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2 Mark Behrens

1 Introduction

This paper consists of two parts. The first part consists of the lecture notes of
a series of talks on the root invariant given by the author at a workshop held at
the Nagoya Institute of Technology. The second part is a detailed computation,
using the methods of Part I, of some low dimensional root invariants at the
prime 2. More detailed descriptions of the contents of these parts are given at
the beginning of each part.

Part I Lectures on root invariants
2. The chromatic filtration
3. Greek letter elements
4. The root invariant
5. Filtered root invariants
6. Some theorems

Part II 2-primary calculations
7. The indeterminacy spectral sequence
8. BP filtered root invariants of 2k

9. The first two BP -filtered root invariants of αi/j

10. Higher BP and HF2-filtered root invariants of some
v1-periodic elements

11. Homotopy root invariants of some v1-periodic elements

The author would like to express his appreciation of the contributions of Goro
Nishida to the field of homotopy theory. The author would also like to thank
the organizers of the conference for the unique opportunity to meet Japanese
mathematicians. Jack Morava encouraged the author to submit these lecture
notes as a means of communicating the ideas of [3] without all of the technical
details. Haynes Miller provided some comments on the homotopy Greek letter
construction, and Mike Hopkins clued the author into the existence of the useful
paper [18]. W.-H. Lin explained to the author how to show that a certain
element of the Adams spectral sequence for P−23 was a permanent cycle. The
author is grateful to the referee for discovering a mistake in a previous version
of Corollary 6.2, and to R.R. Bruner for pointing out some typographical errors.
The computations of Part II began as part of the author’s thesis, which was
completed under the guidance of Peter May at the University of Chicago. The
author is, here and elsewhere, heavily influenced by the work of (and discussions
with) Mark Mahowald. Finally, the author would like to extend his heartfelt

1The author is supported by the NSF.
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gratitude to Norihiko Minami, both for organizing a very engaging workshop at
the Nagoya Institute of Technology, and for his role as a mentor, introducing the
author to the field of homotopy theory as an undergraduate at the University
of Alabama.

Part I

Lectures on root invariants

Throughout this paper we are always working in the p-local stable homotopy
category for p a fixed prime number. In this first section we will summarize
the chromatic filtration and the machinery of filtered root invariants. A very
detailed treatment of this theory appeared in [3]. Our intention here is to ig-
nore many of the subtleties, sometimes to the point of omitting or simplifying
hypotheses and ignoring indeterminacy, to communicate to the reader the un-
derlying ideas. Our hope is that the reader will be able to use this overview as
a motivation to drudge through the more precise treatment of [3].

In Section 2 we review the chromatic filtration of the stable stems. In Section 3
we review the Greek letter construction of Miller, Ravenel, and Wilson. The
Greek letter elements are distinguished chromatic families of elements in the E2 -
term ExtBP∗BP (BP∗, BP∗) of the Adams-Novikov spectral sequence (ANSS).
These elements need not be non-trivial permanent cycles in the ANSS. We
introduce the notion of a homotopy Greek letter element to remedy this. In
Section 4 we define the root invariant and recall some computational examples
that occur throughout the literature. The interesting thing is that, at least for
the limited number of root invariants we know, it seems to be the case that
the root invariant has a tendency to take vn -periodic homotopy Greek letter
elements to vn+1 -periodic homotopy Greek letter elements. In Section 5 we
define filtered root invariants. In Section 6 we summarize the main theorems
that make the filtered root invariants compute root invariants.

Conventions We shall be using the following abbreviations.

ASS The classical Adams spectral sequence based on HFp .

ANSS The Adams-Novikov spectral sequence based on BP .

E -ASS The generalized Adams spectral sequence based on E .

AHSS The Atiyah-Hirzebruch spectral sequence.
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4 Mark Behrens

Ext(E∗X) For nice spectra E , the comodule Ext group ExtE∗E(E∗, E∗X).

AAHSS The algebraic Atiyah-Hirzebruch spectral sequence that computes
Ext(E∗X) using the cellular filtration on X .

Modified AAHSS The AAHSS for Ext(BP∗P
∞) arising from the filtration

of P∞ by Moore spectra.

Often we shall place a bar over the name of a permanent cycle in an Adams
spectral sequence to denote an element of homotopy that it detects. We shall
place dots over binary relations to indicate that they only hold up to multipli-
cation by a unit in Z(p) . For instance, we shall write x

.
= y if x = α ·y for some

α ∈ Z×
(p) . We shall use

∩

= to indicate that two quantities are equal modulo
some indeterminacy group. We shall always use the Hazewinkel generators of
BP∗ .

2 The chromatic filtration

We shall first describe the chromatic filtration on the stable homotopy groups
of spheres. What we are describing is referred to as the “geometric chromatic
filtration” by Ravenel in [29]. We first need to discuss type n complexes and
vn -self maps.

Let K(n) be nth Morava K -theory, with coefficient ring

K(n)∗ = Fp[vn, v
−1
n ].

Here vn has degree 2(pn − 1). By K(0) we shall mean the rational Eilenberg-
MacLane spectrum HQ, and by v0 we shall mean p.

If X is a finite complex, it is said to be type n if K(n − 1)∗X = 0 and
K(n)∗X 6= 0. It is a consequence of the Landweber filtration theorem [14], [29]
that the condition K(n− 1)∗X = 0 implies that K(m)∗X = 0 for m ≤ n− 1.

A self map v : ΣNX → X is said to be a vn -self map if it induces an isomor-
phism on K(n)-homology

v∗ : K(n)∗Σ
NX → K(n)∗X.

If v∗ induces, up to an element in F×
p , multiplication by vk

n for some k , we

shall say that X has vk
n multiplication. By Lemma 6.1.1 of [29], if v is a vn -self

map, there is some power of v which induces vk
n multiplication. If v induces

vk
n -multiplication, we shall often denote the map vk

n . This practice is slightly
objectionable because a complex can have many different v so that v∗ is vk

n ,

Geometry & Topology, Volume X (20XX)
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but there is some consolation in that the Devinatz-Hopkins-Smith Nilpotence
Theorem may be used to show that any two such maps are equal after a finite
number of iterates.

The following important theorem was conjectured by Ravenel [27] and proved
by Hopkins and Smith [9] using the nilpotence theorem [12].

Theorem 2.1 Hopkins-Smith Periodicity Theorem If X is type n, then
X possesses a vn -self map.

We will now define the chromatic filtration of an element α ∈ πn(S). We shall
refer to the following diagram.

Sn

pk0

// Sn

��

α // S0

ΣN1M(pk0)
v

k1
1

// M(pk0)

α1

99

��

ΣN2M(pk0 , vk1

1 )
v

k2
2

// M(pk0 , vk1

1 )

α2

CC

��
...

v0 -periodic If α◦pk is non-zero for every k , then α is said to be v0 -periodic.

v1 -periodic Otherwise, α is v0 -torsion, and there is some k0 such that α ◦
pk0 = 0. Let M(pk0) denote the cofiber of pk0 . Then there exists a lift
α1 of α to M(pk0). The complex M(pk0) is type 1, and thus has vm

1

multiplication for some m. If α1 ◦ v
mk
1 is non-zero for every k , then α is

said to be v1 -periodic.

v2 -periodic Otherwise, α is v1 -torsion, and there is some k1 such that α1 ◦
vk1

1 = 0. Let M(pk0 , vk1

1 ) denote the cofiber of vk1

1 . Then there exists
a lift α2 of α1 to M(pk0 , vk1

1 ). The complex M(pk0 , vk1

1 ) is type 1, and
thus has vm

2 multiplication for some m. If α2 ◦ v
mk
2 is non-zero for every

k , then α is said to be v2 -periodic.

v3 -periodic Otherwise, α is said to be v1 -torsion, and there is some k2 so
that α2 ◦ v

k2

2 = 0. The process continues.

In this way, we have defined a decreasing filtration

π∗(S) ⊇ {v0 − torsion} ⊇ {v1 − torsion} ⊇ {v2 − torsion} ⊇ · · ·

Geometry & Topology, Volume X (20XX)



6 Mark Behrens

which is the chromatic filtration.

It is not clear that the chromatic filtration is independent of the sequence of
lifts. The (geometric) chromatic filtration may be more succinctly described by
means of finite localization [24], and from this perspective it is clear that the
chromatic filtration is well defined. The finite localization functor

Lf
E(n) : Spectra→ Spectra

is initial amongst endofunctors that kill finite E(n)-acyclic spectra. The finitely

localized sphere Lf
E(n)S may be explicitly described as a colimit of finite spectra,

and in this manner one finds that the vn -torsion elements of π∗(S) are precisely
those that make up the kernel of the map

π∗(S)→ π∗(L
f
E(n)S).

There are fiber sequences

Mf
nS = v−1

n M(p∞, . . . , v∞n−1)→ Lf
nS → Lf

n−1S.

Remark 2.2 In [29], Ravenel discusses a different filtration which he calls
the “algebraic chromatic filtration,” which is what is more commonly meant
by the chromatic filtration these days. The nth filtration is the kernel of the
localization map

π∗(S)→ π∗(LE(n)S)

where E(n) is the Johnson-Wilson spectrum with coefficient ring

E(n)∗ = Z(p)[v1, v2, . . . , vn, v
−1
n ].

