0 [c6]ξ̄8

2 ξ̄
4
3 + · · ·

Σ56bo1[1] : v−4
0 [c6]ξ̄8

1 ξ̄
12
2 + · · · , v−4

0 [c6]ξ̄8
1 ξ̄

4
2 ξ̄

4
3 + · · ·

Σ40bo5 : Σ40(A(2)//A(1))∗ ⊗ tmf1 : ξ̄40
1 , ξ̄32

1 ξ̄4
2 , ξ̄

24
1 ξ̄8

2 , ξ̄
16
1 ξ̄12

2 , ξ̄24
1 ξ̄4

3 , ξ̄
16
1 ξ̄4

2 ξ̄
4
3

Σ56(A(2)//A(1))∗ ⊗ bo1 : {ξ̄16
2 , ξ̄8

2 ξ̄
4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ64bo2
1 : {ξ̄8

3 , ξ̄
4
4} · {ξ̄8

1 , ξ̄
4
2}

Σ72bo1[1] : {v−4
0 [c6]ξ̄8

2 ξ̄
4
3 + · · · } · {ξ̄8

1 , ξ̄
4
2}

Σ48bo6 : Σ48(A(2)//A(1))∗ ⊗ tmf2 : ξ̄48
1 , ξ̄40

1 ξ̄4
2 , ξ̄

32
1 ξ̄8

2 , ξ̄
24
1 ξ̄12

2 , ξ̄32
1 ξ̄4

3 , ξ̄
24
1 ξ̄4

2 ξ̄
4
3 ,

ξ̄16
1 ξ̄16

2 , ξ̄8
1 ξ̄

20
2 , ξ̄16

1 ξ̄8
2 ξ̄

4
3 , ξ̄

8
1 ξ̄

12
2 ξ̄4

3 , ξ̄
16
1 ξ̄8

3 , ξ̄
8
1 ξ̄

4
2 ξ̄

8
3

Σ72(A(2)//A(1))∗ : ξ̄24
2 , ξ̄16

2 ξ̄4
3

Σ80bo2
1 : {ξ̄8

3 , ξ̄
4
4} · {ξ̄8

2 , ξ̄
4
3}

Σ80bo2[1] v−4
0 [c6]ξ̄8

1 ξ̄
20
2 + · · · , v−4

0 [c6]ξ̄8
1 ξ̄

12
2 ξ̄4

3 + · · · ,
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v−4
0 [c6]ξ̄8

1 ξ̄
4
2 ξ̄

8
3 + · · ·

Σ56bo7 : Σ56(A(2)//A(1))∗ ⊗ tmf2 : ξ̄56
1 , ξ̄48

1 ξ̄4
2 , ξ̄

40
1 ξ̄8

2 , ξ̄
32
1 ξ̄12

2 , ξ̄40
1 ξ̄4

3 , ξ̄
32
1 ξ̄4

2 ξ̄
4
3 ,

ξ̄24
1 ξ̄16

2 , ξ̄16
1 ξ̄20

2 , ξ̄24
1 ξ̄8

2 ξ̄
4
3 , ξ̄

16
1 ξ̄12

2 ξ̄4
3 , ξ̄

24
1 ξ̄8

3 , ξ̄
16
1 ξ̄4

2 ξ̄
8
3

Σ80(A(2)//A(1))∗ ⊗ bo1 : {ξ̄24
2 , ξ̄16

2 ξ̄4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ88bo3
1 : {ξ̄8

3 , ξ̄
4
4} · {ξ̄8

2 , ξ̄
4
3} · {ξ̄8

1 , ξ̄
4
2}

Σ64bo8 : Σ64(A(2)//A(1))∗ ⊗ tmf3 : ξ̄64
1 , ξ̄56

1 ξ̄4
2 , ξ̄

48
1 ξ̄8

2 , ξ̄
40
1 ξ̄12

2 , ξ̄48
1 ξ̄4

3 , ξ̄
40
1 ξ̄4

2 ξ̄
4
3 ,

ξ̄32
1 ξ̄16

2 , ξ̄24
1 ξ̄20

2 , ξ̄32
1 ξ̄8

2 ξ̄
4
3 , ξ̄

24
1 ξ̄12

2 ξ̄4
3 , ξ̄

32
1 ξ̄8

3 , ξ̄
24
1 ξ̄4

2 ξ̄
8
3 ,

ξ̄16
1 ξ̄24

2 , ξ̄8
1 ξ̄

28
2 , ξ̄16

1 ξ̄16
2 ξ̄4

3 , ξ̄
8
1 ξ̄

20
2 ξ̄4

3 , ξ̄
16
1 ξ̄8

2 ξ̄
8
3 , ξ̄

8
1 ξ̄

12
2 ξ̄8

3 ,

ξ̄16
1 ξ̄12

3 , ξ̄8
1 ξ̄

4
2 ξ̄

12
3

Σ96(A(2)//A(1))∗ ⊗ tmf1 : ξ̄3
22, ξ̄24

2 ξ̄4
3 , ξ̄

16
2 ξ̄8

3 , ξ̄
8
2 ξ̄

12
3 , ξ̄16

2 ξ̄4
4 , ξ̄

8
2 ξ̄

4
3 ξ̄

4
4

Σ112(A(2)//A(1))∗ : ξ̄16
3 , ξ̄8

3 ξ̄
4
4

Σ120bo1 : ξ̄8
4 , ξ̄

4
5

Σ128F2[1] : v−4
0 [c6]ξ̄8

3 ξ̄
4
4 + · · ·

Σ120bo1[1] : v−4
0 [c6]ξ̄8

2 ξ̄
12
3 + · · · , v−4

0 [c6]ξ̄8
2 ξ̄

4
3 ξ̄

4
4 + · · ·

Σ104bo3[1] : v−4
0 [c6]ξ̄8

1 ξ̄
28
2 + · · · , v−4

0 [c6]ξ̄8
1 ξ̄

20
2 ξ̄4

3 + · · · ,
v−4

0 [c6]ξ̄8
1 ξ̄

12
2 ξ̄8

3 + · · ·

4.5. Identification of the integral lattice. Having constructed useful bases of
the summands

v−1
0 ExtA(2)∗(Σ

8jboj) ⊂ v−1
0 ExtA(2)∗(A//A(2)∗)

it remains to understand the lattices

ExtA(2)∗(Σ
8jboj)

v0 − tors
⊂ v−1

0 ExtA(2)∗(Σ
8jboj)

This can accomplished inductively; the rational generators we identified in the last

section are compatible with the exact sequences (4.10), (4.11), and
ExtA(2)∗
v0−tors of the

terms in these exact sequences are determined by the
ExtA(1)∗
v0−tors computations of

