\textbf{\textbeta{}-FAMILY CONGRUENCES AND THE f-INVARINAT}

MARK BEHRENS1 AND GERD LAURES

\textsc{Abstract.} In previous work, the authors have each introduced methods for studying the 2-line of the p-local Adams-Novikov spectral sequence in terms of the arithmetic of modular forms. We give the precise relationship between the congruences of modular forms introduced by the first author with the \mathbb{Q}-spectrum and the f-invariant of the second author. This relationship enables us to refine the target group of the f-invariant in a way which makes it more manageable for computations.

1. Introduction

In [Ada66], J.F. Adams studied the image of the J-homomorphism

$$J : \pi_t(SO) \to \pi_t^S$$

by introducing a pair of invariants

$$d = d_t : \pi_t^S \to \pi_t K,$$

$$e = e_t : \ker(d_t) \to \Ext^{1,t+1}_A(K_*, K_*)$$

where A is a certain abelian category of graded abelian groups with Adams operations. (Adams also studied analogs of d and e using real K-theory, to more fully detect 2-primary phenomena.) In order to facilitate the study of the e-invariant, Adams used the Chern character to provide a monomorphism

$$\theta_S : \Ext^{1,t+1}_A(K_*, K_*) \hookrightarrow \mathbb{Q}/\mathbb{Z}.$$

Thus, the e-invariant may be regarded as taking values in \mathbb{Q}/\mathbb{Z}. Furthermore, he showed that for t odd, and $k = (t + 1)/2$, the image of θ_S is the cyclic group of order $\text{denom}(B_k/2k)$, where B_k is the kth Bernoulli number.

The d and e-invariants detect the 0 and 1-lines of the Adams-Novikov spectral sequence (ANSS). In [Lau99], the second author studied an invariant

$$f : \ker(e_t) \to \Ext^{2,t+2}_{\text{TMF}, \text{TMF}[\frac{1}{6}]}(\text{TMF}[\frac{1}{6}]_*, \text{TMF}[\frac{1}{6}]_*),$$

which detects the 2-line of the ANSS for π^S_\ast away from the primes 2 and 3. He furthermore used H. Miller’s elliptic character to show that, if t is even and $k = (t + 2)/2$, there is a monomorphism

$$e^2 : \Ext^{2,t+2}_{\text{TMF}, \text{TMF}[\frac{1}{6}]}(\text{TMF}[\frac{1}{6}]_*, \text{TMF}[\frac{1}{6}]_*) \hookrightarrow D_q/(D_{2[\frac{1}{6}]} + (M_0)_q + (M_k)_q).$$

where D is Katz’s ring of divided congruences and M_k is the space of weight k modular forms of level 1 meromorphic at the cusp. It is natural to ask for a description of the image of the map e^2 in arithmetic terms.

1The first author was supported by the NSF grant DMS-0605100, the Sloan Foundation, and DARPA.

Date: September 5, 2008.
Attempting to generalize the \(J \) fiber-sequence

\[
J \rightarrow KO_p \xrightarrow{\psi^{\ell-1}} KO_p
\]

the first author introduced a ring spectrum \(\mathbb{Q}(\ell) \) built from a length two TMF\(_p\)-resolution. In [Beh08], it was shown that for \(p \geq 5 \), the elements \(\beta_{i,j,k} \in (\pi^S_*)^p \) of [MRW77] are detected in the Hurewicz image of \(Q(\ell) \). This gives rise to the association of a modular form \(f_{i,j,k} \) to each element \(\beta_{i,j,k} \). Furthermore, the forms \(f_{i,j,k} \) are characterized by certain arithmetic conditions.

The purpose of this paper is to prove that the \(f \)-invariant of \(\beta_{i,j,k} \) is given by the formula

\[
f(\beta_{i,j,k}) = \frac{f_{i,j,k}}{p^k E_{p-1}^j} \quad \text{(Theorem 4.1)}.
\]

In particular, since the 2-line of the ANSS is generated by the elements \(\beta_{i,j,k} \), the \(p \)-component of the image of the map \(\iota^2 \) is characterized by the arithmetic conditions satisfied by the elements \(f_{i,j,k} \).