If the telescope conjecture is true, than the “geometric” and “algebraic” chro-
matic filtrations agree. However, it has been the case in the past decade that
the more people have thought about the telescope conjecture, the more they
have believed it to be false [23].

3 Greek letter elements

We shall now outline a standard method of constructing vn -periodic elements
of the stable stems called the Greek letter construction. Suppose that the gener-
alized Moore spectrum M(I) exists, where I is the ideal (pi0 , vi1

1 , . . . , v
in−1

n−1 ) ⊂
BP∗ , and assume that M(I) has vk

n -multiplication. The spectrum M(I) is a
finite complex of dimension

d = n+ i1|v1|+ · · ·+ in−1|vn−1|.

Geometry & Topology, Volume X (20XX)



Some root invariants at the prime 2 7

Then we can form the composite

α
(n)
lk/in−1,...,i0

: Slk|vn|−d ι
−→ Σlk|vn|−dM(I)

vlk
n−−→ Σ−dM(I)

ν
−→ S0

where ι is the inclusion of the bottom cell, ν is the projection onto the top cell,
and α(n) is the nth letter in the Greek alphabet α, β, γ, δ, . . . . Miller, Ravenel,
and Wilson in [26] described Greek letter elements in Ext(BP∗), and the Greek
letter elements of π∗(S) that we have described are detected by their elements
in the Adams-Novikov spectral sequence (ANSS). We shall refer to the Greek
letter elements in Ext(BP∗) as “algebraic Greek letter elements.”

We give a different interpretation of the Greek letter construction with an eye
towards generalization. The existence of vk

n multiplication on M(I) gives ho-
motopy elements

vlk
n ∈ πlk|vn|(M(I))

detected by vlk
n in BP -homology. Fix a (minimal) cellular decomposition of

M(I). Consider the Atiyah-Hirzebruch spectral sequence (AHSS)

En,i
1 =

⊕

n-cells in M(I)

πi(S
n)⇒ πi(M(I)).

Suppose that the element α
(n)
lk/in−1,...,i0

is non-trivial. Then in the AHSS, vlk
n ∈

π∗(M(I)) is detected on the top cell by α
(n)
lk/in−1,...,i0

.

But how does one define α
(n)
k/in−1,...,i0

if the appropriate M(I) does not exist?

Or if M(I) does not have vk
n multiplication? What do we do if the homotopy

element α
(n)
k/in−1,...,i0

turns out to be trivial? We give a “definition” of homotopy
Greek letter elements to be the homotopy replacement of the Greek letter ele-
ment when any of the above calamities befalls us. The author does not believe
this is the right way to define these elements, but has no better ideas.

Definition 3.1 Homotopy Greek letter elements Suppose X is a type n
p-local finite complex for which BP∗X is free module over BP∗/I , for I =

(pi0 , vi1
1 , . . . , v

in−1

n−1 ). Suppose that X has vk
n -multiplication. Then we define

the homotopy Greek letter element (α(n))hk/in−1 ,...,i0
to be the element of π∗(S)

which detects vk
n ∈ π∗(X) in the E1 -term of the AHSS.

Remark 3.2 This definition is full of flaws. Different choices of X , or even
different choices of detecting element in the AHSS, could yield some ambiguity
in the definition of (α(n))hk/in−1,...,i0

. There is no reason to believe that these
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8 Mark Behrens

homotopy Greek letter elements are of chromatic filtration n. In fact, the stem
in which the element appears is even ambiguous. We do point out that there is
already some ambiguity in the standard definition of the Greek letter elements
— there can exist many complexes with the same BP -homology as M(I), and
the choice of vn -self map is not unique. The vn -self map is, however, unique
after a finite number of iterations [12].

Remark 3.3 Mahowald and Ravenel [21] propose a different definition for “ho-
motopy Greek letter elements” using iterated root invariants. Their definition
suggests that we should be defining (α(n))hi as

(α(n))hi = Rn(pi)

This notion suffers the same sorts of indeterminacy issues that our notion of
homotopy Greek letter element suffers.

We give some examples to illustrate the sorts of phenomena that the reader
should expect at bad primes.

Let p = 2, and consider chromatic level n = 1. The complex M(2) only has v4
1

multiplication [1], giving us the Greek letter elements α4k ∈ π8k−1(S) (these are
elements of order 2 in the image of J ). However the complex X = M(2)∧C(η),
where C(η) is the cofiber of η , has v1 -multiplication [20]. Using this complex,
we get the following homotopy Greek letter elements. These are precisely the
elements on the edge of the ASS vanishing line, and, we believe, quite worthy
of the designation “Greek letter element.”

n (mod 4) αh
n (ANSS name)

0 αn

1 αn

2 αn−1α1

3 αn−2α
2
1

Likewise, we list some low dimensional homotopy Greek letters for p = 3 and
chromatic level n = 2. The complex M(3, v1) = V (1) exists, but only has v9

2

multiplication [4]. Thus we are only able to define β9t using the conventional
methods. However the complex

X = V (1) ∧ (S0 ∪α1
e4 ∪α1

e8)

can be shown to have v2 -multiplication, and using this complex we find the
following homotopy Greek letter elements.

Geometry & Topology, Volume X (20XX)
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Greek name Adams-Novikov name

βh
1 β1

βh
2 β2

1α1

βh
3 β3

βh
4 β5

1

βh
5 β5 (*)
βh

6 β6 (*)

(*) Tentative calculation

The reader will note that although the algebraic Greek letter element β2 exists
in Ext(BP∗) and is a non-trivial permanent cycle in the ANSS, it does not
agree with the homotopy Greek letter element βh

2 .

We shall present evidence that these homotopy Greek letter elements may be-
have nicely with respect to root invariants.

4 The root invariant

Mahowald defined an invariant called the root invariant that takes an element
α in the stable stems and outputs another element R(α) in the stable stems.

R : π∗(S) π∗(S)

Our reason for using the wavy arrow “ ” is that R is not a well defined
map, but has indeterminacy, much in the way that Toda brackets do. R(α) is
actually a coset, but in this first part, we shall often ignore this indeterminacy
to clarify the exposition. In the literature this invariant is sometimes called the
“Mahowald invariant,” with good reason.

In this section we shall define the root invariant. We shall then summarize some
of the computations of root invariants that appear in the literature.

We first need to define stunted projective spectra. We first assume that we are
working at the prime p = 2. Let ξ be the canonical line bundle over RP n .
Then the Thom space may be identified as [7, V.2.14]

(RP n)sξ ∼= RP n+s/RP s−1.

We may allow s to be negative in the above definition if we use Thom spectra
instead of Thom spaces. This motivates the definition of the spectrum

P n+s
s = (RP n)sξ

Geometry & Topology, Volume X (20XX)



10 Mark Behrens

for any integer s and any non-negative integer n. This spectrum has one cell
in each degree in the interval [s, n+ s].

At an odd prime we can replace RP n = BΣ2 with the classifying space BΣp .
This complex only has cells in degrees congruent to 0,−1 (mod 2(p− 1)). We
shall also refer to the resulting spectra as P n+s

s .

We can take the colimit over n to obtain the spectrum P∞
s . Taking the homo-

topy inverse limit of these spectra over s yields a spectrum P∞
−∞ . The inclusion

of the −1-cell extends to a map

S−1 l
−→ P∞

−∞.

For p = 2, Lin [15] proved the following remarkable theorem. The theorem
was conjectured by Mahowald, and is equivalent to the Segal conjecture for the
group Z/2. The odd primary version was proved by Gunawardena [16].

Theorem 4.1 The map l : S−1 → P∞
−∞ is equivalent to the p-completion of

S−1 .

This theorem makes the following definition possible.

Definition 4.2 Root invariant Let α be an element of πt(S
0). The root

invariant of α is the coset of all dotted arrows making the following diagram
commute.

St−1 //

α

��

S−N

��

S−1

l
��

P∞
−∞

// P−N

This coset is denoted R(α). Here N is chosen to be minimal such that the
composite St−1 → P−N is non-trivial.

One way to think of the root invariant is that it is the coset R(α) of elements
in the E1 -term of the AHSS

Ek,n
1 = πk(S

n)⇒ πk(P
∞
−∞) = πk(S

−1
2 )

that detects α.

The root invariant is interesting for two reasons.

Geometry & Topology, Volume X (20XX)
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(1) Elements which are root invariants behave quite differently in the EHP
sequence as opposed to elements which are not root invariants [21].

(2) The root invariant appears to generically take things in chromatic filtra-
tion n to things in chromatic filtration n+ 1.

Our purpose in this paper is to concentrate on the latter. For instance, we give
the following sampler of results.

• For p ≥ 3 we have R(pi) = αi [21].

• For p ≥ 5 we have R(αi) = βi and R(αp/2) = βp/2 [30], [21].

• For p = 2 we have R(2i) = αh
i [21], [13].

• For p = 3 we have R(αi) = βh
i for i ≤ 6, and we have R(αi) = βi for for

i ≡ 0, 1, 5 (mod 9) [3].

A conjecture that the root invariant increases chromatic filtration appears in
[22]. However, we warn the reader that the conjecture takes some time to begin
working. For instance, at p = 2, R(η) = ν , and R(ν) = σ , and η , ν , and σ
are all v1 -periodic elements.