Section 2, and knowledge of

ExtA(2)∗(bok1)

v0 − tors
.

Unfortunately the latter requires explicit computation for each k, and hence does
not yield a general answer.

Nevertheless, in this section we will give some lemmas which provide convenient
criteria for identifying the i so that given a rational generator x ∈ (A//A(2))∗ (as
in the previous section) we have

vi0x ∈
ExtA(2)∗((A//A(2))∗)

v0 − tors
⊂ v−1

0 ExtA(2)∗((A//A(2))∗).

We first must clarify what we actually mean by “rational generator”. The genera-
tors identified in the last section originate from the exact sequences (4.10), (4.15)
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from the generators of v−1
0 ExtA(2)∗(M) where M is given by

Case 1: M = bok1

Case 2: M = (A(2)//A(1))∗ ⊗ tmfj

In Case 1, the generators x of v−1
0 ExtA(2)∗(M) are generators as a module over

F2[v±1
0 , [c4]] using the isomorphisms

v−1
0 ExtA(2)∗((A(2)//A(1))∗ ⊗ tmfj)

∼= v−1
0 ExtA(1)∗(tmfj)

∼= v−1
0 ExtA∗((A//A(1))∗ ⊗ tmfj)

α−→∼= v−1
0 ExtA(0)∗((A//A(1))∗ ⊗ tmfj)

∼= v−1
0 ExtA(0)∗((A//A(1))∗)⊗F2[v±1

0 ] v
−1
0 ExtA(0)∗(tmfj)

∼= F2[v±1
0 , [c4]]{1, ξ̄4

1} ⊗F2
F2{ξ̄8i1

1 ξ̄4i2
2 : i1 + i2 ≤ j}.

(4.23)

The rational generators in this case correspond to the generators

x = ξ̄4ε
1 ⊗ ξ̄8i1

1 ξ̄4i2
2 .

In Case 2, the generators x of v−1
0 ExtA(2)∗(M) are generators as a module over

F2[v±1
0 , [c4], [c6]], using the isomorphisms

v−1
0 ExtA(2)∗(bok1)

∼= v−1
0 ExtA∗((A//A(2))∗ ⊗ bok1)

α−→∼= v−1
0 ExtA(0)∗((A//A(2))∗ ⊗ bok1)

∼= v−1
0 ExtA(0)∗((A//A(2))∗)⊗F2[v±1

0 ] v
−1
0 ExtA(0)∗(bok1)

∼= F2[v±1
0 , [c4], [c6]]⊗F2

F2{1, ξ̄4
1}⊗k.

(4.24)

The rational generators in this case correspond to the generators

x ∈ {1, ξ̄4
1}⊗k.

In either case, since the maps α in both (4.23) and (4.24) arise from surjections of
cobar complexes

C∗A∗(N)→ C∗A(0)∗
(N)

induced from the surjection

A∗ → A(0)∗.

Thus a term vi0x ∈ C∗A(0)∗
(N) representing an element in v−1

0 ExtA(0)∗(N) corre-

sponds (for i sufficiently large) to a term [ξ̄1]ix + · · · ∈ C∗A∗(N). Then we have
determined an element of the integral lattice[

[ξ̄1]ix+ · · ·
]
∈ ExtA∗(N)

v0 − tors
⊂ v−1

0 ExtA∗(N).

Lemma 4.25. Suppose that the A(2)∗-coaction on x ∈ (A//A(2))∗ satisfies

ψ(x) = ξ̄4
1 ⊗ y + terms in lower dimension
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with y primitive, as in the following “cell diagram”:

x ◦
Sq4

y ◦
Then

v3
0x ∈

ExtA(2)∗((A//A(2))∗)

v0 − tors
⊂ v−1

0 ExtA(2)∗((A//A(2))∗)

and is represented by

[ξ̄1|ξ̄1|ξ̄1]x+
(
[ξ̄1|ξ̄2|ξ̄2] + [ξ̄1|ξ̄1|ξ̄2

1 ξ̄2] + [ξ̄1|ξ̄1ξ̄2|ξ̄2
1 ] + [ξ̄2|ξ̄2

1 |ξ̄2
1 ]
)
y

in the cobar complex C∗A(2)∗
((A//A(2))∗).

Proof. Since the cell complex depicted agrees with A(2)//A(1) through dimension
4, ExtA(2)∗ of this comodule agrees with ExtA(1)∗(F2) through dimension 4. In

particular, v3
0x + · · · generates

ExtA(2)∗ (−)

v0−tors in this dimension. To determine the
exact representing cocycle, we note that

[ξ̄1|ξ̄2|ξ̄2] + [ξ̄1|ξ̄1|ξ̄2
1 ξ̄2] + [ξ̄1|ξ̄1ξ̄2|ξ̄2

1 ] + [ξ̄2|ξ̄2
1 |ξ̄2

1 ]

kills h3
0h2 in ExtA(2)∗(F2). �

Example 4.26. A typical instance of a set of generators of (A//A(2))∗ satisfying
the hypotheses of Lemma 4.25 is

ξ̄4
i α ◦

Sq4

ξ̄8
i−1α ◦

where α = ξ̄8j1
i1
ξ̄8j2
i2
· · · is a monomial with exponents all divisible by 8.

