β-FAMILY CONGRUENCES AND THE f-INVARIANT

MARK BEHRENS ${ }^{1}$ AND GERD LAURES

Abstract

In previous work, the authors have each introduced methods for studying the 2-line of the p-local Adams-Novikov spectral sequence in terms of the arithmetic of modular forms. We give the precise relationship between the congruences of modular forms introduced by the first author with the Q spectrum and the f-invariant of the second author. This relationship enables us to refine the target group of the f-invariant in a way which makes it more manageable for computations.

1. Introduction

In [Ada66], J.F. Adams studied the image of the J-homomorphism

$$
J: \pi_{t}(S O) \rightarrow \pi_{t}^{S}
$$

by introducing a pair of invariants

$$
\begin{gathered}
d=d_{t}: \pi_{t}^{S} \rightarrow \pi_{t} K \\
e=e_{t}: \operatorname{ker}\left(d_{t}\right) \rightarrow \operatorname{Ext}_{\mathcal{A}}^{1, t+1}\left(K_{*}, K_{*}\right)
\end{gathered}
$$

where \mathcal{A} is a certain abelian category of graded abelian groups with Adams operations. (Adams also studied analogs of d and e using real K-theory, to more fully detect 2-primary phenomena.) In order to facilitate the study of the e-invariant, Adams used the Chern character to provide a monomorphism

$$
\theta_{S}: \operatorname{Ext}_{\mathcal{A}}^{1, t+1}\left(K_{*}, K_{*}\right) \hookrightarrow \mathbb{Q} / \mathbb{Z}
$$

Thus, the e-invariant may be regarded as taking values in \mathbb{Q} / \mathbb{Z}. Furthermore, he showed that for t odd, and $k=(t+1) / 2$, the image of θ_{S} is the cyclic group of order denom $\left(B_{k} / 2 k\right)$, where B_{k} is the k th Bernoulli number.

The d and e-invariants detect the 0 and 1-lines of the Adams-Novikov spectral sequence (ANSS). In [Lau99], the second author studied an invariant

$$
f: \operatorname{ker}\left(e_{t}\right) \rightarrow \operatorname{Ext}_{\mathrm{TMF}_{*} \operatorname{TMF}\left[\frac{1}{6}\right]}^{2, t+2}\left(\operatorname{TMF}\left[\frac{1}{6}\right]_{*}, \operatorname{TMF}\left[\frac{1}{6}\right]_{*}\right)
$$

which detects the 2-line of the ANSS for π_{*}^{S} away from the primes 2 and 3 . He furthermore used H. Miller's elliptic character to show that, if t is even and $k=$ $(t+2) / 2$, there is a monomorphism
$\iota^{2}: \operatorname{Ext}_{\mathrm{TMF}_{*} \operatorname{TMF}\left[\frac{1}{6}\right]}^{2, t+2}\left(\operatorname{TMF}\left[\frac{1}{6}\right]_{*}, \operatorname{TMF}\left[\frac{1}{6}\right]_{*}\right) \hookrightarrow D_{\mathbb{Q}} /\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]}+\left(M_{0}\right)_{\mathbb{Q}}+\left(M_{k}\right)_{\mathbb{Q}}\right)$,
where D is Katz's ring of divided congruences and M_{k} is the space of weight k modular forms of level 1 meromorphic at the cusp. It is natural to ask for a description of the image of the map ι^{2} in arithmetic terms.

Date: December 2, 2008.
${ }^{1}$ The first author was supported by the NSF grant DMS-0605100, the Sloan Foundation, and DARPA.

Remark 1.1. In [Lau99], the second author works with more general congruence subgroups $\Gamma \subseteq S L_{2}(\mathbb{Z})$ and associated cohomology theories E^{Γ} which also lead to results for the primes 2 and 3 . The spectrum TMF is just the spectrum $E^{S L_{2}(\mathbb{Z})}$ when 6 is inverted. In this paper we shall not be considering the f invariant associated to more general congruence subgroups Γ and 6 shall always be a unit.

Attempting to generalize the J fiber-sequence

$$
J \rightarrow K O_{p} \xrightarrow{\psi^{\ell}-1} K O_{p}
$$

the first author introduced a ring spectrum $Q(\ell)$ built from a length two $\mathrm{TMF}_{p^{-}}$ resolution. In [Beh09, Thm. 12.1], it was shown that for $p \geq 5$, the elements $\beta_{i / j, k} \in\left(\pi_{*}^{S}\right)_{p}$ of [MRW77] are detected in the Hurewicz image of $Q(\ell)$. This gives rise to the association of a modular form $f_{i / j, k}$ to each element $\beta_{i / j, k}$. Furthermore, the forms $f_{i / j, k}$ are characterized by certain arithmetic conditions.

The purpose of this paper is to prove that the f-invariant of $\beta_{i / j, k}$ is given by the formula

$$
f\left(\beta_{i / j, k}\right)=\frac{f_{i / j, k}}{p^{k} E_{p-1}^{j}} \quad \text { (Theorem 4.2). }
$$

In particular, since the 2 -line of the ANSS is generated by the elements $\beta_{i / j, k}$, the p component of the image of the map ι^{2} is characterized by the arithmetic conditions satisfied by the elements $f_{i / j, k}$.
J. Hornbostel and N. Naumann [HN07] computed the f invariant of the elements $\beta_{i / 1,1}$ in terms of Katz's Artin-Schreier generators of the ring of p-adic modular forms. While their result is best suited to describe f-invariants of infinite families, it is difficult to explicitly get one's hands on their output. Direct computations with q-expansions are limited by the computability of q-expansions of modular forms, hence are generally not well suited for infinite families of computations. In low degrees, however, our formula can directly be used to compute with q-expansions. We demonstrate this by giving some sample calculations of some f-invariants at the prime 5 .

Remark 1.2. It is natural to ask if the results of this paper can be extended to the primes 2 and 3. A difficulty arises because the cohomology theory TMF fails to be Landweber exact without inverting 6 , and this in turn is related to the fact that the associated moduli stack of elliptic curves has geometric points with automorphism groups divisible by the primes 2 and 3 . If one substitutes the group $S L_{2}(\mathbb{Z})$ with a small enough congruence subgroup so that the associated moduli stack is actually an algebraic space, then the corresponding f-invariant detects the 2 -line of the 2 and 3 -primary Adams-Novikov spectral sequences. However, the results of [Beh09] break down, because they rely on the approximation theorem of [BL06], and the analog of this approximation theorem for these congruence subgroups does not hold. In fact, the approximation theorem is not even true at the prime 2 for the full congruence subgroup $S L_{2}(\mathbb{Z})$.

We outline the organization of this paper. In Section 2 , we review the f-invariant. In Section 3, we review the spectrum $Q(\ell)$, and use it to construct an invariant f^{\prime} so that

$$
f_{i / j, k}=f^{\prime}\left(\beta_{i / j, k}\right)
$$

In Section 4 we show that the f-invariant is directly expressible in terms of the invariant f^{\prime}. In Section 5, we give our sample 5-primary calculations.

2. The f-Invariant

This section reviews the f-invariant and its various aspects in homotopy theory and geometry. Our main sources are [Lau00] and [Lau99].
Theorem 2.1. Let D be the ring of divided congruences defined by N. Katz in [Kat73], that is, the ring of all inhomogeneous modular forms for $S L_{2}(\mathbb{Z})$ whose q expansion is integral, and let M_{t} be the subspace of modular forms of homogeneous weight t. Then for all $k>0$ there is a homomorphism

$$
f: \pi_{2 k}^{S} \longrightarrow D_{\mathbb{Q}} /\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]} \oplus\left(M_{0}\right)_{\mathbb{Q}} \oplus\left(M_{k+1}\right)_{\mathbb{Q}}\right)
$$

whose kernel is the 3rd Adams-Novikov filtration for MU[$\left.\frac{1}{6}\right]$.
Remark 2.2. In [Lau99], the second author actually defines the f invariant to take values in the subspace of

$$
D_{\mathbb{Q}} /\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]} \oplus\left(M_{0}\right)_{\mathbb{Q}} \oplus\left(M_{k+1}\right)_{\mathbb{Q}}\right)
$$

spanned by inhomogeneous sums of modular forms of weights between 0 and $k+1$. Of course, there is no harm in regarding the invariant as taking values in the larger group above.