5 Filtered root invariants

Let E be a ring-spectrum for which the E -Adams spectral sequence converges.
In [3], the author investigated a series of approximations to the root invariant
which live in the E1 -term of the E -Adams spectral sequence called filtered root
invariants.

R
[k]
E : π∗(S) Ek,∗

1

We shall give a brief outline of their definition, but refer the reader to [3] for a
completely detailed treatment.

Let E be the fiber of the unit S → E . The E -Adams resolution of the sphere
is given by

S W0

��

W1

��

oo W2

��

oo W3

��

oo · · ·oo

Y0 Y1 Y2 Y3

Geometry & Topology, Volume X (20XX)
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where Wk = E
(k)

and Yk = E ∧ E
(k)

. The skeletal filtration of P∞
−∞ is given

by

· · · // PN
−∞

��

// PN+1
−∞

��

// PN+2
−∞

��

// · · ·

SN SN+1 SN+2

We wish to mix the two filtrations. We may regard P∞
−∞ as being a bifiltered

object, with (k,N)-bifiltration given by

Wk(P
N ) = (Wk ∧ P

N )−∞

where we take the homotopy limit after smashing with Wk . We may pictori-
ally represent this bifiltration by a region of the Cartesian plane where we let
the x-axis represent the Adams filtration and the y -axis represent the skeletal
filtration.

W (P  )kk
N

Sk
el

et
al

Fi
ltr

at
io

n

N

Adams Filtrationk

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

The spectra Wk may be replaced by weakly equivalent approximations so that
for every k the maps Wk+1 → Wk are inclusions of subcomplexes. We then
have that for k1 ≥ k2 and N1 ≤ N2 , the bifiltration Wk1

(PN1) is a subcomplex
of Wk2

(PN2). We shall consider spectra which are unions of these bifiltrations,
which appeared in [3] as “filtered Tate spectra.” Given sequences

I = {k1 < k2 < · · · < kl}

J = {N1 < N2 < · · · < Nl}

with ki ≥ 0, we define the filtered Tate spectrum as the union

WI(P
J ) =

⋃

i

Wki
(PNi).

A picture of the bifiltrations that compose this spectrum is given below.
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�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������N

3

N
2

N
1

k
1

k
2

k
3

W (P  )I
J

Sk
el

et
al

Adams Filtration

Fi
ltr

at
io

n

For 1 ≤ i ≤ l , there are natural projection maps

pi : WI(P
J)→ Yki

∧ SNi .

We shall now define the filtered root invariants.

Definition 5.1 Let α be an element of πt(S), with image l(α) ∈ πt−1(P
∞
−∞).

Choose a multi-index (I, J) where I = (k1, k2, . . .) and J = (N1, N2, . . .) so
that the filtered Tate spectrum WI(P

J) is initial amongst the Tate spectra
WK(PL) so that l(α) is in the image of the map

πt−1(WK(PL))→ πt−1(P
∞
−∞).

(This initial multi-index is not unique with this property, but in [3] we give a
convention for choosing a unique preferred initial multi-index.) Let α̃ be a lift
of l(α) to πt−1(WI(P

J)). Then the kth
i E -filtered root invariant is given by

R
[ki]
E (α) = pi(α̃) ∈ πt−1(Yki

∧ SNi).

We shall refer to (I, J) as the E -bifiltration of α.

The kth
i filtered root invariant thus lives in the E1 -term of the E -ASS for the

sphere. It should be regarded as an approximation to the root invariant in
E -Adams filtration ki . There is indeterminacy in this invariant given by the
various choices of lifts α̃.
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6 Some theorems

We shall now outline the manner in which filtered root invariants may be used
to compute homotopy root invariants. The statements of these theorems ap-
peared in Section 5 of [3], with proofs appearing in Section 6. The theorems
as stated in [3] are rather difficult to conceptualize due to the complicated hy-
potheses and the nature of the indeterminacy. The statements we give below
are imprecise, but easier to read and understand. Throughout this section, let α
be an element of πt(S) of E -bifiltration (I, J), where I = (ki) and J = (−Ni).
Our first theorem tells us how to determine if a filtered root invariant detects
the homotopy root invariant in the E -ASS.

Theorem 6.1 Theorem 5.1 of [3] Suppose that R
[ki]
E (α) contains a permanent

cycle β . Then there exists an element β ∈ π∗(S) which β detects in the E -
ASS such that the following diagram commutes up to elements of E -Adams
filtration greater than or equal to ki + 1.

St−1

α

��

β

// S−Ni

��

S−1

l
��

P∞
−∞

// P−Ni

We present a practical reinterpretation of this theorem. This essentially appears
in [3] as Procedure 9.1.

Corollary 6.2 Let β be as in Theorem 6.1. Then in order for β to detect the
homotopy root invariant in the E -ASS, it is sufficient to check the following
two things.

(1) No element γ ∈ πt−1(P−Ni
) of E -Adams filtration greater that ki can

detect the root invariant of α in P−Ni+1 .

(2) The image of the element β under the inclusion of the bottom cell

πt−1(S
−Ni)→ πt−1(P−Ni

)

is non-trivial.
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For our next set of theorems we shall need to introduce a variant of the Toda
bracket construction. Let K be a finite CW complex with a single cell in top
dimension n and bottom dimension 0. There is an inclusion map

ι : S0 → K

and the n-cell is attached to the n− 1 skeleton K [n−1] by an attaching map

a : Sn−1 → K [n−1].

The following definition was the subject of Section 4 of [3].

Definition 6.3 Let β be an element of πj(S). Then the K -Toda bracket
〈K〉(β) is a lift

Sj+n−1
β //

〈K〉(β)
**

Sn−1 a // K [n−1]

S0

ι

OO

The K -Toda bracket may not exist, or may not be well defined.

Given a kth
i filtered root invariant, the kth

i+1 filtered root invariant may be
revealed by the presence of an Adams differential.

Theorem 6.4 Theorem 5.3 of [3] There is a (possibly trivial) E -Adams dif-
ferential

dr(R
[ki]
E (α)) = 〈P

−Ni+1

−Ni
〉(R

[ki+1]
E (α)).

Theorem 6.4 is saying the following differential happens in the E -ASS chart.

•

R
[ki+1]
E (α)

〈P
−Ni+1

−Ni
〉

nnnnnnnnnnnnn

R
[ki]
E (α)

YY2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

If this differential is zero, there may still be a hidden extension that reveals the
kth

i+1 filtered root invariant. In the next theorem, we use the notation β for an
element that β ∈ E∗,∗

1 detects in the E -ASS.
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16 Mark Behrens

Theorem 6.5 Theorem 5.4 of [3] There is an equality of (possibly trivial)
elements of π∗(S)

〈P−Ni

−M 〉(R
[ki]
E (α)) = 〈P

−Ni+1

−M 〉(R
[ki+1]
E (α)).

Here M is the largest integer for which 〈P−Ni

−M 〉(R
[ki]
E (α)) exists and is non-

trivial, and the second Toda bracket is taken in the E -ASS.

Theorem 6.5 says that the following hidden extension happens on the E -ASS
chart.

•

R
[ki+1]
E (α)

〈P
−Ni+1

−M
〉

ggggggggggggggggggggggggg

R
[ki]
E (α)

〈P
−Ni
−M

〉

�
�

�
�

�
�

�
�

�
�

We have given tools to move from one filtered root invariant to the next, but
we need a place to start this process. For E = BP in [3] we used BP -root
invariants and BP ∧ BP -root invariants. For E = HFp the first filtered root
invariant is given by the algebraic root invariant Ralg (see, for example [21]).
The nice thing about Ralg is that it is very computable, especially with the
help of a computer [5].

Theorem 6.6 Theorem 5.10 of [3] Let α be of Adams filtration s, detected
in the ASS by α̃ in Ext. Then the first HFp -filtered root invariant is given by

R
[s]
HFp

(α) = Ralg(α).

Part II

2-primary calculations

In this part we are always implicitly working 2-locally. Our goal is to explain
how the theory of Part I play out in low dimensions in the ANSS and the ASS
at the prime 2. Unlike in Part I, we intend to be completely precise about these
calculations. This part is really an extension of [3] to the prime 2.
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Some root invariants at the prime 2 17

Our main result is to compute the homotopy root invariants of all of the v1 -
periodic elements through the 12-stem (Theorem 11.1). These root invariants
turn out fit into the primary v2 -family investigated by Mahowald [19] (but
beware! v8

2 does not exist, v32
2 does exist [11]).

Our plan of attack is the following. In [3], we computed the BP ∧ B̃P -root
invariants of the elements αi/j . These give the first filtered root invariant
modulo an indeterminacy group as described in Proposition 7.4. Once we know

the indeterminacy group, we can identify R
[1]
BP (αi/j), and then get R

[2]
BP (αi/j).

The higher filtered root invariants are deduced from differentials and hidden
extensions in the ANSS. We then check to see that these top filtered root
invariants must detect the homotopy root invariants.

In Section 7, we compute this indeterminacy group completely. This essen-
tially involves understanding how the v1 -periodic elements act in the algebraic
Atiyah-Hirzebruch spectral sequence for Ext(BP∗P

∞). Unfortunately, there
is no J -homomorphism in Ext to produce these differentials, so we must re-
sort to explicit computation of the differentials using the BP∗BP -coaction on
BP∗P

∞ . We find generators for this BP -homology group that make a com-
plete determination of the AAHSS differentials possible. This method may be
interesting in its own right, in the sense that it gives a particularly clean and
pleasant description of the coaction.