The following corollary will be essential to relating the integral generators of Lemma 4.25
to 2-variable modular forms in Section 5.

Corollary 4.27. Suppose that x satisfies the hypotheses of Lemma 4.25. Then
image of the corresponding integral generator

v3
0x+ · · · ∈ ExtA(2)∗((A//A(2)∗))

in ExtE[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗) is given by

v3
0x+ v0[a1]2y.

Proof. Note that

E[Q0, Q1, Q2]∗ = F2[ξ̄1, ξ̄2, ξ̄3]/(ξ̄2
1 , ξ̄

2
2 , ξ̄

2
3).

Therefore the image of the integral generator of Lemma 4.25 under the map

C∗A(2)∗
((A//A(2))∗)→ C∗E[Q0,Q1,Q2]∗

((A//E[Q0, Q1, Q2])∗)

is
[ξ̄1|ξ̄1|ξ̄1]x+ [ξ̄1|ξ̄2|ξ̄2]y
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and this represents v3
0x+ v0[a1]2y. �

Similar arguments provide the following slight refinement.

Lemma 4.28. Suppose that the A(2)∗-coaction on x ∈ (A//A(2))∗ satisfies

ψ(x) = ξ̄4
1 ⊗ y + terms in lower dimension

with y primitive, and that there exists w and z satisfying

ψ(z) = ξ̄2
1y + terms in lower dimension

and

ψ(w) = ξ̄1z + ξ̄2y + terms in lower dimension

as in the following “cell diagram”:

x ◦

Sq4

w ◦
Sq1

z ◦

Sq2

y ◦

Then

v0x ∈
ExtA(2)∗((A//A(2))∗)

v0 − tors
⊂ v−1

0 ExtA(2)∗((A//A(2))∗)

and is represented by

[ξ̄1]x+ [ξ̄2
1 ]w +

(
[ξ̄3

1 ] + [ξ̄2]
)
z + [ξ̄2

1 ξ̄2]y

in the cobar complex C∗A(2)∗
((A//A(2))∗).

Example 4.29. A typical instance of a set of generators of (A//A(2))∗ satisfying
the hypotheses of Lemma 4.28 is

ξ̄4
i ξ̄

4
i′α ◦

Sq4

(ξ̄8
i−1ξ̄i′+2 + ξ̄i+2ξ̄

8
i′−1)α ◦

Sq1

(ξ̄8
i−1ξ̄

2
i′+1 + ξ̄2

i+1ξ̄
8
i′−1)α ◦

Sq2

(ξ̄8
i−1ξ̄

4
i′ + ξ̄4

i ξ̄
8
i′−1)α ◦

where α = ξ̄8j1
i1
ξ̄8j2
i2
· · · is a monomial with exponents all divisible by 8.



36 M. BEHRENS, K. ORMSBY, N. STAPLETON, AND V. STOJANOSKA

Corollary 4.30. Suppose that x satisfies the hypotheses of Lemma 4.28. Then
image of the corresponding integral generator

v0x+ · · · ∈ ExtA(2)∗((A//A(2)∗))

in ExtE[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗) is given by

v0x+ [a1]z.

5. The image of tmf∗tmf in TMF∗TMFQ: two variable modular forms

5.1. Review of Laures’ work on cooperations. For N > 1, the spectrum
TMF1(N) is even periodic, with

TMF1(N)2∗ ∼= M∗(Γ1(N))[∆−1]Z[1/N ].

In particular, its homotopy is torsion-free. As a result, there is an embedding

TMF1(N)2∗TMF1(N) ↪→ TMF1(N)2∗TMF1(N)Q

∼= M∗(Γ1(N))[∆−1]Q ⊗M∗(Γ1(N))[∆−1]Q.

Consider the multivariat q-expansion map

M∗(Γ1(N))[∆−1]Q ⊗M∗(Γ1(N))[∆−1]Q → Q[q±1, q̄±1].

In [Lau99, Thm. 2.10], Laures determines the image of TMF1(N)∗TMF1(N) under
this embedding.

Theorem 5.1 (Laures). The multivariate q-expansion map gives a pullback

TMF1(N)∗TMF1(N) //

��

TMF1(N)∗TMF1(N)Q

��

Z[1/N ][q±1, q̄±1] // Q[q±1, q̄±1]

Therefore, elements of TMF1(N)∗TMF1(N) are given by sums∑
i

fi ⊗ gi ∈M∗(Γ1(N))[∆−1]Q ⊗M∗(Γ1(N))[∆−1]Q

with ∑
i

fi(q)⊗ gi(q) ∈ Z[1/N ][q±1, q̄±1].

We shall let M2−var
∗ (Γ1(N))[∆−1, ∆̄−1] denote this ring of integral 2-variable mod-

ular forms (meromorphic at the cusps).

Remark 5.2. Laures’ methods also apply to the case of N = 1 provided 6 is
inverted to give an isomorphism

TMF∗TMF[1/6] ∼= M2−var
∗ (Γ(1))[1/6,∆−1, ∆̄−1].
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5.2. Representing TMF∗TMF(2)/tors with 2-variable modular forms. We
now turn to adapting Laures’ persective to identify TMF∗TMF(2)/tors. To do
this, we use the descent spectral sequence for

TMF(2) → TMF1(3)(2).

Let (B∗,ΓB∗) denote the Hopf algebroid encoding descent fromM1(3) toM, with

B∗ = π∗TMF1(3)(2) = Z(2)[a1, a3,∆
−1]

ΓB∗ = π∗TMF1(3) ∧TMF TMF1(3)(2) = B∗[r, s, t]/(∼)

(see Section 3) where ∼ denotes the relations (3.5). The Bousfield-Kan spectral
sequence associated to the cosimplicial resolution

TMF(2) → TMF1(3)(2) ⇒ TMF1(3)∧TMF2
(2) V TMF1(3)∧TMF3

(2) · · ·
yields the descent spectral sequence

Exts,tΓB∗
(B∗)⇒ πt−sTMF(2).