J. Hornbostel and N. Naumann [HN07] computed the \(f \)-invariant of the elements \(\beta_{i,j,1} \) in terms of Katz’s Artin-Schreier generators of the ring of \(p \)-adic modular forms. While their result is best suited to describe \(f \)-invariants of infinite families, it is difficult to explicitly get one’s hands on their output. Direct computations with \(q \)-expansions are limited by the computability of \(q \)-expansions of modular forms, hence are generally not well suited for infinite families of computations. In low degrees, however, our formula can directly be used to compute with \(q \)-expansions. We demonstrate this by giving some sample calculations of some \(f \)-invariants at the prime 5.

We outline the organization of this paper. In Section 2, we review the \(f \)-invariant. In Section 3, we review the spectrum \(\mathbb{Q}(\ell) \), and use it to construct an invariant \(f' \) so that

\[
f_{i,j,k} = f'_{i,j,k}.
\]

In Section 4 we show that the \(f \)-invariant is directly expressible in terms of the invariant \(f' \). In Section 5, we give our sample 5-primary calculations.

2. The \(f \)-invariant

This section reviews the \(f \)-invariant and its various aspects in homotopy theory and geometry. Our main sources are [Lau00], [Lau99], and [vB08].

Theorem 2.1. Let \(D \) be the ring of divided congruences defined by N. Katz in [Kat73], that is, the ring of all inhomogeneous modular forms for \(SL_2 \mathbb{Z} \) whose \(q \)-expansion is integral. Then for all \(k > 0 \) there is a homomorphism

\[
f : \pi^S_2 \rightarrow D_q/(D_{2(1/q)} \oplus (M_0)_q \oplus (M_{k+1})_q)
\]

whose kernel is the 3rd Adams-Novikov filtration for \(MU[1/6] \).

The construction of \(f \) is closely related to the construction of the classical \(e \)-invariant by F. Adams (see [Ada66]). Let \(T \) be a flat ring spectrum and let

\[
s : X \rightarrow Y
\]

be a stable map from a finite spectrum into an arbitrary one. Suppose further that the \(d \)-invariant of \(s \) vanishes. This simply means that \(s \) vanishes in \(T \) homology.
Then we have a short exact sequence
\[T_*Y \to T_*C_s \to T_*\Sigma X, \]
where \(C_s \) is the cofiber of \(s \). We can think of the sequence as an extension of \(T_*X \) by \(T_*Y \) as a \(T_*T \)-comodule. This is the classical \(e \)-invariant of \(s \) in \(T \)-theory.

Next, suppose that \(e(s) \in \text{Ext}^1_{T_*T}(T_*X,T_*Y) \) vanishes, that is, the exact sequence of \(T_*T \)-comodules splits and we choose a splitting. We also choose a \(T \)-monomorphism
\[\iota : Y \to I \]
into a \(T \)-injective spectrum \(I \). For instance, we can take \(I = T \wedge Y \). Then there is a map
\[t : C_s \to I \]
which is the image of \(\iota_* \) under the induced splitting map
\[[Y,I] \cong \text{Hom}_{T_*T}(T_*Y,T_*I) \to \text{Hom}_{T_*T}(T_*C_s,T_*I) \cong [C_s,I]. \]
In particular, the map \(t \) coincides with \(\iota \) on \(Y \). Let \(F \) be the fiber of the map \(\iota \). Then \(s \) lifts to a map
\[\bar{s} : X \to F \]
which makes the diagram
\[
\begin{array}{ccc}
\Sigma^{-1}C_s & \to & X \\
\downarrow & & \downarrow \bar{s} \\
\Sigma^{-1}I & \to & F \\
\end{array}
\]
commute.