In Section 8 we describe how the theory of BP -filtered root invariants repro-
duces the expected root invariants of the elements 2i . The differentials and
hidden extensions amongst the elements αi/jα

k
1 get a rather natural interpre-

tation: the ANSS must deal with the fact that the homotopy Greek letter
elements αh

i are different from the algebraic Greek letter elements αi .

In Section 9, we use our computation of the indeterminacy group to compute

the the filtered root invariants R
[k]
BP (αi/j) for k = 1, 2. We find that the inde-

terminacy is essential to allow for the root invariants R(η) = ν and R(ν) = σ .
For the higher dimensional v1 -periodic elements, we find that for all other i
and j ,

R
[2]
BP (αi/j)

.
= βi/j + something

where the “something” is rather innocuous. One could take this calculation as
further evidence that the root invariants wants to take vn -periodic families of
Greek letter elements to vn+1 -periodic families of Greek letter elements.

In Section 10 we compute all of the higher BP -filtered root invariants of the
elements αi/j which lie within the 12-stem. These higher filtered root invari-
ants are deduced from differentials and hidden extensions in the ANSS, and,
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amusingly enough, actually account for most of the differentials and hidden ex-
tensions in this range. We saw this sort of behavior at the prime 3 in [3]. The
reason the range is so limited is the author’s limited knowledge of the ANSS at
the prime 2.

In Section 11 we show that the filtered root invariants of Section 10 actually
detect homotopy root invariants. This is done by brute force. We show that
there are no elements of π∗(P

∞
−N ) that could survive to the difference of the

filtered root invariant and the homotopy root invariant. We use the BP -filtered
root invariants for the elements in BP -Adams filtration 1, and the HF2 -filtered
root invariants for the rest.

7 The indeterminacy spectral sequence

Recall that

BP∗(P
2k
2l−1) = BP∗{e2m−1 : l ≤ m ≤ k}/(

∑

i≥0

cie2(m−i)−1)

where the universal 2-typical 2-series is given by

[2]F (x) =
∑

i≥0

cix
i+1 ∈ BP∗[[x]].

In particular, the first couple of values of ci are

c0 = 2

c1 = −v1.

We will first define a v1 -self map of BP∗BP -comodules. Define a map

ṽ1 : BP∗P
2k
2l+1 → BP∗P

2(k−1)
2l−1

by

ṽ1(e2m−1) =
∑

i≥1

−cie2(m−i)−1

This is a map of comodules since in BP∗P
2k
2l−1 , we have

ṽ1(e2m−1) = 2e2m−1.

Thus ṽ1 is just a certain factorization of multiplication by 2.

The short exact sequences

0→ BP∗P
2(k−1) → BP∗P

2k → Σ2k−1BP∗/(2)→ 0
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Some root invariants at the prime 2 19

gives rise to long exact sequences of Ext groups, which piece together to give a
modified AAHSS

Ek,m,s
1 = Exts,s+k(Σ2m−1BP∗/(2))⇒ Exts,s+k(BP∗P

∞).

We shall refer to elements of Ek,m,s
1 of the modified AAHSS by x[2m−1], where

x is an element of Exts,k+s(Σ2m−1BP∗/(2)). The existence of the map ṽ1 gives
the following propagation result in the modified AAHSS.

Proposition 7.1 Suppose x[2m − 1] is an element of the modified AAHSS,
and that there is a differential

dr(x[2m− 1]) = y[2(m− r)− 1].

Then we have

dr(v1x[2(m− 1)− 1]) = v1y[2(m− 1− r)− 1].

Proof The map ṽ1 induces a map of modified AAHSS’s.
⊕

l+1≤m≤k Exts,s+k(Σ2m−1BP∗/(2)) +3

v1

��

Exts,s+k(BP∗P
2k
2l+1)

(ṽ1)∗
��⊕

l+1≤m≤k Exts,s+k(Σ2m−3BP∗/(2)) +3 Exts,s+k(BP∗P
2(k−1)
2l−1 )

Proposition 7.2 The differentials on the elements 1[2m− 1] in the modified
AAHSS are given as follows.

d1(1[2m− 1]) = α1[2(m− 1)− 1] m odd

d2(1[2m− 1]) = β̃1[2(m − 2)− 1] ν2(m) = 1

dr(1[2m− 1]) = vk−2
1 (x7 + β̃2/2)[2(m− k − 2)− 1] ν2(m) = k, k = 2, 3

dr(1[2m− 1]) = vk−2
1 x7[2(m− k − 2)− 1] ν2(m) = k, k ≥ 4

Proof The formulas for d1 and d2 follow immediately from the well known
attaching map structure of P∞ . We shall prove the formulas for the higher
differentials by working with the negative cells of P∞

−N , and then by using

James periodicity. It suffices to consider m = −2k . There is the following
equivalence to the Spanier-Whitehead dual [7].

ΣP−2·2k

−2(2k+l)−1
' DP

2(2k+l)

2·2k−1
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It follows that we have an isomorphism of BP∗BP -comodules

BP∗(ΣP
−2·2k

−2(2k+l)−1
) ∼= BP−∗P

2(2k+l)

2·2k−1
.

Here, for finite X , the cohomology group BP−∗X is viewed as a BP∗BP -
comodule by the coaction given by the composite

BP−∗X = π∗(F (X,BP ))
(ηR)∗
−−−→ π∗(F (X,BP ∧BP ))

∼= π∗(BP ∧BP ∧DX)
∼= BP∗BP ⊗BP∗

BP−∗X.

We recall from [3] that there are short exact sequences

0→ BP ∗CP b
a

·[2]F (x)/x
−−−−−−→ BP ∗CP b

a → BP ∗P 2b
2a−1 → 0.

Here we have

BP−∗CP∞ ∼= BP∗[[x]]

where x has (homological degree) −2, and BP−∗CP b
a is given by the ideal

BP−∗CP b
a
∼= (xa) ⊆ BP∗[x]/(x

b+1) ∼= BP−∗CP b.

We recall from [3] that the coaction of BP∗BP on h(x) ∈ BP−∗CP b
a is given

by

ψ(h(x)) = (f∗h)(f(x))

where f is the universal isomorphism of 2-typical formal groups, whose inverse
is given by

f−1(x) =

F∑

i≥0

tix
2i

.

The polynomial f∗h(x) is the polynomial obtained by applying the right unit
to all of the coefficients of h(x). The surjection of BP ∗CP b

a onto BP ∗P 2b
2a−1

completely determines the latter as a BP∗BP -comodule. In what follows we
shall refer to elements of BP ∗P 2b

2a−1 by the names of elements in BP ∗CP b
a

which project onto them.

We shall need the following formulas. (We are using Hazewinkel generators.)

f(x) = x− t1x
2 + (2t21 + v1t1)x

3 + · · ·

[2]F (x) = 2x− v1x
2 + 2v2

1x
3 + · · ·

ηR(v1) = v1 + 2t1

ηR(v2) = v2 + 2t2 − 4t31 − 5v1t
2
1 − 3v2

1t1
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We shall now use our very specific knowledge of the BP∗BP coaction to deter-
mine the differential d(1[−2 · 2k − 1]) in the modified AAHSS for

Ext(BP∗ΣP
−2·2k

−2(2k−l)−1
) = Ext(BP−∗P

2(2k+l)

2·2k−1
).

We do this for l = k+ 2, so in what follows we work modulo x2k+k+3 . The de-

sired differential is governed by the coaction on x2k

∈ BP−∗P
2(2k+l)

2·2k−1
. Actually,

the case k = 2 must be handled separately, because in the computations that
follow we are implicitly using the fact that 2k > k + 2. However, the method,
and conclusion, for k = 2 are completely identical.

ψ(x2k

) = (f(x))2
k

= (x− t1x
2 + (2t21 + v1t1)x

3 + · · · )2
k

= x2k

−

(
2k

1

)
t1x

2k+1 +

(
2k

1

)
(2t21 + v1t1)x

2k+2 +

(
2k

2

)
t21x

2k+2 +

(
2k

4

)
t41x

2k+4 + · · ·

= x2k

− 2kt1x
2k+1 + 2k+1t21x

2k+2 + 2kv1t1x
2k+2 +

(2k − 1)2k−1t21x
2k+2 +

2k−2 ·
(2k − 1)(2k−1 − 1)(2k − 3)

3
t41x

2k+4 + · · ·

= x2k

− vk
1 t1x

2k+k+1 − vk−1
1 t21x

2k+k+1 + vk−2
1 t41x

2k+k+2 +

vk+1
1 t1x

2k+k+2 + · · ·

We conclude that in the cobar complex for Ext(BP ∗P
2(2k+k+2)

2·2k−1
), we have

d(x2k

) = vk
1 t1x

2k+k+1 + vk−1
1 t21x

2k+k+1 + vk−2
1 t41x

2k+k+2 + vk+1
1 t1x

2k+k+2 + · · · .