The construction of f is closely related to the construction of the classical e invariant by F. Adams (see [Ada66]). Let T be a flat ring spectrum and let

$$
s: X \longrightarrow Y
$$

be a stable map from a finite spectrum into an arbitrary one. Suppose further that the d-invariant of s vanishes. This simply means that s vanishes in T homology. Then we have a short exact sequence

$$
T_{*} Y \longrightarrow T_{*} C_{s} \longrightarrow T_{*} \Sigma X,
$$

where C_{s} is the cofiber of s. We can think of the sequence as an extension of $T_{*} X$ by $T_{*} Y$ as a $T_{*} T$-comodule. This is the classical e-invariant of s in T-theory.

Next, suppose that

$$
e(s) \in \operatorname{Ext}_{T_{*} T}\left(T_{*} X, T_{*} Y\right)
$$

vanishes, that is, the exact sequence of $T_{*} T$-comodules splits and we choose a splitting. We also choose a T-monomorphism

$$
\iota: Y \longrightarrow I
$$

into a T-injective spectrum I. For instance, we can take $I=T \wedge Y$. Then there is a map

$$
t: C_{s} \longrightarrow I
$$

which is the image of ι_{*} under the induced splitting map

$$
[Y, I] \cong \operatorname{Hom}_{T_{*} T}\left(T_{*} Y, T_{*} I\right) \longrightarrow \operatorname{Hom}_{T_{*} T}\left(T_{*} C_{s}, T_{*} I\right) \cong\left[C_{s}, I\right]
$$

In particular, the map t coincides with ι on Y. Let F be the fiber of the map ι. Then s lifts to a map

$$
\bar{s}: X \longrightarrow F
$$

which makes the diagram

commute.
Lemma 2.3. $d(\bar{s})=0$.
Proof. In the split exact sequence
$\operatorname{Hom}_{T_{*} T}\left(T_{*} \Sigma X, T_{*} \Sigma F\right) \longrightarrow \operatorname{Hom}_{T_{*} T}\left(T_{*} C_{s}, T_{*} \Sigma F\right) \longrightarrow \operatorname{Hom}_{T_{*} T}\left(T_{*} Y, T_{*} \Sigma F\right)$
the map $\Sigma \bar{s}_{*}$ restricted to C_{s} is in the image of the splitting and hence has to vanish. The claim follows since the map from C_{s} to ΣX is surjective in T-homology.

Lemma 2.3 implies that we again get a short exact sequence

$$
T_{*} F \longrightarrow T_{*} C_{\bar{s}} \longrightarrow T_{*} \Sigma X
$$

which we can splice together with the short exact sequence

$$
T_{*} \Sigma^{-1} Y \longrightarrow T_{*} \Sigma^{-1} I \longrightarrow T_{*} F
$$

This gives an extension of $T_{*} \Sigma^{-1} Y$ by $T_{*} \Sigma X$ of length 2 , that is, an element

$$
f(s) \in \operatorname{Ext}_{T_{*} T}^{2}\left(T_{*} X, T_{*} Y\right)
$$

In the case $X=S^{2 k}, Y=S^{0}$ and $T=\operatorname{TMF}\left[\frac{1}{6}\right]$, the image of $f(s)$ under the injection

$$
\iota^{2}: \operatorname{Ext}^{2} \hookrightarrow D_{\mathbb{Q}} /\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]} \oplus\left(M_{0}\right)_{\mathbb{Q}} \oplus\left(M_{k+1}\right)_{\mathbb{Q}}\right)
$$

is the second author's f-invariant. The map ι^{2} will be reviewed in Section 4.
We close this section with an alternative description of the f-invariant. First recall from [Lau00] that a framed manifold M represents a framed bordism class in second Adams-Novikov filtration if and only if it is the corner of a $(U, f r)^{2}$ manifold W. The boundary of W is decomposed into two manifolds with boundaries W^{0} and W^{1}. The stable tangent bundle of W comes with a splitting

$$
T W \cong(T W)^{0} \oplus(T W)^{1}
$$

and the bundles $(T W)^{i}$ are trivialized on W^{i}. Therefore, we get associated classes

$$
(T W)^{i} \in K\left(W, W^{i}\right)
$$

Let $\exp _{T}$ be the usual parameter for the universal Weierstrass cubic

$$
y^{2}=4 x^{3}-E_{4} x+E_{6}
$$

and let

$$
\exp _{K}(x)=1-e^{-x}
$$

be the standard parameter for the multiplicative formal group. Then following theorem is a consequence of Proposition 4.1.4 of [Lau00] after applying the complex orientation of the $\langle 2\rangle$-spectrum

Theorem 2.4. Let s be represented by M under the Pontryagin-Thom isomorphism. Then we have

$$
f(s)=\left\langle\prod_{i, j} \frac{x_{i} y_{j}}{\exp _{K}\left(x_{i}\right) \exp _{T}\left(y_{j}\right)},[W, \partial W]\right\rangle .
$$

Here, $\left(x_{i}\right)$ and $\left(y_{j}\right)$ are the formal Chern roots of $(T W)^{0}$ and $(T W)^{1}$ respectively.
We remark that there also are descriptions of the f-invariant in terms of a spectral invariant which is analogous to the classical relation between the e-invariant and the η-invariant. We refer the reader to $[\mathrm{vB} 08]$ and $[\mathrm{BN}]$.

3. The spectrum $Q(\ell)$ and the invariant f^{\prime}

For a $\mathbb{Z}[1 / N]$-algebra R we shall let $M_{k}\left(\Gamma_{0}(N)\right)_{R}$ denote the space of modular forms of weight k over R of level $\Gamma_{0}(N)$ which are meromorphic at the cusps. For $N=1$ we shall simplify the notation by writing

$$
\left(M_{k}\right)_{R}:=M_{k}\left(\Gamma_{0}(1)\right)_{R} .
$$

Let $\operatorname{TMF}_{0}(N)$ denote the corresponding spectrum of topological modular forms with N inverted (see [Beh06, Sec. 1.2.1], [Beh07, Sec. 5]). For primes $p>3$, $\pi_{*} \operatorname{TMF}_{0}(N)_{p}$ is concentrated in even degrees, and we have

$$
\begin{equation*}
\pi_{2 k} \operatorname{TMF}_{0}(N)_{p} \cong M_{k}\left(\Gamma_{0}(N)\right)_{\mathbb{Z}_{p}} \tag{3.1}
\end{equation*}
$$

Remark 3.2. One could view the isomorphism of (3.1) as a consequence of the fact that the spectrum $\operatorname{TMF}_{0}(N)\left[\frac{1}{6}\right]$ is equivalent to the spectrum $E^{\Gamma_{0}(N)}$ of [Lau99], or as a consequence of the fact that the descent spectral sequence

$$
H^{s}\left(\mathcal{M}_{\text {ell }}^{\Gamma_{0}(N)}\left[\frac{1}{6}\right], \omega^{\otimes t}\right) \Rightarrow \pi_{2 t-s} \operatorname{TMF}_{0}(N)\left[\frac{1}{6}\right]
$$

is concentrated on $s=0$.
Fix a pair of distinct primes p and ℓ. In [Beh06], the first author introduced a p-local spectrum $Q(\ell)$, defined as the totalization of a certain semi-cosimplicial spectrum

$$
Q(\ell)=\operatorname{Tot}\left(Q(\ell)^{\bullet}\right)
$$

where $Q(\ell)^{\bullet}$ has the form

$$
Q(\ell)^{\bullet}=\left(\begin{array}{ccccc}
& & \mathrm{TMF}_{0}(\ell)_{p} & \rightarrow & \tag{3.3}\\
\mathrm{TMF}_{p} & \rightarrow & \times & \rightarrow & \mathrm{TMF}_{0}(\ell)_{p} \\
& \rightarrow & \mathrm{TMF}_{p} & \rightarrow
\end{array}\right)
$$