We can use parallel methods to construct a descent spectral sequence for the ex-
tension

TMF ∧ TMF(2) → TMF1(3) ∧ TMF1(3)(2).

Let (B
(2)
∗ ,Γ

B
(2)
∗

) denote the associated Hopf algebroid encoding descent, with

B
(2)
∗ = π∗TMF1(3) ∧ TMF1(3)(2),

Γ
B

(2)
∗

= π∗(TMF1(3)∧TMF2 ∧ TMF1(3)∧TMF2)(2).

The Bousfield-Kan spectral sequence associated to the cosimplicial resolution

TMF∧2
(2) → TMF1(3)∧2

(2) ⇒
(
TMF1(3)∧TMF2

)∧2

(2)
V
(
TMF1(3)∧TMF3

)∧2 · · ·
yields a descent spectral sequence

Exts,tΓ
B

(2)
∗

(B
(2)
∗ )⇒ TMFt−sTMF(2).

Lemma 5.3. The map induced from the edge homomorphism

TMF∗TMF(2)/tors→ Ext0,∗
Γ
(2)
B∗

(B
(2)
∗ )

is an injection.

Proof. This follows from the fact that the map

TMF ∧ TMF(2) → TMF ∧ TMFQ

induces a map of descent spectral sequences

Exts,t
Γ
(2)
B∗

(B
(2)
∗ ) +3

��

TMFt−sTMF(2)

��

Exts,t
Γ
(2)
B∗

(B
(2)
∗ ⊗Q) +3 TMFt−sTMFQ

and the rational spectral sequence is concentrated on the s = 0 line. �
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The significance of this homomorphism is that the target is the space of 2-integral
two variable modular forms for Γ(1).

Lemma 5.4. The 0-line of the descent spectral sequence for TMF∗TMF(2) may
be identified with the space of 2-integral two variable modular forms of level 1
(meromorphic at the cusp):

Ext0,2∗
Γ
(2)
B∗

(B
(2)
∗ ) = M2−var

∗ (Γ(1))[∆−1, ∆̄−1](2).

Proof. This follows from the composition of pullback squares

Ext0,∗
Γ
B

(2)
∗

(B
(2)
∗ )
� � //

� _

��

Ext0,∗
Γ
B

(2)
∗

(B
(2)
∗ ⊗Q)
� _

��

TMF1(3)∗TMF1(3)(2)
� � //

��

TMF1(3)∗TMF1(3)Q

��

Z(2)[q
±1, q̄±1] // Q[q±1, q̄±1]

The bottom square is a pullback by Theorem 5.1. Note that since TMF1(3) ∧TMF

TMF1(3) is Landweber exact, Γ
B

(2)
∗

is torsion-free. Thus an element of B
(2)
∗ is

Γ
B

(2)
∗

-primitive if and only if its image in B
(2)
∗ ⊗ Q is. This shows that the top

square is a pullback. �

5.3. Representing tmf∗tmf(2)/tors with 2-variable modular forms. Recall
from Section 3 that the Adams filtration of c4 is 4 and the Adams filtration of c6
is 5. Regarding 2-variable modular forms as a subring

M2−var
∗ (Γ(1))(2) ⊂ Q[c4, c6, c̄4, c̄6]

we shall denote M2−var
∗ (Γ(1))AF≥0

(2) the subring of 2-variable modular forms with

non-negative Adams filtration. The results of the previous section now easily give
the following result.

Proposition 5.5. The composite induced by Lemmas 5.3 and 5.4

tmf2∗tmf(2)/tors→ TMF2∗TMF(2)/tors ↪→M2−var
∗ (Γ(1))[∆−1, ∆̄−1](2)

induces an injection

tmf2∗tmf(2)/tors ↪→M2−var
∗ (Γ(1))AF≥0

(2)

which is a rational isomorphism.
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Proof. Consider the commutative cube

tmf2∗tmf(2)/tors //
� _

��

((

TMF2∗TMF(2)/tors

**

��

M2−var
∗ (Γ(1))(2)

//

��

M2−var
∗ (Γ(1))[∆−1, ∆̄−1](2)

��

tmf2∗tmfQ // TMF2∗TMFQ

M2−var
∗ (Γ(1))Q // M2−var

∗ (Γ(1))[∆−1, ∆̄−1]Q

(The dotted arrow exists because the front face of the cube is a pullback.) The
commutativity of the diagram, and the fact that rationally the top face is isomorphic
to the bottom face, give an injection

tmf2∗tmf(2)/tors ↪→M2−var
∗ (Γ(1))(2)

which is a rational isomorphism. Since all of the elements of the source have Adams
filtration ≥ 0, this injection factors through the subring

tmf2∗tmf(2)/tors ↪→M2−var
∗ (Γ(1))AF≥0

(2) .

�

5.4. Detecting 2-variable modular forms in the ASS.

Definition 5.6. Suppose that we are given a class

x ∈ Ext(tmf ∧ tmf)

and a 2-variable modular form

f ∈M2−var
∗ (Γ(1))AF≥0

(2) .

We shall say that x detects f if the image of x in v−1
0 Ext(tmf ∧ tmf) detects the

image of f in M2−var
∗ (Γ(1))⊗Q2 in the localized ASS

v−1
0 Ext(tmf ∧ tmf)⇒ tmf∗tmf ⊗Q2

∼= M2−var
∗ (Γ(1))⊗Q2.

Remark 5.7. Suppose x as above is a permanent cycle in the unlocalized ASS

Ext(tmf ∧ tmf)⇒ tmf∗tmf∧2 ,

and detects ζ ∈ tmf∗tmf∧2 , and let f be the image of ζ under the map

tmf∗tmf∧2 → [M2−var
∗ (Γ(1))∧2 ]AF≥0.