We compute the differential in the modified AAHSS by adding a coboundary
supported on an element of lower cellular filtration. Namely, we compute the
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coaction on vk−2
1 v2x

2k+k+1 as

ψ(vk−2
1 v2x

2k+k+1) = ηR(vk−2
1 v2)(f(x))2

k+k+1

= (v1 + 2t1)
k−2(v2 + 2t2 − 4t31 − 5v1t

2
1 − 3v2

1t1)(x− t1x
2 + · · · )2

k+k+1

= vk−2
1 (v2 + 2t2 − 4t31 − 5v1t

2
1 − 3v2

1t1)x
2k+k+1+

2(k − 2)vk−3
1 t1(v2 + 2t2 − 4t31 − 5v1t

2
1 − 3v2

1t1)x
2k+k+1−

(2k + k + 1)vk−2
1 t1(v2 + 2t2 − 4t31 − 5v1t

2
1 − 3v2

1t1)x
2k+k+2 + · · ·

= (vk−2
1 v2 + vk−1

1 t21 + vk
1 t1)x

2k+k+1 + vk−1
1 (t2 + v1t

2
1)x

2k+k+2+

(2k + 2k − 1)vk−2
1 t1(v2 + 2t2 − 4t31 − 5v1t

2
1 − 3v2

1t1)x
2k+k+2 + · · ·

= (vk−2
1 v2 + vk−1

1 t21 + vk
1 t1)x

2k+k+1+

(vk−1
1 t2 + vk−2

1 v2t1 + vk−1
1 t31)x

2k+k+2 + · · ·

We conclude that in the cobar complex for Ext(BP ∗P
2(2k+k+2)

2·2k−1
) we have

d(vk−2
1 v2x

2k+k+1) =

(vk−1
1 t21 + vk

1 t1)x
2k+k+1 + (vk−1

1 t2 + vk−2
1 v2t1 + vk−1

1 t31)x
2k+k+2 + · · · .

We therefore have

d(x2k

−vk−2
1 v2x

2k+k+1) = (vk−2
1 t41+vk+1

1 t1 +vk−1
1 t2+vk−2

1 v2t1+vk−1
1 t31)x

2k+k+2

We recall from [28] that the generators of Ext1,8(BP∗/(2)) are x7 and β̃2/2 ,
and they are represented in the cobar complex by the elements

x7 = v1t2 + v2t1 + v1t
3
1

β̃2/2 = t41 + v3
1t1

We conclude that for k = 2, 3 we have the modified AAHSS differentials

dk+2(1[−2 · 2k − 1]) = vk−2
1 (x7 + β̃2/2)[−2(2k + k + 2)− 1].

If k ≥ 4, then we may add an additional coboundary to obtain the cobar
formula

d(x2k

+ vk−2
1 v2x

2k+k+1 + vk−4
1 v2

2x
2k+k+2) = x7x

2k+k+2

from which it follows that for k ≥ 4, we have the modified AAHSS differential

dk+2(1[−2 · 2k − 1]) = vk−2
1 x7[−2(2k + k + 2)− 1].
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Combining Proposition 7.2 with Proposition 7.1, we get the following differen-
tials.

Proposition 7.3 The differentials on the elements vi
1[2m−1] for i ≥ 1 in the

modified AAHSS are given as follows.

d1(v
i
1[2m− 1]) = vi

1α1[2(m− 1)− 1] m+ i odd

d3(v
i
1[2m− 1]) = vi−1

1 x7[2(m− 3)− 1] ν2(m+ i) = 1

d4(v
i
1[2m− 1]) = vi

1(x7 + β2/2)[2(m − 4)− 1] ν2(m+ i) = 2

dr(v
i
1[2m− 1]) = vk+i−2

1 x7[2(m− k − 2)− 1] ν2(m+ i) = k, k ≥ 3

Proof The differentials follow from applying v1 -propagation as described in
Proposition 7.1 to the differentials of Proposition 7.2. However, the element
v1β̃1 is null in Ext(BP∗/(2)). An explicit computation similar to that in the
proof of Proposition 7.2 yields the modified AAHSS differential

d3(v1[2m− 1]) = x7[2(m− 3)− 1]

for m+1 ≡ 2 (mod 4). The rest of the d3 ’s then follow by v1 -propagation.

Recall that we have the following computation, which is given by combining
Corollary 5.9 and Proposition 10.2 of [3].

Proposition 7.4 There is an indeterminacy group Ai/j ⊆ BP∗B̃P such that

R
[1]
BP (αi/j) ⊆ β̃i/j + 2BP∗B̃P +Ai/j .

In [3] (spectral sequence (10.8) and the discussion which follows it), a method
of computing this indeterminacy group was described in terms of the differen-
tials of an indeterminacy spectral sequence. This spectral sequence is a trun-
cated version of the AAHSS. The differentials given in Proposition 7.2 and
Proposition 7.3 give differentials in the indeterminacy spectral sequence, which
translate to the following result.

Proposition 7.5 The indeterminacy group Ai/j for R
[1]
BP (αi/j) is contained

in the Z(2) module spanned by 2BP∗BP and the generator given in the table
below, where a = 3i− j .
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a Generator Condition

2 − ν2(i) ≥ 2

β̃1 ν2(i) = 1
v1α1 ν2(i) = 0

3 − ν2(i) ≥ 1
v2
1α1 ν2(i) = 0

4 − ν2(i) ≥ 3

x7 + β̃2/2 ν2(i) = 2

x7 ν2(i) = 1
v3
1α1 ν2(i) = 0

5 − ν2(i) ≥ 4

v1(x7 + β̃2/2) 2 ≤ ν2(i) ≤ 3

v1x7 ν2(i) = 1
v4
1α1 ν2(i) = 0

a ≥ 6 − ν2(i) ≥ a− 1

va−4
1 x7 1 ≤ ν2(i) ≤ a− 2

va−1
1 α1 ν2(i) = 0

Remark 7.6 Not all of the entries of the table in Proposition 7.5 actually
occur with the allowable values of i and j for αi/j .

8 BP filtered root invariants of 2
k

The root invariants of the elements 2k were determined by Mahowald and
Ravenel [21] and by Johnson [13]. In this section we will explain how the root
invariants of the elements 2k are formed from the perspective of the ANSS.
This analysis provides an explanation for the pattern of differentials and hidden
extensions in the v1 -periodic part of the ANSS. We only compute filtered root
invariants — our treatment is not an independent verification of the know values
of the homotopy root invariants R(2k) because we do not eliminate the higher
Adams-Novikov filtration obstructions required by Theorem 6.1. The proper
thing to do would be to combine the use of the ASS and the ANSS, in a manner
employed in the infinite family computations of [3].

Throughout this section and the rest of the paper, the reader should find it
helpful to refer to Figure 1, which depicts the ANSS chart for the sphere at the
prime 2 through the 29-stem.
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Proposition 10.1 of [3] states that

αk ∈ R
[1]
BP (2k).

Our description of R(2k) depends on the value of k modulo 4.

k ≡ 1 (mod 4) The element αk is a permanent cycle which detects the homo-
topy root invariant R(2k).

k ≡ 2 (mod 4) While αk is a permanent cycle, it does not detect an element
of R(2k). This is an instance where Theorem 6.5 comes into play. The
−2k -cell attaches to the −2k − 1-cell of P−2k

−2k−1 by the degree 2 map,

and the −2k+ 1-cell attaches to the −2k− 1-cell in P −2k+1
−2k−1 by the map

α1 . There is a hidden extension α1 · αk−1α1 = 2 · αk , so we may use
Theorem 6.5 to deduce that

αk−1α1 ∈ R
[2]
BP (2k).

The element αk−1α1 detects the homotopy root invariant R(2k).

k ≡ 3 (mod 4) The first filtered root invariant αk is not a permanent cycle,
so we turn to Theorem 6.4. There is an Adams-Novikov differential

d3(αk) = α1 · αk−2α
2
1.

The −2k+2-cell attaches to the −2k -cell in P−2k+2
−2k with attaching map

α1 . We conclude that
αk−2α

2
1 ∈ R

[3]
BP (2k).

The element αk−2α
2
1 detects an element of the homotopy root invariant

R(2k).

k ≡ 4 (mod 4) The element αk is a permanent cycle in the ANSS, and detects
the element of order 2 in the image of J in the 2k − 1-stem. This is the
root invariant R(2k).

9 The first two BP -filtered root invariants of αi/j

In this section we will compute R
[k]
BP (αi/j) for k = 1, 2 using the indeterminacy

calculations of Section 7. We will then analyze the higher BP -filtered root
invariants using the theorems of Section 6.

The following proposition gives the first few filtered root invariants of the αi/j .
Since we actually use the homotopy root invariant to determine these filtered
root invariants, this proposition gives no new information. However, we do
see the indeterminacy group Ai/j adding essential terms to the BP ∧ B̃P -root
invariant.
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Proposition 9.1 The low dimensional filtered root invariants of the elements
αi/j are given (up to a multiple in Z×

(2) ) by the following table.

x R
[1]
BP (x) R

[2]
BP (x)

α1 α2/2 −

α2/2 α4/4 −

α2 v1α4/4 α4/4α1

Proof Proposition 7.5, combined with Proposition 7.4, gives the following

values for R
[1]
BP .

R
[1]
BP (α1)

.
= β̃1 + c1 · v1α1

R
[1]
BP (α2/2)

.
= β̃2/2 + c2 · x7

R
[1]
BP (α2)

.
= β̃2 + c3 · v1x7.