In [Beh09, Sec. 4] the spectrum $Q(\ell)$ is reinterpreted as the smooth hypercohomology of a certain open subgroup of an adele group acting on a certain spectrum. The semi-cosimplicial spectrum $Q(\ell)^{\bullet}$ is actually a semi-cosimplicial E_{∞}-ring spectrum, so the spectrum $Q(\ell)$ is an E_{∞}-ring spectrum. In particular, there is a unit map

$$
\begin{equation*}
\eta: S \rightarrow Q(\ell) \tag{3.4}
\end{equation*}
$$

The spectrum $Q(\ell)$ is designed to be an approximation of the $K(2)$-local sphere. More precisely, the spectrum $Q(\ell)_{K(2)}$ is given as the homotopy fixed points of a subgroup

$$
\begin{equation*}
\Gamma_{\ell} \subset \mathbb{S}_{2} \tag{3.5}
\end{equation*}
$$

of the Morava stabilizer group acting on the Morava E-theory E_{2} [Beh07] and this subgroup is dense if ℓ generates \mathbb{Z}_{p}^{\times}[BL06]. The spectrum $Q(\ell)$ is $E(2)$-local. In [Beh09, Thm. 12.1] it is proven that elements $\beta_{i / j, k} \in \pi_{*}\left(S_{E(2)}\right)$ of [MRW77] are detected by the map

$$
S_{E(2)} \rightarrow Q(\ell)
$$

(It is not known if $Q(\ell)$ detects the entire divided beta family at the primes 2 and 3.)

Taking the homotopy groups of the semi-cosimplicial spectrum $Q(\ell)^{\bullet}(3.3)$ gives a semi-cosimplicial abelian group

$$
C(\ell)_{2 k}^{\bullet}:=\left(\begin{array}{cccc}
& & M_{k}\left(\Gamma_{0}(\ell)\right)_{\mathbb{Z}_{p}} & \rightarrow \tag{3.6}\\
\left(M_{k}\right)_{\mathbb{Z}_{p}} & \rightarrow & \times & \rightarrow M_{k}\left(\Gamma_{0}(\ell)\right)_{\mathbb{Z}_{p}} \\
& & \left(M_{k}\right)_{\mathbb{Z}_{p}} & \rightarrow
\end{array}\right)
$$

It is shown in [Beh09, Sec. 6] that the morphisms

$$
d_{0}, d_{1}:\left(M_{k}\right)_{\mathbb{Z}_{p}} \rightarrow M_{k}\left(\Gamma_{0}(\ell)\right)_{\mathbb{Z}_{p}} \times\left(M_{k}\right)_{\mathbb{Z}_{p}}
$$

induced by the initial coface maps of the cosimplicial abelian group $C(\ell)_{2 k}^{\bullet}$, are given on the level of q-expansions by

$$
\begin{align*}
d_{0}(f(q)) & :=\left(\ell^{k} f\left(q^{\ell}\right), \ell^{k} f(q)\right), \tag{3.7}\\
d_{1}(f(q)) & :=(f(q), f(q)) \tag{3.8}
\end{align*}
$$

The Bousfield-Kan spectral sequence for computing $\pi_{*} \operatorname{Tot}\left(Q(\ell)^{\bullet}\right)$ gives a spectral sequence

$$
\begin{equation*}
H^{s}\left(C(\ell)^{\bullet}\right)_{t} \Rightarrow \pi_{t-s} Q(\ell) \tag{3.9}
\end{equation*}
$$

For $p>3$, this spectral sequence collapses for dimensional reasons [Beh09, Cor. 5.2], giving us the following lemma.

Lemma 3.10. The edge homomorphism

$$
H^{2}\left(C(\ell)^{\bullet}\right)_{t} \rightarrow \pi_{t-2}(Q(\ell))
$$

is an isomorphism for $t \equiv 0 \bmod 4$.
Lemma 3.11. There is a map of spectral sequences

from the Adams-Novikov spectral sequence for the sphere to the Bousfield-Kan spectral sequence for $Q(\ell)$.

To prove Lemma 3.11 we shall need the following lemma.
Lemma 3.12. Suppose that R^{\bullet} is a semi-cosimplicial commutative S-algebra, E is a commutative S-algebra, and $\phi: E \rightarrow R^{0}$ is a map of commutative S-algebras. Then there is a canonical extension of ϕ to a map of semi-cosimplicial commutative S-algebras

$$
\phi^{\bullet}: E^{\wedge \bullet+1} \rightarrow R^{\bullet}
$$

where

$$
E^{\wedge \bullet+1}=\left(E \underset{\xrightarrow{\eta \wedge \eta}}{\xrightarrow{\eta \wedge 1}} E \wedge E \xrightarrow[{\xrightarrow{1 \wedge 1 \wedge \eta}}]{\xrightarrow{\frac{\eta \wedge 1 \wedge \eta \wedge 1}{}} E \wedge E \wedge E \quad \ldots}\right)
$$

is the canonical cosimplicial E-resolution of the sphere.
Proof. A semi-cosimplicial commutative S-algebra is a functor

$$
\Delta_{i n j} \rightarrow\{\text { commutative } S \text {-algebras }\}
$$

where $\Delta_{i n j}$ is the category of finite ordered sets and order preserving injections. Let \underline{m} be the object of $\Delta_{i n j}$ given by

$$
\underline{m}=\{0,1, \ldots, m\}
$$

and for $0 \leq i \leq n$ define $\iota_{i}^{m}: \underline{0} \rightarrow \underline{m}$ by $\iota_{i}^{m}(0)=i$. The map ϕ^{s} is defined to be the composite

$$
E^{\wedge s+1} \xrightarrow{\left(\left(\iota_{0}^{s}\right)_{*} \circ \phi\right) \wedge \cdots \wedge\left(\left(\iota_{n}^{n}\right)_{*} \circ \phi\right)}\left(R^{s}\right)^{\wedge s+1} \xrightarrow{\mu_{s+1}} R^{s}
$$

where μ_{s+1} denotes the $s+1$-fold product. The maps ϕ^{s} are easily seen to assemble into a map of semi-cosimplicial spectra.

Proof of Lemma 3.11. Lemma 3.12 implies that there exists a map of semicosimplicial spectra

$$
1^{\bullet}: \mathrm{TMF}_{p}^{\wedge \bullet+1} \rightarrow Q(\ell)^{\bullet}
$$

and hence a map from the Bousfield-Kan spectral sequence for $\mathrm{TMF}_{p}^{\wedge \bullet+1}$ to the Bousfield-Kan spectral sequence for $Q(\ell)^{\bullet}$. However, since $\mathrm{TMF}_{p}^{\bullet+1}$ is the canonical TMF_{p}-injective resolution of S, the Bousfield-Kan spectral sequence for $\mathrm{TMF}_{p}^{\wedge \bullet+1}$ is the TMF_{p}-Adams-Novikov spectral sequence for S. Since TMF_{p} is complex orientable, there is a map of ring spectra $B P \rightarrow \mathrm{TMF}_{p}$, and hence a map from the $B P$-Adams-Novikov spectral sequence to the TMF_{p}-Adams-Novikov spectral sequence.