Then x detects f .

Given a 2-variable modular form f ∈M2−var
∗ (Γ(1))(2), let f(ai, āi) denote its image

in
M2−var
∗ (Γ0(3))⊗Q2

∼= F2[a1, a3, ā1, ā3] ∼= tmf1(3)∗tmf1(3)⊗Q2,

and let

[f(ai, āi)] ∈ v−1
0 Ext(tmf1(3) ∧ tmf1(3)) ∼= F2[v±1

0 , [a1], [a3], [ā1], [ā3]]

denote the element which detects it in the (collapsing) v0-localized ASS. Similarly,
let tk(ai, āi) denote the images of tk in tmf1(3)∗tmf1(3) ⊗ Q2 (as in Section 3),
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and let [tk(ai, āi)] denote the elements of Ext which detect these images in the
v0-localized ASS for tmf1(3)∗tmf1(3)⊗Q2.

The following key proposition gives a convenient criterion for determining when a
particular element x ∈ Ext(tmf ∧ tmf) detects a 2-variable modular form f .

Proposition 5.8. Suppose that we are given a cocycle

z =
∑
j

zj ξ̄
2k1,j
1 ξ̄

2k2,j
2 · · · ∈ C∗A(2)∗

((A//A(2))∗)

(with zj ∈ C∗A(2)∗
(F2)) which represents [z] ∈ Ext(tmf ∧ tmf), and a 2-variable

modular form

f ∈M2−var
∗ (Γ(1))AF≥0

(2) .

The images z̄j of the terms zj in the cobar complex C∗E[Q0,Q1,Q2]∗
(F2) are cycles,

which represent classes

[z̄j ] ∈ ExtE[Q0,Q1,Q2](F2) = F2[v0, [a1], [a3]].

If we have

[f(ai, āi)] =
∑
j

[zj ][t1(ai, āi)]
k1,j [t2(ai, āi)]

k2,j · · ·

then [z] detects f .

Proof. Let z̄ ∈ C∗E[Q0,Q1,Q2]∗
((A//E[Q0, Q1, Q2])∗) denote the image of z. We first

note that since the map

M∗(Γ(1))2−var⊗Q2 = tmf∗tmf⊗Q2 → tmf1(3)∗tmf1(3)⊗Q2 = M∗(Γ1(3))2−var⊗Q2

is injective, and both tmf ∧ tmf and tmf1(3) ∧ tmf1(3) both have collapsing v0-
localized ASS’s, with induced map on E2-terms induced from the map

C∗A(2)∗
((A//A(2))∗)→ C∗E[Q0,Q1,Q2]((A//E[Q0, Q1, Q2])∗)

that [z] detects f if and only if [z̄] detects f(ai, āi). Thus it suffices to prove the
latter.

Note that since the elements

ξ̄
2k1,j
1 ξ̄

2k2,j
2 · · · ∈ (A//E[Q0, Q1, Q2])∗

are E[Q0, Q1, Q2]∗-primitive, it follows from the fact that z is a cocycle that the
elements z̄j are cocycles. The only thing left to check is that

[ξ̄
2k1,j
1 ξ̄

2k2,j
2 · · · ] = [t1(ai, āi)]

k1,j [t2(ai, āi)]
k2,j · · ·

in ExtE[Q0,Q1,Q2]∗((A//E[Q0, Q1, Q2])∗). But this follows from the commutative
diagram

BP∗BP //

&&

H∗H

H∗tmf1(3)
+ �

99

together with the fact that under the top map, tk is mapped to ξ̄2
k. �
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5.5. Low dimensional computations of 2-variable modular forms. Below is
a table of generators of Ext(tmf ∧ tmf)/tors, as a module over F2[h0, [c4]], through
dimension 64, with 2-variable modular forms they detect. The columns of this table
are:

dim: dimension of the generator,
bok: indicates generator lies in the summand ExtA(2)∗(bok) (see the charts

in Section 4),
AF: the Adams filtration of the generator,
cell: the name of the image of the generator in v−1

0 ExtA(2)∗(bok), in the sense
of Section 4.4,

form: a two-variable modular form which is detected by the generator in the
v0-localized ASS (where fk are defined below).

The table below also gives a basis of M2−var
∗ (Γ(1))(2) as a Z(2)[c4]-module: in

dimension 2k, a form αg in the last column, with α ∈ Q and g a monomial in
Z[c4, c6,∆, fk] not divisible by 2, corresponds to a generator g of M2−var

k (Γ(1))(2).

Table 1. Table of generators of Ext(tmf ∧ tmf)/tors.