Theorem 6.4 implies that

d1(R
[1]
BP (αi/j)) = 2 · R

[2]
BP (αi/j) (9.1)

for the values of i and j we are considering. The known root invariants (see
[21]) of these elements are

R(α1) = R(η)
.
= ν

R(α2/2) = R(ν)
.
= σ

R(α2) = R(2ν)
.
= ση.

In the ANSS we have the following representatives of elements of the E2 -term.

α2/2 = β̃1

α4/4 ≡ β̃2/2 + x7 (mod 2)

We also have the following d1 -differentials in the ANSS.

d1(x7) ≡ d1(β̃2/2) ≡ 2β2/2 (mod 4)

d1(β̃2) ≡ 2β2 (mod 4)

d1(β̃2 + v1x7) ≡ 2α1α4/4 (mod 4)

The only way these differentials can be compatible with Equation (9.1) and
Theorem 6.1 is for the coefficients ci to have the following values.

c1 ≡ 0 (mod 2)

c2 ≡ 1 (mod 2)

c3 ≡ 1 (mod 2).
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The second filtered root invariants of the rest of the αi/j ’s are given by the
following proposition.

Proposition 9.2 The filtered root invariant R
[2]
BP (αi/j) for 3i−j ≥ 6 contains

(up to a multiple in Z×
(2) ) the element

βi/j +

{
c · α1α̃3i−j−1 j odd

0 j even

with c ∈ Z(2) . Here α̃k represents the ANSS element αk/l with l maximal.

Proof Proposition 7.5, together with Proposition 7.4 gives

β̃i/j + c · x
�

∈ R
[1]
BP (αi/j)

where c is an element of Z(2) and x ∈ BP∗B̃P has the property that the
Adams-Novikov differential d1(x) is given by

d1(x)
.
=

{
2α1α̃3i−j−1, ν2(i) ≤ 3i− j − 2, j odd

0 otherwise.
(9.2)

We claim that the condition ν2(i) ≤ 3i− j − 2 is always satisfied for 3i− j ≥ 6
where i and j are such that αi/j exists in the Adams-Novikov E2 -term. Indeed,
for αi/j to exist we must have j ≤ ν2(i) + 2, from which it follows that

3i− ν2(i)− 4 ≤ 3i− j − 2.

Therefore it suffices to show that ν2(i) ≤ 3i−ν2(i)−4, or equivalently 2ν2(i) ≤
3i− 4. The latter is true for i ≥ 2, and the condition 3i − j ≥ 6 in particular
implies that i ≥ 2. Thus the condition in the first case of Equation 9.2 may be
simplified to simply read “j odd.”

There are Adams-Novikov differentials

d1(β̃i/j) ≡ 2βi/j (mod 4).

Theorem 6.4 applies to give

d1(R
[1]
BP (αi/j)) = 2 · R

[2]
BP (αi/j)

and the result follows.
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10 Higher BP and HF2-filtered root invariants of

some v1-periodic elements

We denote the Eilenberg-MacLane spectrum HF2 by H . We describe what
happens first in the ASS, and then the ANSS. All of the algebraic root invariants
used were taken from [5]. These algebraic root invariants coincide with the
first non-trivial filtered root invariants by Theorem 6.6. The computations are
summarized below. We will show in Section 11 that in each of these cases
the top filtered root invariant successfully detects the homotopy root invariant
through the use of Theorem 6.1.

R(α1) ASS: The element α1 = η is detected by h1 . We have h2 ∈
Ralg(h1). The element h2 detects ν .

ANSS: We have α2/2 ∈ R
[1]
BP (α1). The element α2/2 also

detects ν .

R(α2
1) ASS: The algebraic root invariant is given by h2

2 ∈ Ralg(h
2
1),

and h2
2 detects ν2 .

R(α3
1) ASS: We have h3

2 ∈ Ralg(h
3
1), which detects ν3 .

R(α2/2) ASS: The element α2/2 is detected by h2 . The algebraic root
invariant is given by h3 ∈ Ralg(h2). The element h3 detects
σ .

ANSS: The first filtered root invariant is given by α4/4 ∈

R
[1]
BP (α2/2), and α4/4 detects σ .

R(α2) ASS: The element α2 is detected by h0h2 , and h1h3 ∈
Ralg(h0h2) detects ησ .

ANSS: The second filtered root invariant is given by α4/4α1 ∈

R
[2]
BP (α2), which detects ησ .
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R(α4/4) ASS: The element α4/4 is detected by h3 in the ASS. The alge-
braic root invariant is given by h4 ∈ Ralg(h3), which coincides

with the first filtered root invariant R
[1]
H (h3) by Theorem 6.6.

The Hopf invariant 1 differential d2(h4) = h0h
2
3 allows one

apply Theorem 6.4 and get h2
3 ∈ R

[2]
H (h3). The element h2

3

detects σ2 .

ANSS: We have the second filtered root invariant β4/4 ∈

R
[2]
BP (α4/4), and β4/4 detects σ2 .

R(α4/3) ASS: The element α4/3 is detected by h0h3 in the ASS. The
algebraic root invariant is h1h4 ∈ Ralg(h0h3), which detects
η4 .

ANSS: The second filtered root invariant is β4/3 + cα8/5α1 ∈

R
[2]
BP (α4/3), for c ∈ Z/2. The element β4/3 detects η4 . The

value of c is irrelevant — the AHSS differentials of [20] imply
that if η4 is in the root invariant R(2σ) (which it is), then
α1α8/5 is in the indeterminacy of this root invariant. In the
AHSS for π∗(P

∞
−10) the element α1α8/5[−10] is the target of

a differential supported by α5[−2].

R(α4/2) ASS: The element α4/2 is detected by h2
0h3 . The algebraic

root invariant is h2
1h4 ∈ Ralg(h

2
0h3), and this detects ηη4 .

ANSS: The second filtered root invariant is given by β4/2 ∈

R
[2]
BP (α4/2), where c ∈ Z/2. The element β4/2 is a permanent

cycle but does not survive to the homotopy root invariant. We
appeal to Theorem 6.5 to find a higher filtered root invariant.
In P−12

−13 the −12-cell attaches to the −13-cell with degree
2 attaching map, and the −11-cell attaches to the −13-cell
in P−11

−13 by η . There is a hidden extension in the ANSS

given by α1 · α1β4/3 = 2 · β4/2 , which indicates that we have

a higher filtered root invariant α1β4/3 ∈ R
[3]
BP (α4/2). The

element α1β4/3 detects ηη4 .

R(α4) ASS: The element α4 is detected by h3
0h3 , with algebraic root

invariant h3
1h4 ∈ Ralg(h

3
0h3) which detects η2η4 .
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ANSS: The second filtered root invariant is given by (β4 +

cα1α10 ∈ R
[2]
BP (α4). It turns out that α1α10 is in the inde-

terminacy of R
[2]
BP (α4), since in the AHSS for P∞

−14 , we have
d2(α10[−12]) = α10α1[−14]. Therefore we may as well set
c = 0. The element β4 corresponds to the element g in the
ASS. The element β4 is a permanent cycle, so we use Theo-
rem 6.5 to look for a higher root invariant. In P −12

−15 the −14-
cell attaches to the −15-cell by the degree 2 map, and there is
a Toda bracket 〈P−12

−15 〉(−)
∩

= 〈2, α1,−〉. There is a hidden ex-

tension in the ANSS given by 2β4 = (β4/4β2/2)/2, and in the

ANSS there is a Toda bracket (β4/4β2/2)/2 ∈ 〈2, α1, β4/3α
2
1〉.

We conclude using Theorem 6.5 that we have the higher fil-

tered root invariant β4/3α
2
1 ∈ R

[4]
BP (α4). The element β4/3α

2
1

detects η2η4 .

R(α4/4α1) ASS: The element α4/4α1 is detected by h3h1 with algebraic
root invariant h4h2 ∈ Ralg(h3h1) which detects ν∗ .

ANSS: The root invariant of α4/4 will turn out to be given

by β4/4 , so one might initially suspect that α2/2β4/4 would
detect the homotopy root invariant R(α4/4α1). However, the
−6-cell attaches to the −10-cell with attaching map ν . Thus
in the AAHSS for P−10 , there is a differential d4(β4/4[−6]) =
α2/2 · β4/4[−10]. Looking at the attaching map structure of

P−6
−11 , this differential actually pushes the root invariant to
β4/2,2 ∈ 〈α2/2, 2, β4/4〉, and this element detects ν∗ .

R(α4/4α
2
1) ASS: The element α4/4α

2
1 is detected by h3h

2
1 , with algebraic

root invariant h4h
2
2 ∈ Ralg(h3h

2
1). which detects ν∗ν .