The short exact sequences of $B P_{*} B P$-comodules

$$
\begin{gathered}
0 \rightarrow B P_{*} \rightarrow B P_{*}\left[p^{-1}\right] \rightarrow B P_{*} / p^{\infty} \rightarrow 0 \\
0 \rightarrow B P_{*} / p^{\infty} \rightarrow B P_{*} / p^{\infty}\left[v_{1}^{-1}\right] \rightarrow B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right) \rightarrow 0
\end{gathered}
$$

give rise to long exact sequences in Ext, and the connecting homomorphisms give a composite

$$
\begin{align*}
& \delta_{v_{1}, p}: \operatorname{Ext}_{B P_{*} B P}^{0, t}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) \xrightarrow{\delta_{v_{1}}} \operatorname{Ext}_{B P_{*} B P}^{1, t}\left(B P_{*}, B P_{*} / p^{\infty}\right) \tag{3.13}\\
& \xrightarrow{\delta_{p}} \operatorname{Ext}_{B P_{*} B P}^{2, t}\left(B P_{*}, B P_{*}\right) .
\end{align*}
$$

The computations of [MRW77] imply the following lemma.
Lemma 3.14. The homomorphism $\delta_{v_{1}, p}$ of (3.13) is an isomorphism for $t>0$.
Since the spectrum TMF $\left[\frac{1}{6}\right]$ is Landweber exact, the spectrum TMF_{p} is complex orientable. Since TMF pis $_{p}$ is-local, it admits a p-typical complex orientation, and a choice of p-typical complex orientation

$$
B P \rightarrow \mathrm{TMF}_{p} \rightarrow \mathrm{TMF}_{0}(\ell)_{p}
$$

sends v_{1} to a non-zero multiple of the Hasse invariant $E_{p-1} \bmod p$. The complex $C(\ell)^{\bullet} / p^{k}$ is a complex of modules over the ring $\mathbb{Z}_{p}\left[v_{1}^{p^{k-1}}\right]$. The short exact sequences

$$
\begin{gathered}
0 \rightarrow C(\ell)^{\bullet} \rightarrow C(\ell)^{\bullet}\left[p^{-1}\right] \rightarrow C(\ell)^{\bullet} / p^{\infty} \rightarrow 0 \\
0 \rightarrow C(\ell)^{\bullet} / p^{\infty} \rightarrow C(\ell)^{\bullet} / p^{\infty}\left[v_{1}^{-1}\right] \rightarrow C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right) \rightarrow 0
\end{gathered}
$$

give rise to long exact sequences in H^{*}, and the connecting homomorphisms give a composite

$$
\delta_{v_{1}, p}: H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{t} \xrightarrow{\delta_{v_{1}}} H^{1}\left(C(\ell)^{\bullet} / p^{\infty}\right)_{t} \xrightarrow{\delta_{p}} H^{2}\left(C(\ell)^{\bullet}\right)_{t} .
$$

Using Lemmas 3.10 and 3.14, we have the following diagram, for $t>0$.

Since p is odd and $\operatorname{Ext}_{B P_{*} B P}^{2, m}\left(B P_{*}, B P_{*}\right)$ is concentrated in degrees $m \equiv 0 \bmod 4$, the invariant f^{\prime} may be regarded as an invariant defined on the entire 2-line of the ANSS. Moreover, because $\pi_{4 t-2} S_{(p)}$ contains no elements of Adams-Novikov filtration less than 2 , the invariant f^{\prime} may be regarded as giving a homotopy invariant through the composite

$$
\pi_{4 t-2} S_{(p)} \rightarrow \operatorname{Ext}_{B P_{*} B P}^{2,4 t}\left(B P_{*}, B P_{*}\right) \xrightarrow{f^{\prime}} H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{4 t}
$$

We shall find that this invariant f^{\prime} is closely related to the f invariant of the second author.

We end this section by describing some of the salient features of the invariant f^{\prime}. Namely, we shall show:
(i) the homomorphism f^{\prime} is a monomorphism, and if ℓ generates \mathbb{Z}_{p}^{\times}, the homomorphism f^{\prime} is almost an isomorphism, and
(ii) the groups $H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{4 t}$ admit a precise arithmetic interpretation in terms of congruences of q-expansions of modular forms.

The injectivity and almost surjectivity of f^{\prime}.

Because v_{2} is invertible in $C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)$, there is a factorization

$$
\begin{align*}
\operatorname{Ext}_{B P_{*} B P}^{2,4 t}\left(B P_{*}, B P_{*}\right) \xrightarrow{f^{\prime}} \xrightarrow{n} H^{0}\left(C(\ell) \bullet\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{4 t} \tag{3.16}\\
\cong \delta_{v_{1}, p} \\
\operatorname{Ext}_{B P_{*} B P}^{0,4 t}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) \xrightarrow[L_{v_{2}}]{\longrightarrow} \operatorname{Ext}_{B P_{*} B P}^{0,4 t}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\left[v_{2}^{-1}\right]\right)
\end{align*}
$$

Recall from [MRW77] that for $t>0$ the groups
$\operatorname{Ext}_{B P_{*} B P}^{0,4 t}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) \quad$ and $\quad \operatorname{Ext}_{B P_{*} B P}^{0,4 t}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\left[v_{2}^{-1}\right]\right)$
are generated by elements $\beta_{i / j, k}$ for certain combinations of indices i, j, and k. As usual, $\beta_{i / j}$ denotes the element $\beta_{i / j, 1}$.

Proposition 3.17.

(i) The map $L_{v_{2}}$ of (3.16) is injective, and the cokernel is an \mathbb{F}_{p}-vector space with basis

$$
\left\{\beta_{p^{n} / j}: n \geq 2, p^{n}<j \leq p^{n}+p^{n-1}-1\right\}
$$

(ii) The map $\bar{\eta}$ of (3.16) is injective, and if ℓ generates \mathbb{Z}_{p}^{\times}, it is an isomorphism.

Proof. (i) follows directly from the calculations of [MRW77]. (ii) follows from the fact that the map $\bar{\eta}$ factors as

where $\bar{\eta}^{\prime}$ is the Morava change-of-rings isomorphism, and $\bar{\eta}^{\prime \prime}$ is given by the composite

$$
H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{4 t} \stackrel{\omega}{\cong} H^{0}\left(\Gamma_{\ell}, \pi_{*} M_{2} E_{2}\right)_{4 t}^{\mathrm{Gal}} \xrightarrow{\nu} H_{c}^{0}\left(\mathbb{S}_{2}, \pi_{*} M_{2} E_{2}\right)_{4 t}^{\mathrm{Gal}}
$$

Here, ω is the isomorphism given by [Beh09, Cor. 7.7] where Γ_{ℓ} is the subgroup of \mathbb{S}_{2} of (3.5), the spectrum $M_{2} E_{2}$ is the second monochromatic layer of E_{2}, and ν is the monomorphism induced by the inclusion of the subgroup. Lemma 11.1 of [Beh09] states that ν is an isomorphism if ℓ generates \mathbb{Z}_{p}^{\times}[Beh09, Lem. 11.1]. Note that the same argument in [Rav84, Thm. 6.1] computing $\pi_{*} M_{n} B P$ applies to compute

$$
\pi_{*} M_{2} E_{2} \cong\left(\pi_{*} E_{2}\right) /\left(p^{\infty}, v_{1}^{\infty}\right)
$$

We conclude that f^{\prime} is injective, and if ℓ generates \mathbb{Z}_{p}^{\times}, the only generators of $H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)$ not in the image of f^{\prime} are those corresponding to the Greek letter elements $\beta_{p^{n} / j}$ for $j>p^{n}$.
The arithmetic interpretation of the groups $H^{0}\left(C(\ell) \bullet /\left(p^{\infty}, v_{1}^{\infty}\right)\right)$.
The groups $H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{4 t}$ are computed by the colimit of groups

$$
H^{0}\left(C(\ell)^{\bullet} /\left(p^{\infty}, v_{1}^{\infty}\right)\right)_{4 t}=\operatorname{colim}_{k} \operatorname{colim}_{\substack{j=s p^{k-1} \\ s \geq 1}} \mathcal{B}_{2 t / j, k}
$$

where

$$
\mathcal{B}_{2 t / j, k}=H^{0}\left(C(\ell)^{\bullet} /\left(p^{k}, v_{1}^{j}\right)\right)_{4 t+2 j(p-1)}
$$

Using the fact that v_{1} corresponds, modulo p, to a non-zero multiple of the Hasse invariant E_{p-1} in the ring of modular forms, we have

$$
\mathcal{B}_{2 t / j, k}=\operatorname{ker}\left(\begin{array}{lc}
\frac{M_{2 t+j(p-1)}}{\left(p^{k}, E_{p-1}^{j}\right)} \stackrel{M_{2 t+j(p-1)}}{\left(p^{k}, E_{p-1}^{j}\right)} \\
& \frac{M_{2 t+j(p-1)}\left(\Gamma_{0}(\ell)\right)}{\left(p^{k}, E_{p-1}^{j}\right)}
\end{array}\right)
$$