dim bok AF cell form

8 1 0 ξ̄8
1 f1

12 1 3 [8]ξ̄4
2 2f2

16 2 0 ξ̄16
1 f2

1

20 1 3 [c6/4] · ξ̄8
1 2f3

20 2 3 [8]ξ̄8
1 ξ̄

4
2 2f1f2

24 1 4 [c6/2] · ξ̄4
2 f4

24 2 0 ξ̄8
2 f5

24 3 0 ξ̄24
1 f3

1

28 2 3 [8]ξ̄4
3 2f6

28 3 3 [8]ξ̄16
1 ξ̄4

2 2f2
1 f2

32 1 4 [∆]ξ̄8
1 ∆f1

32 2 1 [c6/16] · ξ̄8
1 ξ̄

4
2 + [c4/8] · ξ̄8

2 f9

32 3 0 ξ̄8
1 ξ̄

8
2 f1f5

32 4 0 ξ̄32
1 f4

1

36 1 7 [8∆]ξ̄4
2 2∆f2

36 2 3 [c6/4] · ξ̄8
2 2f7

36 3 3 [8]ξ̄12
2 2f2f5

36 3 0 ξ̄8
1 ξ̄

4
3 + ξ̄12

2 f10
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36 4 3 [8]ξ̄24
1 ξ̄4

2 2f3
1 f2

40 2 4 [c6/2] · ξ̄4
3 f8

40 3 1 [2]ξ̄4
2 ξ̄

4
3 f11

40 4 0 ξ̄16
1 ξ̄8

2 f2
1 f5

40 5 0 ξ̄20
1 f5

1

44 1 7 [∆c6/4] · ξ̄8
1 2∆f3

44 2 7 [c6/4]([c6/16] · ξ̄8
1 ξ̄

4
2 + [c4/8] · ξ̄8

2) c6f9/4

44 3 3 [c6/4] · ξ̄8
1 ξ̄

8
2 2f1f7

44 4 3 [8]ξ̄8
1 ξ̄

12
2 2f1f2f5

44 4 0 ξ̄16
1 ξ̄4

3 + ξ̄8
1 ξ̄

12
2 2f13

44 5 3 [8]ξ̄32
1 ξ̄4

2 2f4
1 f2

48 1 8 [∆c6/2] · ξ̄4
2 ∆f4

48 2 4 [∆]ξ̄8
2 ∆f5

48 3 4 [c6/2] · ξ̄12
2 f2f7

48 3 1 [c6/16] · (ξ̄8
1 ξ̄

4
3 + ξ̄12

2 ) f14

48 4 0 ξ̄16
2 f2

5

48 4 1 [2]ξ̄8
1 ξ̄

4
2 ξ̄

4
3 f1f11

48 5 0 ξ̄24
1 ξ̄8

2 f3
1 f5

48 6 0 ξ̄48
1 f6

1

52 2 7 [8∆]ξ̄4
3 2∆f6

52 3 4 [c6/2] · ξ̄4
2 ξ̄

4
3 2f15

52 4 3 [8]ξ̄8
2 ξ̄

4
3 2f5f6

52 5 3 [8]ξ̄16
1 ξ̄12

2 2f2
1 f2f5

52 5 0 ξ̄24
1 ξ̄4

3 + ξ̄16
1 ξ̄12

2 2f1f13

52 6 3 [8]ξ̄40
1 ξ̄4

2 2f5
1 f2

56 1 8 [∆2ξ̄8
1 ∆2f1

56 2 8 [∆]([c6/2] · ξ̄8
1 ξ̄

4
2 + [c4] · ξ̄8

2) 8∆f9

56 3 4 [∆]ξ̄8
1 ξ̄

8
2 ∆f5f1

56 4 1 [c6/16] · ξ̄8
1 ξ̄

12
2 + [c4/8] · ξ̄16

2 f5f9

56 4 0 ξ̄8
3 f16

56 5 0 ξ̄8
1 ξ̄

16
2 f1f

2
5

56 5 1 [2]ξ̄16
1 ξ̄4

2 ξ̄
4
3 f2

1 f11

56 6 0 ξ̄32
1 ξ̄8

2 f4
1 f5

60 1 11 [8∆2] · ξ̄4
2 2∆2f2

60 2 7 [∆c6/4] · ξ̄8
2 2∆f7
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60 3 7 [8∆]ξ̄12
2 2∆f5f2

60 3 4 [∆](ξ̄8
1 ξ̄

4
3 + ξ̄12

2 ) ∆f10

60 4 4 [c6/2] · ξ̄8
1 ξ̄

4
2 ξ̄

4
3 + [c4] · ξ̄8

2 ξ̄
4
3 2f6f9

60 4 3 [8]ξ̄4
4 2f17

60 5 0 ξ̄20
2 + ξ̄8

1 ξ̄
8
2 ξ̄

4
3 f18

60 5 3 [8]ξ̄8
1 ξ̄

8
2 ξ̄

4
3 2f1f5f6

60 6 3 [8]ξ̄24
1 ξ̄12

2 2f3
1 f2f5

60 6 0 ξ̄32
1 ξ̄4

3 2f2
1 f13

60 7 3 [8]ξ̄48
1 ξ̄4

2 2f6
1 f2

64 2 8 [∆c6/2] · ξ̄4
3 ∆f8

64 3 5 [2∆]ξ̄4
2 ξ̄

4
3 ∆f11

64 4 2 [c6/16] · ξ̄8
2 ξ̄

4
3 + [c4/8] · ξ̄8

3 f
2/2
9

64 5 1 [2]ξ̄12
2 ]ξ̄4

3 f1f5f9

64 5 0 ξ̄8
1 ξ̄

8
3 f1f16

64 6 0 ξ̄16
1 ξ̄16

2 f2
5 f

2
1

64 6 1 [2]ξ̄24
1 ξ̄4

2 ξ̄
4
3 f11f

3
1

64 7 0 ξ̄40
1 ξ̄8

2 f5
1 f5

64 8 0 ξ̄64
1 f8

1

The 2-variable modular forms fk ∈ M2−var
∗ (Γ(1))(2) in the above table are the

generators of M2−var
∗ (Γ(1))(2) as an M∗(Γ(1))(2)-algebra in this range, and are

defined as follows.

f1 := (−c̄4 + c4)/16

f2 := (−c̄6 + c6)/8

f3 := (5f1c6 + 21f2c4)/8

f4 := (5f2c6 + 21f1c
2
4)/8

f5 := (−f2
1 c4 + f2

2 )/16

f6 := (−c24c6 + c24c6 + 544f2c
2
4 + 768f3c4 + 1792f1f2c4)/2048

f7 := (4f2∆ + f5c6 + 5f2c
3
4 + 6f3c

2
4 + 5f1f2c

2
4 + 7f6c4 + 4f2

1 f2c4)/8

f8 := (4f1c4∆ + f6c6 + 5f1c
4
4 + 5f2

1 c
3
4 + 7f5c

2
4 + 2f4c

2
4 + 4f3

1 c
2
4)/8

f9 := (32f1∆ + f1f2c6 + 33f2
1 c

2
4 + 8f5c4 + 32f4c4 + 32f3

1 c4)/64

f10 := (2f2c
3
4 + f1f2c

2
4 + 2f6c4 + 3f2

1 f2c4 + f1f6 + f2f5)/4

f11 := (4f1c4∆ + 11f2
1 c

3
4 + 34f5c

2
4 + 28f4c

2
4 + 23f3

1 c
2
4 + 4f9c4 + f1f5c4 + 4f4

1 c4

+ 4f8 + f2f6)/8

f12 := (f1f5c6 + 8f2c
4
4 + 8f3c

3
4 + 8f1f2c

3
4 + 8f6c

2
4 + 8f2

1 f2c
2
4 + f2f5c4)/8
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f13 := (8f3∆ + 80f2c
4
4 + 56f3c