Lemma 2.2. \(d(\bar{s}) = 0 \).

Proof. In the split exact sequence
\[\text{Hom}_{T_*T}(T_*\Sigma X,T_*\Sigma F) \to \text{Hom}_{T_*T}(T_*C_s,T_*\Sigma F) \to \text{Hom}_{T_*T}(T_*Y,T_*\Sigma F) \]
the map \(\Sigma \bar{s}_* \) restricted to \(C_s \) is in the image of the splitting and hence has to vanish. The claim follows since the map from \(C_s \) to \(\Sigma X \) is surjective in \(T \)-homology. \(\square \)

Lemma 2.2 implies that we again get a short exact sequence
\[T_*F \to T_*C_{\bar{s}} \to T_*\Sigma X \]
which we can splice together with the short exact sequence
\[T_*\Sigma^{-1}Y \to T_*\Sigma^{-1}I \to T_*F. \]
This gives an extension of \(T_*\Sigma^{-1}Y \) by \(T_*\Sigma X \) of length 2, that is, an element
\[f(s) \in \text{Ext}^2_{T_*T}(T_*X,T_*Y). \]
In the case \(X = S^{2k} \), \(Y = S^0 \) and \(T = \text{TMF}(\frac{1}{6}) \), the image of \(f(s) \) under the injection
\[\iota^2 : \text{Ext}^2 \to D\mathbb{Q}/(D\mathbb{Z}[\frac{1}{6}] \oplus (M_0)\mathbb{Q} \oplus (M_{k+1})\mathbb{Q}) \]
is the second author’s \(f \)-invariant. The map \(\iota^2 \) will be reviewed in Section 4.

We close this section with an alternative description of the \(f \)-invariant. First recall from [Lau00] that a framed manifold \(M \) represents a framed bordism class in
second Adams-Novikov filtration if and only if it is the corner of a \((U, fr)^2\) manifold \(W\). The boundary of \(W\) is decomposed into two manifolds with boundaries \(W^0\) and \(W^1\). The stable tangent bundle of \(W\) comes with a splitting
\[
TW \cong (TW)^0 \oplus (TW)^1
\]
and the bundles \((TW)^i\) are trivialized on \(W^i\). Therefore, we get associated classes
\[(TW)^i \in K(W, W^i)\].

Let \(\exp_T\) be the usual parameter for the universal Weierstrass cubic
\[y^2 = 4x^3 - E_4 x + E_6\]
and let
\[\exp_K(x) = 1 - e^{-x}\]
be the standard parameter for the multiplicative formal group. Then following theorem was proved in [Lau00].

Theorem 2.3. Let \(s\) be represented by \(M\) under the Pontryagin-Thom isomorphism. Then we have
\[
f(s) = \left\langle \prod_{i,j} \frac{x_i y_j}{\exp_K(x_i) \exp_T(y_j)}, [W, \partial W] \right\rangle.
\]
Here, \((x_i)\) and \((y_j)\) are the formal Chern roots of \((TW)^0\) and \((TW)^1\) respectively.

We remark that there also is a description of the \(f\)-invariant in terms of a spectral invariant which is analogous to the classical relation between the \(e\)-invariant and the \(\eta\)-invariant. We refer the reader to [vB08].

3. The spectrum \(Q(\ell)\) and the invariant \(f'\)

For a \(\mathbb{Z}[1/N]\)-algebra \(R\) we shall let \(M_k(\Gamma_0(N))_R\) denote the space of modular forms of weight \(k\) over \(R\) of level \(\Gamma_0(N)\) which are meromorphic at the cusps. For \(N = 1\) we shall simplify the notation by writing
\[
(M_k)_R := M_k(\Gamma(1))_R.
\]