Serre [Kat73, Prop. 4.4.2] showed that two modular forms f_{1} and f_{2} over \mathbb{Z} / p^{k} are linked by multiplication by $E_{p-1}^{j}\left(\right.$ for $\left.j \equiv 0 \bmod p^{k-1}\right)$ if and only if the corresponding q-expansions satisfy

$$
f_{1}(q) \equiv f_{2}(q) \quad \bmod p^{k}
$$

Using this, and (3.7)-(3.8), the following theorem is proven in [Beh09].
Theorem 3.18 ([Beh09, Thm. 11.3]). There is a one-to-one correspondence between the additive generators of order p^{k} in $\mathcal{B}_{t / j, k}$ and the modular forms $f \in$ $M_{t+j(p-1)}$ (modulo p^{k}) satisfying
(1) We have $t \equiv 0 \bmod (p-1) p^{k-1}$.
(2) The q-expansion $f(q)$ is not congruent to $0 \bmod p$.
(3) We have $\operatorname{ord}_{q} f(q)>\frac{t}{12}$ or $\operatorname{ord}_{q} f(q)=\frac{t-2}{12}$.
(4) There does not exist a form $f^{\prime} \in M_{t^{\prime}}$ such that $f^{\prime}(q) \equiv f(q) \bmod p^{k}$ for $t^{\prime}<t+j(p-1)$.
(5) $)_{\ell}$ There exists a form

$$
g \in M_{t}\left(\Gamma_{0}(\ell)\right)
$$

satisfying

$$
f\left(q^{\ell}\right)-f(q) \equiv g(q) \quad \bmod p^{k}
$$

Remark 3.19. It follows from [Beh09, Cor. 11.7], that a modular form satisfying (1)-(5) corresponding to $f^{\prime}(x)$ is independent of the choice of the prime ℓ.

4. The relation between f and f^{\prime}

Let ℓ be a generator of \mathbb{Z}_{p}^{\times}. We start with a cohomology class

$$
x \in \operatorname{Ext}_{B P_{*} B P}^{2,2 t}\left(B P_{*}, B P_{*}\right)
$$

with corresponding invariant

$$
\begin{equation*}
f^{\prime}(x) \in \mathcal{B}_{t / j, k}=H^{0}\left(C^{\bullet}(\ell) /\left(p^{k}, v_{1}^{j}\right)\right)_{2 t+2 j(p-1)} \tag{4.1}
\end{equation*}
$$

Note that since p is odd, t must be even. By Theorem 3.18, a representative of $f^{\prime}(x)$ is a \mathbb{Z} / p^{k} modular form φ of weight $t+j(p-1)$ for $S L_{2}(\mathbb{Z})$ which satisfies certain congruences. We view φ as a divided congruence, more precisely, as an element of

$$
D \otimes \mathbb{Z} / p^{k}
$$

Theorem 4.2. The f-invariant of the class x is given by

$$
p^{-k} E_{p-1}^{-j}\left(\varphi-q^{0}(\varphi)\right)
$$

where q^{0} is the 0th Fourier coefficient, and j, k are given by (4.1).
The proof of Theorem 4.2 will be deferred to the end of the section.
Remark 4.3. For $t>0$, Theorem 3.18(3) implies that there exists a representative φ of $f^{\prime}(x)$ with $q^{0}(\varphi)=0$. Since the modular form $f_{i / j, k}$ of [Beh09] is such a representative of $f^{\prime}\left(\beta_{i / j, k}\right)$, Theorem 4.2 implies that

$$
f\left(\beta_{i / j, k}\right)=\frac{f_{i / j, k}}{p^{k} E_{p-1}^{j}}
$$

Corollary 4.4. The class

$$
p^{k} E_{p-1}^{j} f(x)
$$

is congruent to a \mathbb{Z} / p^{k}-modular form φ of weight $t+j(p-1)$ up to modular forms of weights $j(p-1)$ and $t+j(p-1)$. Moreover, φ satisfies the conditions (1)-(5) of 3.18.

Remark 4.5. We pause to explain how the expression in Theorem 4.2 may be regarded as an element of the subgroup

$$
\frac{D_{\mathbb{Q}}}{D_{\mathbb{Z}_{(p)}}+\left(M_{0}\right)_{\mathbb{Q}}+\left(M_{t}\right)_{\mathbb{Q}}} \subset \frac{D_{\mathbb{Q}}}{D_{\mathbb{Z}\left[\frac{1}{6}\right]}+\left(M_{0}\right)_{\mathbb{Q}}+\left(M_{t}\right)_{\mathbb{Q}}}
$$

in a way that more clearly accounts for the indeterminacy of the f-invariant. Katz showed that D is a dense subspace of \mathbb{V}, the ring of generalized p-adic modular functions [Kat75]. The ring \mathbb{V} has an action by the group \mathbb{Z}_{p}^{\times}through Diamond operators, and the weight t subspace \mathbb{V}_{t} is canonically identified by

$$
\mathbb{V}_{t} \cong\left(M_{*}\right)_{\mathbb{Z}_{p}}\left[E_{p-1}^{-1}\right]_{t}
$$

We therefore have

$$
\frac{D_{\mathbb{Q}}}{D_{\mathbb{Z}_{(p)}}+\left(M_{0}\right)_{\mathbb{Q}}+\left(M_{t}\right)_{\mathbb{Q}}} \cong \frac{\mathbb{V}_{\mathbb{Q}}}{\mathbb{V}+\left(M_{0}\right)_{\mathbb{Q}_{p}}+\left(M_{t}\right)_{\mathbb{Q}_{p}}}
$$

Taking the weight t subspace we get

$$
\begin{aligned}
\frac{\left(\mathbb{V}_{t}\right)_{\mathbb{Q}}}{\mathbb{V}_{t}+\left(M_{t}\right)_{\mathbb{Q}_{p}}} & \cong\left(\frac{\left(M_{*}\right)_{\mathbb{Q}_{p}}\left[E_{p-1}^{-1}\right]}{\left(M_{*}\right)_{\mathbb{Z}_{p}}\left[E_{p-1}^{-1}\right]+\left(M_{*}\right)_{\mathbb{Q}_{p}}}\right)_{t} \\
& =\left(\frac{\left(M_{*}\right)_{\mathbb{Z}_{p}}}{\left(p^{\infty}, E_{p-1}^{\infty}\right)}\right)_{t}
\end{aligned}
$$

The expression $p^{-k} E_{p-1}^{-j} \phi$ clearly may be regarded as an element of the group above.
Let T be $\operatorname{TMF}\left[\frac{1}{6}\right]$ and

$$
M^{(2)}=\pi_{*} T \wedge T
$$

be the Hopf algebroid of cooperations of T. An element of $M^{(2)}$ is a modular form in two variables which is meromorphic at ∞ and has (away from 6) an integral Fourier expansion (see [Lau99]).

Consider the map of semi-cosimplicial spectra

$$
1^{\bullet}: \mathrm{TMF}_{p}^{\wedge \bullet+1} \rightarrow Q(\ell)^{\bullet}
$$

of Lemma 3.12. Applying the functor $\pi_{*}(-)$, we get a map of semi-cosimplicial abelian groups

$$
\pi_{2 k}\left(T_{p}^{\bullet+1}\right)=M_{k}^{(\bullet+1)} \rightarrow C^{\bullet}(\ell)_{2 k}
$$

which in low degrees gives the following commutative diagram.