3
4 + 80f1f2c

3
4 + 76f6c

2
4 + 55f2

1 f2c
2
4 + 4f10c4

+ 18f2f5c4 + 11f3
1 f2c4 + 4f12 + f2

1 f6 + f1f2f5 + 4f4
1 f2)/8

f14 := (21f1c
2
4∆ + 8f5∆ + 16f4∆ + 20f3

1 ∆ + f10c6 + 11f1c
5
4 + 36f2

1 c
4
4 + 591f5c

3
4

+ 490f4c
3
4 + 437f3

1 c
3
4 + 119f9c

2
4 + 140f1f5c

2
4 + 75f4

1 c
2
4 + 10f11c4 + 11f8c4

+ 32f5
1 c4 + 8f1f2f6)/16

f15 := (4f6∆ + f2
1 f2∆ + 76f2c

5
4 + 54f3c

4
4 + 90f1f2c

4
4 + 73f6c

3
4 + 50f2

1 f2c
3
4 + 3f10c

2
4

+ 8f7c
2
4 + 20f2f5c

2
4 + 8f3

1 f2c
2
4 + 7f12c4 + 4f1f2f5c4)/8

f16 := (2f1∆2 + 24f1c
3
4∆ + 9f5c4∆ + 18f4c4∆ + 4f3

1 c4∆ + 2f9∆ + f1f5∆

+ 36f2
1 c

5
4 + 480f5c

4
4 + 402f4c

4
4 + 359f3

1 c
4
4 + 94f9c

3
4 + 112f1f5c

3
4 + 55f4

1 c
3
4

+ 12f11c
2
4 + 14f8c

2
4 + 20f5

1 c
2
4 + 2f14c4 + 5f2f7c4 + f2

5 c4 + 4f3
1 f5c4 + f1f14

+ f5f9 + f1f2f7)/2

f17 := (2f2∆2 + 22f3c
2
4∆ + 11f6c4∆ + f2f5∆ + 19f9c

2
4c6 + 682f2c

6
4 + 480f3c

5
4

+ 768f1f2c
5
4 + 648f6c

4
4 + 462f2

1 f2c
4
4 + 30f10c

3
4 + 63f7c

3
4 + 185f2f5c

3
4

+ 84f3
1 f2c

3
4 + 12f13c

2
4 + 27f12c

2
4 + 29f1f2f5c

2
4 + 16f4

1 f2c
2
4 + 4f15c4 + 4f5f6c4

+ 2f2
1 f2f5c4 + f2f14 + f6f9)/2

f18 := (4f2∆2 + 168f3c
2
4∆ + 96f6c4∆ + 8f2f5∆ + 168f9c

2
4c6 + 5880f2c

6
4

+ 4140f3c
5
4 + 6648f1f2c

5
4 + 5592f6c

4
4 + 3980f2

1 f2c
4
4 + 248f10c

3
4 + 560f7c

3
4

+ 1586f2f5c
3
4 + 744f3

1 f2c
3
4 + 112f13c

2
4 + 220f12c

2
4 + 265f1f2f5c

2
4

+ 136f4
1 f2c

2
4 + 40f15c4 + 4f1f13c4 + 34f5f6c4 + 19f2

1 f2f5c4 + 8f5
1 f2c4

+ 4f6f9 + f1f5f6 + f2f
2
5 )/4

We shall now indicate the methods used to generate Table 1, and make some re-
marks about its contents.

The short exact sequences of Section 4.3 give an inductive scheme for computing
ExtA(2)∗(bok), and charts in that section display the computation through dimen-
sion 64. In Section 4.4, these short exact sequences are used to give an inductive
scheme for identifying the generators of v−1

0 ExtA(2)∗(bok), and appropriate multi-
ples of these generators generate the image of ExtA(2)∗(bok)/tors in these localized
Ext groups. These generators are listed in the fourth column of Table 1.

The two variable modular forms in the last column of Table 1 are detected by
the generators in the fourth column, in the sense of the previous section. In each
instance, if necessary, we use Corollary 4.27 or 4.30 to find the image of the generator
in Ext(tmf1(3) ∧ tmf1(3)) and then apply Proposition 5.8.

The 2-variable modular forms were generated by the following inductive method.
Suppose inductively that we have generated a basis of M2−var

∗ (Γ(1))(2) in dimension
n and Adams filtration greater than s and suppose that we wish to generate a 2-
variable modular form f in dimension n and Adams filtration s.
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Step 1: Write an approximation (modulo higher Adams filtration) for f . This
could either be generated using Proposition prop:detection, or it could be
obtained by taking an appropriate product of 2-variable modular forms in
lower degrees. Write this approximation as g(q, q̄)/2k where g(q, q̄) is a
2-integral 2-variable modular form.

Step 2: Write g(q, q̄) as a linear combination of 2-variable modular forms
already produced mod 2:

g(q, q̄) =
∑
i

hi(q, q̄).

Step 3: Setting

g′(q, q̄) =
g(q, q̄) +

∑
i hi(q, q̄)

2
.

the form g′(q, q̄)/2k−1 is a better approximation for f .
Step 4: Repeat steps 2 and 3 until the denominator is completely eliminated.