R(α5) ASS: The element α5 is detected by Ph1 , with algebraic root
invariant h2g ∈ Ralg(Ph1) which detects νκ.
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ANSS: The second filtered root invariant is given by β5 +

cα13α1 ∈ R
[2]
BP (α5), where c ∈ Z/2. Theorem 6.4 applies to

the differential d3(β5 + cα13α1) = α2
1η3/2 to give the higher

filtered root invariant α1η3/2 ∈ R
[4]
BP (α5). The element α1η3/2

corresponds to the element h4c0h1 in the ASS. Using the
May spectral sequence, we see that there is a Massey prod-
uct h2

2g ∈ 〈h0, h1, h4c0h1〉. The element h2
2g is a permanent

cycle which corresponds to the element Πβ2/2 in the ANSS.
We conclude that in the ANSS there is a hidden Toda bracket
α2/2 · β4α

3
1/8 = Πβ2/2 ∈ 〈2, α1, α1η3/2〉. In P−15

−19 , the −16
cell attaches to the −19-cell with the Toda bracket 〈2, α1,−〉
and the −15-cell attaches to the −19-cell with attaching map
α2/2 . We conclude, using Theorem 6.5, that we have another

higher filtered root invariant β4α
3
1/8 ∈ R

[5]
BP (α5). The element

β4α
3
1/8 detects νκ.

R(α5α1) ASS: The element α5α1 is detected by Ph2
1 , with algebraic

root invariant r ∈ Ralg(Ph
2
1). Theorem 6.6 implies that we

have the filtered root invariant r ∈ R
[6]
H (α5α1). The element r

supports the Adams differential d3(r) = h1d
2
0 . Thus, we may

use Theorem 6.4 to deduce that there is a higher filtered root

invariant d2
0 ∈ R

[8]
H (α5α1) which detects κ2 = εκ.

R(α5α
2
1) ASS: The element α5α

2
1 is detected by Ph3

1 , with algebraic
root invariant h1q ∈ Ralg(Ph

3
1).

R(α6/2) ASS: This element presents a very interesting story: it is an
instance where the ASS seems to give us nothing yet the ANSS
tells us the homotopy root invariant. The element α6/2 cor-
responds to the element Ph2 in the ASS, with algebraic root
invariant h3

0h
2
4 ∈ Ralg(Ph2). The element h3

0h
2
4 is killed by a

differential in the ASS, and it is not clear what a candidate
for the root invariant should be.

ANSS: The second filtered root invariant is given by

β6/2 ∈ R
[2]
BP (α6/2). There is an Adams-Novikov differential

d5(β6/2) = α2/2 · Πβ2/2 . Theorem 6.4 indicates that we have

the higher filtered root invariant Πβ2/2 ∈ R
[6]
BP (α6/2) which

detects ν2κ.
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R(α6) ASS: The element α6 is detected by Ph2h0 , with algebraic
root invariant q ∈ Ralg(Ph2h0).

11 Homotopy root invariants of some v1-periodic el-

ements

In this section we will use the filtered root invariant computations of Section 10
to compute some homotopy root invariants. These computations are summa-
rized in the following theorem. The first few are well-known [21].

Theorem 11.1 We have the following table of homotopy root invariants (up
to some multiple in Z×

(2) ).

x R(x)

α1 = η ν
α2

1 = η2 ν2

α3
1 = η3 ν3

α2/2 = ν σ

α2 = 2ν ση
α4/4 = σ σ2

α4/3 = 2σ η4

α4/2 = 4σ ηη4

α4 = 8σ η2η4

α4/4α1 = ησ ν∗

α4/4α
2
1 = ση2 νν∗

α5 νκ
α5α1 κ2 = εκ
α5α

2
1 ηq

α6/2 ν2κ

α6 q

Some of these root invariants may have indeterminacy.

We pause to remark on the elements that show up as root invariants in this
table. With the exception of ν , σ , ση , and ν3 = ση2 , all of these elements are
v2 -periodic. This was shown by Mahowald in [19] and Hopkins and Mahowald
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in [10]. We remind the reader that due to an error in [8], one must replace
8k with 32k in [19]. Recently, Hopkins and Mahowald have produced some
v32
2 -self maps [11]. In particular, in Problem 4 of [20] (see also [8]), a list of
v2 -periodic elements in π∗(S) are given which are the first few homotopy Greek
letter elements βh

i :

ν, ν2, ν3, η2η4, νκ, εκ, ηq, . . .

Our computations show that these elements appear as the iterated root invari-
ants R(R(2i)) for i ≤ 7.

The rest of this section is devoted to proving Theorem 11.1. We use Corol-
lary 6.2 to deduce the homotopy root invariants from our filtered root invari-
ants. In our range, the first part of Corollary 6.2 is easier to check using the
ANSS rather than the ASS, since there are fewer elements to check. However,
we have only determined the BP -filtered root invariants for the elements in
Adams-Novikov filtration 1. For the v1 -periodic elements in higher Adams-
Novikov filtration, we must use our HF2 -filtered root invariants and the ASS.
Since the author’s knowledge of the 2-primary ANSS does not include β6 , we
also use the ASS to compute R(α6). The second part of Corollary 6.2 is verified
afterwards.

Our computations for the first part of Corollary 6.2 using BP -filtered root
invariants and the ANSS are summarized in the following table. We explain
the columns of the table:

x The element we wish to compute the root invariant of.

R
[k]
BP

(x) The top BP -filtered root invariant of x, which we want to show
detects R(x) using Corollary 6.2.

−N The cell of P∞
−∞ which carries the filtered root invariant.

{γi[ni]} The collection of elements in the E1 -term of the AAHSS converging to
Ext(BP∗P−N ) which could detect the difference between the top filtered
root invariant and the homotopy root invariant. We exclude elements
of infinite α1 -towers, since these are always the source or target of a
d2 -differential in the AAHSS.

diff Each element γi[ni] turns out to be ineligible to detect the difference,
since it is the target the indicated AAHSS differential.
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x R
[k]
BP (x) −N {γi[ni]} diff

α1 α2/2 −3

α2/2 α4/4 −5 β2/2[−4] ← α1[2]

α2 α4/4α1 −6

α4/4 β4/4 −8

α4/3 β4/3 −10 β4/4α1[−9] ← β4/4[−7]

α4/2 β4/3α1 −11

α4 β4/3α
2
1 −12

α5 α3
1β4/8 −15

α6/2 Πβ2/2 −16

We now deal with the leftover elements using the HF2 -filtered root invariants
and the ASS. We have the following HF2 -filtered root invariants which are
permanent cycles in the ASS.

x R
[k]
H (x) −N

α4/4α1 h4h2 −11

α4/4α
2
1 h4h

2
2 −13

α5α1 d2
0 −19

α5α
2
1 h1q −23

α6 q −22

Using Corollary 6.2, we see that to verify that these filtered root invariants
detect homotopy root invariants, we must first check that there are no elements
of πt−1(P−N ) of Adams filtration greater than k which can detect the root
invariant on a higher cell. We handle this on a case-by-case basis, with the aid
of the computations of Mahowald in [17], and the computer Ext computations
of Bruner [6]. In the following analysis, we omit the elements detected in the
AHSS by v1 -periodic elements. These elements cannot be root invariants in
the stems we are considering by the following lemma.

Lemma 11.2 Suppose that γ[n] ∈ πj(S
n) is an element of the E1 -term of the

AHSS for πj(P
∞
−∞) where γ is a v1 -periodic element. Then γ[n] is either the

source or target of a non-trivial AHSS differential unless we are in one of the
following cases (in which case we do not know whether γ[n] is the source or
target of a differential).

• γ = ν and j ≡ 0 (mod 4)

• γ = Bi with j ≡ 6 (mod 8) and i ≤ ν2(j + 2)− 2
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• γ = σ , ση , or ση2 with j ≡ 6 (mod 8) (The behavior of these elements
is slightly anomalous, due to the presence of ν2 , ε, and ηε.)

Here Bi is ith generator of the image of the J -homomorphism. Therefore, if
i = 4a+ b with 0 ≤ b ≤ 3, we have

Bi =





α̃4aα
2
1, b = 0

α̃4a+2, b = 1

α̃4(a+1), b = 2

α̃4(a+1)α1, b = 3

where α̃k is the element αk/l with l maximal.

Proof Theorem 4.6 of [18] states that you can lift the differentials from the
J -homology modified AHSS to the (double suspension) EHP spectral sequence.
The proofs of the announcements in [18] are the subject of [20]. Since the EHP
spectral sequence maps to the AHSS for π∗(P

∞), the differentials in the AHSS
follow. We then get the result for the AHSS for P∞

−∞ by transporting our
differentials with James periodicity.

The first part of Corollary 6.2 on the remaining elements is verified as follows.

α4/4α1 : According to the tables of [17], the only elements of π7(P−11) of Adams
filtration greater than 2 are v1 -periodic.

α4/4α
2
1 : According to the tables of [17], there are no elements of π8(P−13) of

Adams filtration greater than 3.

α5α1 : Examining the tables of [17], the only elements of π9(P−19) of Adams
filtration greater than 8 have trivial image in π9(P−18). Therefore, none of
them can detect a root invariant carried by a cell above the −19 cell.

α5α
2
1 : Examining the tables of [6], we find the following pattern of generators

in Ext(H∗P−23).
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10

h q[−23]

P e [−23]2
0

P d h [−23]
2 2

0 1

Ext(P   )−23

t−s

s

7

1

Some of the elements are labeled with their AAHSS names. These names were
deduced from the AAHSS differentials computed in [17]. The Adams differen-
tials originating from the elements in Adams filtration 6 and 7 may be deduced
by extrapolating differentials computed in [17] using h0 , h1 , and h2 multipli-
cation. The inclusion of the bottom cell

S−23 → P−23

induces the differential d2(P
2e0[−23]) = P 2d0h

2
1[−23]. The rest of the differ-

entials are then forced by h0 multiplication. We deduce that the only elements
of π10(P−23) of Adams filtration greater than 7 are the v1 -periodic elements.