Lemma 4.6. The induced map in cohomology

$$
H^{0}\left(M_{*}^{(\bullet+1)} /\left(p^{\infty}, E_{p-1}^{\infty}\right)\right) \longrightarrow H^{0}\left(C^{\bullet}(\ell) /\left(p^{\infty}, v_{1}^{\infty}\right)\right)
$$

is an isomorphism.
Proof. By [HS05], there is a change-of-rings isomorphism

$$
\begin{aligned}
H^{0}\left(M_{*}^{(\bullet+1)} /\left(p^{\infty}, E_{p-1}^{\infty}\right)\right) & =\operatorname{Ext}_{\mathrm{TMF}_{*} \mathrm{TMF}_{p}}^{0}\left(\pi_{*} \operatorname{TMF}_{p}, \pi_{*} \operatorname{TMF}_{p} /\left(p^{\infty}, E_{p-1}^{\infty}\right)\right) \\
& \cong \operatorname{Ext}_{B P_{*} B P}^{0}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\left[v_{2}^{-1}\right]\right)
\end{aligned}
$$

The lemma follows from the isomorphism $\bar{\eta}$ of Proposition 3.17.
Next we explain how to get from an element in

$$
H^{0}\left(M_{*} /\left(p^{\infty}, E_{p-1}^{\infty}\right)\right) \cong \operatorname{Ext}_{M^{(2)}}^{0}\left(M_{*}, M_{*} /\left(p^{\infty}, E_{p-1}^{\infty}\right)\right)
$$

to a congruence in

$$
D_{\mathbb{Q}} /\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]} \oplus\left(M_{0}\right)_{\mathbb{Q}} \oplus\left(M_{k}\right)_{\mathbb{Q}}\right)
$$

For this, we first describe how a class φ in

$$
\operatorname{Ext}_{M^{(2)}}^{0}\left(M_{*}, M_{*} /\left(p^{\infty}, E_{p-1}^{\infty}\right)\right)
$$

gives rise to a class in

$$
\operatorname{Ext}_{M^{(2)}}^{2}\left(M_{*}, M_{*}\right)
$$

We use the geometric boundary theorem
Theorem 4.7. [Rav86] Write $E_{*}(X)$ for the E_{*}-term of the T-based Adams Novikov spectral sequence which conditionally converges to the homotopy of the T-nilpotent completion of X. Let

$$
W \xrightarrow{f} X \xrightarrow{g} Y \xrightarrow{h} \Sigma W
$$

be a cofiber sequence of finite spectra with $T_{*}(h)=0$. Assume further that $[s] \in$ $E_{2}^{t, *+t}(Y)$ converges to s. Then $\delta[s]$ converges to $h_{*}(s)$ where δ is the connecting homomorphism to the short exact sequence of chain complexes

$$
0 \longrightarrow E_{1}(W) \longrightarrow E_{1}(X) \longrightarrow E_{1}(Y) \longrightarrow 0
$$

For a multi index I let

$$
M(I)=M\left(i_{0}, \ldots, i_{n-1}\right)
$$

be the generalized Moore spectrum with

$$
B P_{*} M(I)=\Sigma^{-\|I\|-n} B P_{*} /\left(p^{i_{0}}, v_{1}^{i_{1}}, \ldots, v_{n-1}^{i_{n-1}}\right)
$$

where

$$
\|I\|=\sum_{j} 2 i_{j}\left(p^{j}-1\right)
$$

Each $M(I)$ admits a self map

$$
\Sigma^{2 i_{n}\left(p^{n}-1\right)} M(I) \longrightarrow M(I)
$$

which induces multiplication by $v_{n}^{i_{n}}$. Its fiber is $M\left(I, i_{n}\right)$. We apply the geometric boundary theorem to the sequences

$$
\Sigma^{2 i_{1}(p-1)} M\left(i_{0}\right) \xrightarrow{v_{1}^{i}} M\left(i_{0}\right) \longrightarrow \Sigma M\left(i_{0}, i_{1}\right) \longrightarrow \Sigma^{2 i_{1}(p-1)+1} M\left(i_{0}\right)
$$

and

$$
S \xrightarrow{p^{i_{0}}} S \longrightarrow \Sigma M\left(i_{0}\right) \longrightarrow S^{1}
$$

For

$$
\varphi \in E_{2}^{0}\left(M\left(i_{0}, i_{1}\right)\right)=\operatorname{Ext}_{M^{(2)}}^{0}\left(M_{*}, M_{*} /\left(p^{i_{0}}, E_{p-1}^{i_{1}}\right)\right)
$$

we have

$$
\delta \varphi=\left[\frac{d^{0} \varphi-d^{1} \varphi}{E_{p-1}^{i_{1}}}\right] \in E_{2}^{1}\left(M\left(i_{0}\right)\right)=\operatorname{Ext}_{M^{(2)}}^{1}\left(M_{*}, M_{*} / p^{i_{0}}\right)
$$

and

$$
\delta \delta \varphi=\left[p^{-i_{0}} \sum_{i=0}^{2}(-1)^{i} d^{i}\left[\frac{d^{0} \varphi-d^{1} \varphi}{E_{p-1}^{i_{1}}}\right]\right] \in E_{2}^{2}(S)=\operatorname{Ext}_{M^{(2)}}^{2}\left(M_{*}, M_{*}\right)
$$

where d^{i} denote the differentials of the cobar complex

$$
\left(\Omega_{T}^{\bullet}\right)_{2 k}=\pi_{2 k} T^{\bullet+1} \cong M_{k}^{(\bullet+1)}
$$

The maps of ring spectra

$$
T \xrightarrow{q^{0}} K_{\mathbb{Z}[1 / 6]} \xrightarrow{c h^{0}} H_{\mathbb{Q}}
$$

induce the following map of semi-cosimplicial spectra.

Taking $\pi_{2 k}(-)$, and using [Lau99, Thm. 2.7], we get the following map of semicosimplicial abelian groups

$\left(\Omega_{T, K, H}^{\bullet}\right)_{2 k}$

In $\left(\Omega_{T, K, H}^{\bullet}\right)_{2 k}$, we have

$$
\begin{aligned}
& d_{1}\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]}\right) \subseteq\left(M_{k}\right)_{\mathbb{Q}} \subseteq D_{\mathbb{Q}} \\
& d_{2}\left(D_{\mathbb{Z}\left[\frac{1}{6}\right]}\right) \subseteq\left(M_{0}\right)_{\mathbb{Q}} \subseteq D_{\mathbb{Q}} .
\end{aligned}
$$

Therefore, by modding out by these subgroups of $D_{\mathbb{Q}}$, we get a map:

The first coface maps of the semi-cosimplicial abelian $\operatorname{group}\left(\bar{\Omega}_{T, K, H}^{\bullet}\right)_{2 k}$ are given by

$$
d^{0}=\iota, d^{1}=q^{0}
$$

and the second ones by

$$
d^{0}=\iota, d^{1}=d^{2}=0
$$

where ι the canonical inclusion. The induced map in cohomology is the inclusion

$$
\iota^{2}: \operatorname{Ext}_{M^{(2)}}^{2}\left(M_{*}, M_{*}\right) \hookrightarrow D_{\mathbb{Q}} /\left((D)_{\mathbb{Z}[1 / 6]} \oplus\left(M_{0}\right)_{\mathbb{Q}} \oplus\left(M_{k}\right)_{\mathbb{Q}}\right)
$$

Hence we have

$$
\bar{\rho}_{*} \delta \delta \varphi=p^{-i_{0}} E_{p-1}^{-i_{1}}\left(\varphi-q^{0}(\varphi)\right)
$$

and the proof of the theorem is completed.

$$
\text { 5. EXAMPLES AT } p=5
$$

Below are some computations of the q-expansions of the modular forms $f_{i / j, k}$ representing $f^{\prime}\left(\beta_{i / j, k}\right)$ at $p=5$. The q-expansions of the corresponding f invariants, by Theorem 4.2 , are given by

$$
f\left(\beta_{i / j, k}\right)=p^{-k} E_{p-1}^{-j} f_{i / j, k}(q)
$$

The computations were performed using the MAGMA computer algebra system, with $\ell=2$, as follows.
(i) A basis $\left\{F_{\alpha}(q)\right\}$ of q-expansions of forms in $M_{24 i}$ satisfying Theorem 3.18(3) was generated.
(ii) A basis $\left\{G_{\beta}(q)\right\}$ of q-expansions of holomorphic forms in $M_{24 i-4 j}\left(\Gamma_{0}(\ell)\right)_{\mathbb{Z} / 5^{k}}$ was generated.
(iii) Basic linear algebra is used to calculate a basis of linear combinations $\sum_{\alpha} a_{\alpha} F_{\alpha}$ such that

$$
\sum_{\alpha} a_{\alpha}\left(F_{\alpha}\left(q^{2}\right)-F_{\alpha}(q)\right) \equiv \sum_{\beta} b_{\beta} G_{\beta}(q) \bmod 5^{k}
$$