We explain all of this by working it through some low degrees:

f1: The corresponding generator of Ext0,8
A(2)∗

(Σ8bo1) is ξ̄8
1 . We compute

[t1(ai, āi)
4] =

[
ā4

1 + a4
1

24

]
= [
−c̄4 + c4

24
].

We check that

f1 :=
−c̄4 + c4

24

has an integral q-expansion.
2f2: The corresponding generator of Ext3,15

A(2)∗
(Σ8bo1) is [8]ξ̄4

2 . We compute

(appealing to Corollary 4.27)

[8t2(ai, āi)
2 + 2a2

1t1(ai, āi)
4] =

[
2ā2

3 + 2a2
3

]
= [
−c̄6 + c6

4
].

We check that −c̄6+c6
4 has integral q-expansion. In fact the q-expansion is

zero mod 2, so we set

f2 :=
−c̄6 + c6

8
.

f21 : The corresponding generator of Ext0,16
A(2)∗

(Σ16bo2) is ξ̄16
1 . Since ξ̄8

1 detects

f1, ξ̄16
1 detects f2

1 .

2f1f2: The corresponding generator of Ext3,23
A(2)∗

(Σ16bo2) is ξ̄8
1 ξ̄

4
2 . Since ξ̄8

1

detects f1 and [8]ξ̄4
2 detects 2f2, [8]ξ̄8

1 ξ̄
4
2 detects 2f1f2.

2f3: The corresponding generator of Ext3,23
A(2)∗

(Σ8bo1) is [c6/4]ξ̄8
1 . Since ξ̄8

1

detects f1, we begin with a leading term c6f1/4. This 2-variable modular
form is not integral, but we find that

c6(q)f1(q, q̄) + f2(q, q̄)c4(q) ≡ 0 mod 4.

Therefore [c6/4]ξ̄8
1 detects

c6f1 + f2c4
4

.
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In fact

5c6(q)f1(q, q̄) + 21f2(q, q̄)c4(q) ≡ 0 mod 8,

so we set

f3 :=
5c6f1 + 21f2c4

8
.

6. Approximating by level structures

Recall from §3 the maps

Ψn : TMF[1/n] ∧ TMF[1/n]→ TMF0(n)

and

φ[n] : TMF ∧ TMF[1/n]→ TMF ∧ TMF[1/n].

Here Ψn is induced by the forgetful and quotient maps f, q : M0(n) → M[1/n],
while φ[n] = 1 ∧ [n] where [n] : TMF[1/n] → TMF[1/n] is the “Adams operation”
associated to the multiplication by n isogeny on M[1/n]. For reasons motivated
by the conjectural K(2)-local behavior of these objects, we are interested in the
composite map Ψ given as

tmf ∧ tmf(2)
Ψ //

��

∏
i∈Z,j≥0

TMF0(3j)× TMF0(5j)

TMF ∧ TMF(2)

ψ

44

where

ψ =
∏

i∈Z,j≥0

Ψ3jφ[3i] ×Ψ5jφ[5i].

We will abuse notation and refer to the composite

tmf ∧ tmf(2) → TMF ∧ TMF(2)
Ψn−−→ TMF0(n)

(for (2, n) = 1) as Ψn as well; these are the i = 0 factors of Ψ.

In order to study Ψn we consider the square

tmf∗tmf(2)
π∗Ψn //

��

π∗TMF0(n)

��

M2−var
∗ (Γ(1))(2)

ψn

// M∗(Γ0(n)).

Here the left-hand vertical map is the composite

tmf∗tmf(2) → tmf∗tmf(2)/tors ↪→M2−var
∗ (Γ(1))AF≥0

(2) ↪→M2−var
∗ (Γ(1))(2),

and M∗(Γ0(n)) is the ring of level Γ0(n)-modular forms. The bottom horizontal
map is also induced by f and q; if we consider a 2-variable modlar form as a
polynomial p(c4, c6, c̄4, c̄6), then ψn(p) = p(f∗c4, f

∗c6, q
∗c4, q

∗c6).

We are especially interested in the cases n = 3, 5. Recall from [MR09] (or [BO, §3.3])
that M∗(Γ0(3)) has a convenient presentation as a subalgebra of M∗(Γ1(3)). Indeed,
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M∗(Γ1(3))(2) = Z(2)[a1, a3,∆
−1] where ∆ = a3

3(a3
1− 27a3), and M∗(Γ0(3))(2) is the

subring generated by a2
1, a1a3, a

2
3, i.e.,

M∗(Γ0(3))(2) = Z(2)[a
2
1, a1a3, a

2
3,∆

−1].

Using the formulas from loc. cit., we may compute

f∗(c4) = a4
1 − 24a1a3, q∗(c4) = a4

1 + 216a1a3,

f∗(c6) = −a6
1 + 36a3

1a3 − 216a2
3, q∗(c6) = −a6

1 + 540a3
1a3 + 5832a2

3.

There are similar formulas for the n = 5 case which we recall from [BO, §3.4]. Here
the ring of Γ0(5)-modular forms takes the form

M∗(Γ0(5))(2) = Z(2)[b2, b4, δ,∆
−1]/(b24 = b22δ − 4δ2)

where |b2| = 2 and |b4| = |δ| = 4. (These are the algebraic, rather than topological,
degrees.) The discriminant takes the form

∆ = 11δ3 + δ2b4,

and we have

f∗(c4) = b22 − 12b4 + 12δ, q∗(c4) = b22 + 228b4 + 492δ,

f∗(c6) = −b32 + 18b2b4 − 72b2δ, q∗(c6) = −b32 + 522b2b4 + 10008b2δ.

7. Connective covers of TMF0(3) and TMF0(5)

7.1. Motivation from K(2)-local theory.

7.2. Computation of Ψ3 and Ψ5 in low degrees.

7.3. Using level structures to detect differentials and hidden extensions
in the ASS.

7.4. Connective covers of TMF0(3) and TMF0(5) in the tmf-resolution.
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