α6 : From the tables of [6], we find the following portion of Ext(H∗P−22).

2

1

h h [−20]4 1
2

h l[−22]
0

s Ext(P   )
−22

6
q[−22]

k[−19]

t−s
10

p[−22]

P h [−16]
2
3

d [−21]

All of the d2 differentials shown are extrapolated from differentials in the charts
of [17] using h0 , h1 , and h2 -multiplication. The remaining two elements that
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could detect elements of higher Adams filtration, h0l[−15] and k[−19], must
be handled with care. We make the following claims, which combine to show
there are no classes in π10(P−22) of Adams filtration greater than 6 which could
detect the root invariant of α6 .

(1) There is an Adams differential d3(h0l[−22]) = P 2h3
2[−16] (as indicated

by a dashed line in the chart).

(2) The element k[−19] is a non-trivial permanent cycle which detects an
element γ ∈ π10(P−22).

(3) The image of γ in π10(P−21) cannot agree with the image of α6 under
the composite S−1 → P∞

−∞ → P−21 .

Proof of (1). In the ASS for π∗(S
0), there is a differential

d2(h0l) = Pe0h
2
2.

In the AAHSS for Ext(H∗P−22), there is a differential

d6(Pe0h1[−16]) = 〈Pe0h1, h2, h1〉[−22] = Pe0h
2
2[−22].

However, in the ASS for π∗(S
0), there is a differential

d2(Pe0h1) = P 2h3
2.

We conclude that in the E3 -term of the ASS for π∗(P−22), the two elements
Pe0h

2
2[−22] and P 2h3

2[−16] have been equated. Thus, the element h0l[−22]
must kill the element P 2h3

2[−16].

Proof of (2). The generator of Ext(H∗P−22) in (t − s, s) = (11, 5) cannot
support a d2 killing k[−19] because it does not support non-trivial h0 multi-
plication. The elements p, d1 , and h2

4h1 of Ext(F2) detect homotopy elements
p, d1 , and ηθ4 in π∗(S). These elements are easily seen to extend to elements
p[−22], d1[−21], and ηθ4[−20] of π11(P

−20
−22 ). The elements p[−22], d1[−21],

and h2
4h1[−20] detect the images of p[−22], d1[−21], and ηθ4[−20] under the

inclusion
P−20
−22 → P−22.

Therefore, the elements p[−22], d1[−21] and h2
4h1[−20] must be permanent

cycles. There are no other elements of Ext(H∗P−22) which can kill k[−19].

Proof of (3). Let γ ∈ π10(P−22) be detected by the permanent cycle k[−19].
Let νN denote the composite

π∗(S
−1)→ π∗(P−∞)→ π∗(PN ).
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Let γ′ be the image of γ in π10(P−21). Since the element k[−19] is non-trivial
in Ext(H∗P−21), the element γ ′ has Adams filtration 7. We must show that
γ′ cannot equal ν−21(α6). Let q ∈ π32(S

0) be the element detected by q .
Examining the ASS for S0 [25], [28], we see that the element q extends to
an element δ = q[−22] in π10(P−25). Since the algebraic root invariant of
Ph2h0 is q , the element ν−25(α6) is detected in Ext(H∗P−22) by q[−22]. Since
q[−22] also detects δ , the sum ζ = ν−25(α6) + δ has Adams filtration greater
than 6. Consulting the charts in [6], we find that there is one generator in
Exts,t(H∗P−25) for (t− s, s) = (10, 7), which is detected in the AAHSS by the
element h1q[−23]. The image of ζ in π10(P−21) is ν−21(α6). Since the image
of h1q[−23] in Ext(H∗P−21) is zero, we deduce that ν−21(α6) is of Adams
filtration greater than 7. Thus ν−21(α6) cannot equal γ ′ , since γ′ has Adams
filtration 6.

We have verified the first part of Corollary 6.2. We now must fulfill the second
part of Corollary 6.2. Suppose that we are given an element x ∈ π∗(S) and we
want to see that y is an element of R(x) for some y ∈ π∗(S), where the root
invariant is carried by the −N -cell. Suppose that y was detected by a filtered
root invariant and that we have already verified the first part of Corollary 6.2.
Then the root invariant of x is y if we can show that the image of the element
y under the inclusion of the bottom cell

π∗(S
−N )→ π∗(P−N )

is nontrivial.

Lemma 11.3 Let E be either HF2 or BP and suppose that ỹ ∈ Ext(E∗)
detects y in the E -ASS. It suffices to show the following two things:

(1) The element ỹ[−N ] is not the target of a differential in the AAHSS.

(2) This element of Ext(E∗P−N ) which ỹ[−N ] detects is not the target of an
E -ASS differential.

We have the following convenient proposition.

Proposition 11.4 If z is a v1 -torsion element of Ext2,j(BP∗) with j ≡ 0
(mod 2), then in the AAHSS for Ext(BP∗P2m) the element z[2m] cannot be
the target of a differential.

Proof The only elements which can support AAHSS differentials that hit
z[2m] are those of the form

1[2k − 1] or αi/j [2k].
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We only need to consider elements in t − s ≡ 1 (mod 2), since z[2m] is in
t − 2 ≡ 0 (mod 2). The differentials given in Propositions 7.2 and 7.3 tell us
that these elements either kill or are killed by other v1 -periodic elements.

Corollary 11.5 The second filtered root invariant βi/j ∈ R
[2]
BP (αi/j) always

satisfies the second part of Corollary 6.2.

We now finish the proof of Theorem 11.1 by verifying the second part of Corol-
lary 6.2 each of our elements.

For the root invariants of the elements

α4/4, α4/3, α6

we simply invoke Corollary 11.5. We mention that q is detected in the ANSS
by the element β6 .

For the root invariants of the elements

α1, α
2
1, α

3
1, α2/2, α2, α4/4α1, α4/4α

2
1, α4/2, α4, α5, α6/2

we look at the tables in [17] to see that the required elements are non-zero in
the homotopy of the stunted projective spaces.

The root invariant of α5α1 requires special treatment. We recall that we have
the algebraic root invariant d2

0 ∈ Ralg(α5α1) carried by the −19-cell. We must
verify that the image of εκ = κ2 under the map

π∗(S
−19)→ π∗(P−19)

is non-zero. The problem is that when we look at Mahowald’s computations
[17] we see that d2

0[−19] is killed in the AAHSS. Indeed, we have the algebraic
Atiyah-Hirzebruch differential

dAAHSS
6 (i[−13]) = d2

0[−19].

However, we have the Adams differential

dASS
2 (i) = Pd0h0.

Therefore, in the E3 -term of the ASS for P−19 , the elements Pd0h0[−13] and
Pd0h1[−14] have been equated, so we may conclude that the combination of the
AAHSS and ASS differentials implies that the image of εκ under the inclusion
of the bottom cell is detected by Pd0h1[−14]. Mahowald’s tables [17] indicate
that this element is non-zero in π∗(P−19).

For the purposes of determining the root invariant of

α5α
2
1
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we must determine whether the image of ηq under the map

π∗(S
−23)→ π∗(P−23)

is non-zero. Examining the tables of [6], we see that the element h1q[−23] is
non-trivial in Ext(P−23). We therefore just need to check that it cannot be the
target of a differential. There are three possible sources of a differential that
would kill h1q[−23]. These are represented by the elements

n[−20], d1[−21], and h5h2[−23].

But these elements are permanent cycles, as argued in the following lemmas.

Lemma 11.6 The element n[−20] ∈ Ext5,16(H∗P−23) is a permanent cycle.

Proof We just need to show that the element n ∈ π11(S
−20) extends over

P−20
−23 . Since 2n = 0 and ηn = 0, it suffices to show that the Toda bracket

〈2, η, n〉

contains 0. The element n is given by the Toda bracket [25]

n ∈ 〈ν, σ, κ〉.

We have

〈2, η, n〉 = 〈2, η, 〈ν, σ, κ〉〉

⊇ 〈2, η, ν, σ〉κ.

However, the Toda bracket 〈2, η, ν, σ〉 lies in π13(S
0), hence it must be zero.

Lemma 11.7 The element d1[−21] ∈ Ext4,15(H∗P−23) is a permanent cycle.

Proof The element d1 ∈ π32(S
0) extends over P−21

−23 to give an element which
is detected by d1[−21], so we may conclude that d1[−21] is a permanent cycle.

The author thanks W.-H. Lin for supplying the proof of the following lemma.

Lemma 11.8 The element h5h2[−23] ∈ Ext2,13(H∗P−23) is a permanent cycle.

Proof The element h5h2 supports a differential of the form d3(h5h2) = h0p
in the ASS for S0 . However, in the AAHSS for Ext(H∗P

−22
−23 ), the element

h0p[−23] is killed by p[−22]. The element p ∈ π33(S
0) therefore extends to an

element p[−22] ∈ π11(P−23) which is detected by h5h2[−23] in the ASS. We
conclude that h5h2[−23] is also a permanent cycle.
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