Note 5.1. The following modular forms are normalized so that the leading term has coefficient 1. Therefore, they may differ from the f^{\prime}-invariants of $\beta_{i / j, k}$ by a multiple in \mathbb{Z}_{p}^{\times}.

$$
\begin{aligned}
f_{1 / 1,1}= & \Delta^{2}= \\
& \mathrm{q}^{\wedge} 2+2 * \mathrm{q}^{\wedge} 3+\mathrm{q}^{\wedge} 7+\mathrm{q}^{\wedge} 12+2 * \mathrm{q}^{\wedge} 13+\mathrm{q}^{\wedge} 17+2 * \mathrm{q}^{\wedge} 18+ \\
& 2 * \mathrm{q}^{\wedge} 22+2 * \mathrm{q}^{\wedge} 23+3 * \mathrm{q}^{\wedge} 28+\mathrm{q}^{\wedge} 32+4 * \mathrm{q}^{\wedge} 33+\mathrm{q}^{\wedge} 37+ \\
& 2 * \mathrm{q}^{\wedge} 42+2 * \mathrm{q}^{\wedge} 43+\mathrm{q}^{\wedge} 47+2 * \mathrm{q}^{\wedge} 48+\mathrm{q}^{\wedge} 52+2 * \mathrm{q}^{\wedge} 53+ \\
& 2 * \mathrm{q}^{\wedge} 62+2 * \mathrm{q}^{\wedge} 63+\mathrm{q}^{\wedge} 67+3 * \mathrm{q}^{\wedge} 68+2 * \mathrm{q}^{\wedge} 73+2 * \mathrm{q}^{\wedge} 77+ \\
& 4 * \mathrm{q}^{\wedge} 78+2 * \mathrm{q}^{\wedge} 82+2 * \mathrm{q}^{\wedge} 83+\mathrm{q}^{\wedge} 92+4 * \mathrm{q}^{\wedge} 93+\mathrm{q}^{\wedge} 97+ \\
& 3 * \mathrm{q}^{\wedge} 98+0\left(\mathrm{q}^{\wedge} 100\right) \bmod 5
\end{aligned}
$$

$$
\begin{aligned}
& f_{2 / 1,1}=\Delta^{4}= \\
& \mathrm{q}^{\wedge} 4+4 * \mathrm{q}^{\wedge} 5+4 * \mathrm{q}^{\wedge} 6+2 * \mathrm{q}^{\wedge} 9+4 * \mathrm{q}^{\wedge} 10+3 * \mathrm{q}^{\wedge} 14+ \\
& 3 * q^{\wedge} 15+3 * q^{\wedge} 16+4 * q^{\wedge} 19+2 * q^{\wedge} 20+3 * q^{\wedge} 21+2 * q^{\wedge} 24 \\
& +2 * q^{\wedge} 26+q^{\wedge} 29+3 * q^{\wedge} 30+2 * q^{\wedge} 34+4 * q^{\wedge} 35+3 * q^{\wedge} 36 \\
& +3 * q^{\wedge} 39+2 * q^{\wedge} 44+3 * q^{\wedge} 45+q^{\wedge} 51+4 * q^{\wedge} 54+3 * q^{\wedge} 55 \\
& +\mathrm{q}^{\wedge} 56+2 * \mathrm{q}^{\wedge} 59+4 * \mathrm{q}^{\wedge} 60+2 * \mathrm{q}^{\wedge} 64+3 * \mathrm{q}^{\wedge} 65+3 * \mathrm{q}^{\wedge} 66 \\
& +4 * \mathrm{q}^{\wedge} 69+4 * \mathrm{q}^{\wedge} 70+2 * \mathrm{q}^{\wedge} 76+\mathrm{q}^{\wedge} 79+4 * \mathrm{q}^{\wedge} 80+4 * \mathrm{q}^{\wedge} 81 \\
& +\mathrm{q}^{\wedge} 84+4 * \mathrm{q}^{\wedge} 85+\mathrm{q}^{\wedge} 86+3 * \mathrm{q}^{\wedge} 89+3 * \mathrm{q}^{\wedge} 90+\mathrm{q}^{\wedge} 91+ \\
& 4 * q^{\wedge} 94+4 * q^{\wedge} 96+4 * q^{\wedge} 99+0\left(q^{\wedge} 100\right) \bmod 5 \\
& f_{3 / 1,1}=\Delta^{6}= \\
& q^{\wedge} 6+q^{\wedge} 7+2 * q^{\wedge} 8+3 * q^{\wedge} 9+3 * q^{\wedge} 11+2 * q^{\wedge} 12+2 * q^{\wedge} 13 \\
& +\mathrm{q}^{\wedge} 16+4 * \mathrm{q}^{\wedge} 17+\mathrm{q}^{\wedge} 18+4 * \mathrm{q}^{\wedge} 19+2 * \mathrm{q}^{\wedge} 22+4 * \mathrm{q}^{\wedge} 24+ \\
& 3 * q^{\wedge} 26+3 * q^{\wedge} 27+3 * q^{\wedge} 28+3 * q^{\wedge} 29+4 * q^{\wedge} 31+4 * q^{\wedge} 32 \\
& +4 * q^{\wedge} 33+4 * q^{\wedge} 34+q^{\wedge} 36+q^{\wedge} 37+4 * q^{\wedge} 38+3 * q^{\wedge} 39+ \\
& 4 * q^{\wedge} 41+q^{\wedge} 42+4 * q^{\wedge} 44+4 * q^{\wedge} 46+4 * q^{\wedge} 48+4 * q^{\wedge} 49+ \\
& \mathrm{q}^{\wedge} 51+2 * \mathrm{q}^{\wedge} 53+4 * \mathrm{q}^{\wedge} 54+3 * \mathrm{q}^{\wedge} 56+4 * \mathrm{q}^{\wedge} 58+\mathrm{q}^{\wedge} 62+ \\
& 4 * q^{\wedge} 63+3 * q^{\wedge} 64+3 * q^{\wedge} 66+4 * q^{\wedge} 67+3 * q^{\wedge} 68+q^{\wedge} 69+ \\
& 2 * q^{\wedge} 72+4 * q^{\wedge} 73+q^{\wedge} 74+q^{\wedge} 76+4 * q^{\wedge} 77+3 * q^{\wedge} 78+ \\
& 4 * q^{\wedge} 79+q^{\wedge} 82+3 * q^{\wedge} 84+2 * q^{\wedge} 86+q^{\wedge} 87+4 * q^{\wedge} 88+ \\
& 4 * q^{\wedge} 89+3 * q^{\wedge} 91+q^{\wedge} 92+2 * q^{\wedge} 93+4 * q^{\wedge} 94+3 * q^{\wedge} 96+ \\
& 3 * q^{\wedge} 97+q^{\wedge} 98+2 * q^{\wedge} 99+0\left(q^{\wedge} 100\right) \bmod 5 \\
& f_{4 / 1,1}=\Delta^{8}= \\
& \mathrm{q}^{\wedge} 8+3 * \mathrm{q}^{\wedge} 9+4 * \mathrm{q}^{\wedge} 10+2 * \mathrm{q}^{\wedge} 11+\mathrm{q}^{\wedge} 12+4 * \mathrm{q}^{\wedge} 13+4 * \mathrm{q}^{\wedge} 14 \\
& +3 * q^{\wedge} 15+2 * q^{\wedge} 16+q^{\wedge} 19+3 * q^{\wedge} 21+4 * q^{\wedge} 22+2 * q^{\wedge} 24 \\
& +4 * q^{\wedge} 26+4 * q^{\wedge} 27+4 * q^{\wedge} 28+4 * q^{\wedge} 29+3 * q^{\wedge} 31+ \\
& 4 * q^{\wedge} 33+q^{\wedge} 34+4 * q^{\wedge} 35+3 * q^{\wedge} 37+q^{\wedge} 38+2 * q^{\wedge} 39+ \\
& \mathrm{q}^{\wedge} 43+3 * \mathrm{q}^{\wedge} 44+2 * \mathrm{q}^{\wedge} 47+4 * \mathrm{q}^{\wedge} 51+2 * \mathrm{q}^{\wedge} 52+\mathrm{q}^{\wedge} 53+ \\
& 3 * q^{\wedge} 54+q^{\wedge} 56+q^{\wedge} 57+3 * q^{\wedge} 58+2 * q^{\wedge} 59+4 * q^{\wedge} 60+ \\
& 4 * q^{\wedge} 61+2 * q^{\wedge} 63+3 * q^{\wedge} 65+2 * q^{\wedge} 66+q^{\wedge} 67+4 * q^{\wedge} 68+ \\
& 2 * q^{\wedge} 69+2 * q^{\wedge} 71+q^{\wedge} 73+q^{\wedge} 74+2 * q^{\wedge} 76+2 * q^{\wedge} 78+ \\
& 3 * q^{\wedge} 79+2 * q^{\wedge} 81+3 * q^{\wedge} 82+4 * q^{\wedge} 85+4 * q^{\wedge} 86+q^{\wedge} 87+ \\
& \mathrm{q}^{\wedge} 89+3 * \mathrm{q}^{\wedge} 90+\mathrm{q}^{\wedge} 91+3 * \mathrm{q}^{\wedge} 92+3 * \mathrm{q}^{\wedge} 93+3 * \mathrm{q}^{\wedge} 94+ \\
& 4 * q^{\wedge} 97+3 * q^{\wedge} 98+4 * q^{\wedge} 99+0\left(q^{\wedge} 100\right) \bmod 5
\end{aligned}
$$

$$
\begin{aligned}
f_{5 / 5,1}= & \Delta^{10}= \\
& q^{\wedge} 10+2 * q^{\wedge} 15+q^{\wedge} 35+q^{\wedge} 60+2 * q^{\wedge} 65+q^{\wedge} 85+2 * q^{\wedge} 90 \\
& +0\left(q^{\wedge} 100\right) \bmod 5 \\
f_{25 / 29,1}= & \Delta^{50}+4 \Delta^{42} E_{4}^{24}+3 \Delta^{41} E_{4}^{27}= \\
& 3 * q^{\wedge} 41+2 * q^{\wedge} 42+4 * q^{\wedge} 43+4 * q^{\wedge} 44+3 * q^{\wedge} 47+2 * q^{\wedge} 48+ \\
& 3 * q^{\wedge} 49+q^{\wedge} 50+q^{\wedge} 51+q^{\wedge} 52+2 * q^{\wedge} 54+q^{\wedge} 56+4 * q^{\wedge} 58 \\
& +q^{\wedge} 59+4 * q^{\wedge} 61+4 * q^{\wedge} 62+q^{\wedge} 63+3 * q^{\wedge} 64+q^{\wedge} 66+ \\
& 4 * q^{\wedge} 67+3 * q^{\wedge} 68+3 * q^{\wedge} 69+q^{\wedge} 71+q^{\wedge} 74+2 * q^{\wedge} 75+ \\
& 2 * q^{\wedge} 76+3 * q^{\wedge} 78+4 * q^{\wedge} 79+2 * q^{\wedge} 81+3 * q^{\wedge} 82+2 * q^{\wedge} 83 \\
& +4 * q^{\wedge} 84+2 * q^{\wedge} 88+3 * q^{\wedge} 89+4 * q^{\wedge} 91+q^{\wedge} 92+2 * q^{\wedge} 94 \\
& +2 * q^{\wedge} 96+q^{\wedge} 98+q^{\wedge} 102+q^{\wedge} 104+4 * q^{\wedge} 106+3 * q^{\wedge} 107 \\
& +3 * q^{\wedge} 108+2 * q^{\wedge} 109+4 * q^{\wedge} 111+4 * q^{\wedge} 112+4 * q^{\wedge} 114+ \\
& 3 * q^{\wedge} 116+2 * q^{\wedge} 118+2 * q^{\wedge} 119+q^{\wedge} 121+4 * q^{\wedge} 122+ \\
& 3 * q^{\wedge} 123+q^{\wedge} 124+q^{\wedge} 126+2 * q^{\wedge} 127+q^{\wedge} 129+4 * q^{\wedge} 132 \\
& +q^{\wedge} 134+4 * q^{\wedge} 136+4 * q^{\wedge} 138+q^{\wedge} 139+q^{\wedge} 141+ \\
& 3 * q^{\wedge} 143+q^{\wedge} 144+q^{\wedge} 147+3 * q^{\wedge} 149+0\left(q^{\wedge} 150\right) m o d 5 \\
& \Delta^{50}= \\
& q^{\wedge} 50+10 * q^{\wedge} 55+15 * q^{\wedge} 60+5 * q^{\wedge} 65+5 * q^{\wedge} 70+12 * q^{\wedge} 75+ \\
& 15 * q^{\wedge} 80+20 * q^{\wedge} 85+10 * q^{\wedge} 90+5 * q^{\wedge} 95+15 * q^{\wedge} 100+ \\
& 10 * q^{\wedge} 105+20 * q^{\wedge} 110+5 * q^{\wedge} 115+20 * q^{\wedge} 125+20 * q^{\wedge} 135 \\
& 15 * q^{\wedge} 140+20 * q^{\wedge} 145+10 * q^{\wedge} 150+0\left(q^{\wedge} 151\right) \bmod 25
\end{aligned}
$$

References

[Ada66] J. F. Adams, On the groups $J(X) . I V$, Topology 5 (1966), 21-71.
[Beh06] Mark Behrens, A modular description of the $K(2)$-local sphere at the prime 3, Topology 45 (2006), no. 2, 343-402.
[Beh07] , Buildings, elliptic curves, and the K(2)-local sphere, Amer. J. Math. 129 (2007), no. 6, 1513-1563.
[Beh09] , Congruences between modular forms given by the divided family in homotopy theory, Geom. Topology 13 (2009), no. 1, 319-357.
[BL06] Mark Behrens and Tyler Lawson, Isogenies of elliptic curves and the Morava stabilizer group, J. Pure Appl. Algebra 207 (2006), no. 1, 37-49.
[BN] Ulrich Bunke and Niko Naumann, Toward an intrinsically analytic interpretation of the f-invariant, preprint, arXiv:0808.0257, 2008.
[HN07] Jens Hornbostel and Niko Naumann, Beta-elements and divided congruences, Amer. J. Math. 129 (2007), no. 5, 1377-1402.
[HS05] Mark Hovey and Neil Strickland, Comodules and Landweber exact homology theories, Adv. Math. 192 (2005), no. 2, 427-456.
[Kat73] Nicholas M. Katz, p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 69-190. Lecture Notes in Mathematics, Vol. 350.
[Kat75] , Higher congruences between modular forms, Ann. of Math. (2) 101 (1975), 332-367.
[Lau99] Gerd Laures, The topological q-expansion principle, Topology 38 (1999), no. 2, 387-425.
[Lau00] , On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5667-5688 (electronic).
[MRW77] Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. Math. (2) 106 (1977), no. 3, 469-516.
[Rav84] Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351-414.
[Rav86] , Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986.
[vB08] Hanno von Bodecker, On the geometry of the f-invariant, Ph.D. thesis, Ruhr-University Bochum, arXiv:0808.0428, 2008.

Department of Mathematics, MIt, 77 Massachusetts Avenue Cambridge, Ma 021394307, USA

Fakultät für Mathematik, Ruhr-Universität Bochum, NA1/66, D-44780 Bochum, GerMANY