Let \(\text{TMF}_0(N)\) denote the corresponding spectrum of topological modular forms with \(N\) inverted (see [Beh06, Sec. 1.2.1], [Beh07, Sec. 3]). For primes \(p > 3\), \(\pi_* \text{TMF}_0(N)_p\) is concentrated in even degrees, and we have
\[
\pi_{2k} \text{TMF}_0(N)_p \cong M_k(\Gamma_0(N))_{\mathbb{Z}_p}.
\]

Fix a pair of distinct primes \(p\) and \(\ell\). In [Beh06], the first author introduced a \(p\)-local spectrum \(Q(\ell)\), defined as the totalization of a certain semi-cosimplicial spectrum
\[
Q(\ell) = \text{Tot}(Q(\ell)^*)
\]
where \(Q(\ell)^*\) has the form
\[
(3.1) \quad Q(\ell)^* = \left(\begin{array}{c}
\text{TMF}_p \to \text{TMF}_0(\ell)_p \to \\
\times \\
\text{TMF}_p \to \text{TMF}_0(\ell)_p
\end{array} \right).
\]
In [Beh08] the spectrum \(Q(\ell) \) is reinterpreted as the smooth hypercohomology of a certain open subgroup of an adele group acting on a certain spectrum. The semi-cosimplicial spectrum \(Q(\ell)^\bullet \) is actually a semi-cosimplicial \(E_\infty \)-ring spectrum, so the spectrum \(Q(\ell) \) is an \(E_\infty \)-ring spectrum. In particular, there is a unit map

\[
\eta : S \to Q(\ell).
\]

The spectrum \(Q(\ell) \) is designed to be an approximation of the \(K(2) \)-local sphere. More precisely, the spectrum \(Q(\ell)_{K(2)} \) is given as the homotopy fixed points of a dense subgroup of the Morava stabilizer group acting on the Morava \(E \)-theory \(E_2 \) [Beh07], [BL06]. The spectrum \(Q(\ell) \) is \(E(2) \)-local. In [Beh08] it is proven that elements \(\beta_{i/j,k} \in \pi_*(S_{E(2)}) \) of [MRW77] are detected by the map

\[
S_{E(2)} \to Q(\ell).
\]

Applying homotopy to the semi-cosimplicial spectrum \(Q(\ell)^\bullet \) (3.1) gives a semi-cosimplicial abelian group

\[
C(\ell)_{2k} := \left(\begin{array}{c}
(M_k)_{\mathbb{Z}_p} \\
M_k(\Gamma_0(\ell))_{\mathbb{Z}_p}
\end{array} \right) \to \left(\begin{array}{c}
\times \\
M_k(\Gamma_0(\ell))_{\mathbb{Z}_p}
\end{array} \right).
\]

It is shown in [Beh08] that the morphisms

\[
d_0, d_1 : (M_k)_{\mathbb{Z}_p} \to M_k(\Gamma_0(\ell))_{\mathbb{Z}_p} \times (M_k)_{\mathbb{Z}_p},
\]

induced by the initial coface maps of the cosimplicial abelian group \(C(\ell)_{2k}^\bullet \), are given on the level of \(q \)-expansions by

\[
d_0(f(q)) := (\ell^k f(q^\ell), \ell^k f(q)),
\]

\[
d_1(f(q)) := (f(q), f(q)).
\]

The Bousfield-Kan spectral sequence for computing \(\pi_* \text{Tot}(Q(\ell)^\bullet) \) gives a spectral sequence

\[
H^s(C(\ell)^\bullet)_t \Rightarrow \pi_{t-s}Q(\ell).
\]

For \(p > 3 \), this spectral sequence collapses for dimensional reasons [Beh08, Cor. 5.9], giving us the following lemma.

Lemma 3.7. The edge homomorphism

\[
H^2(C(\ell)^\bullet)_t \to \pi_{t-2}(Q(\ell))
\]

is an isomorphism for \(t \equiv 0 \mod 4 \).

Since the sequence

\[
* \to Q(\ell) \to \text{TMF}_p \to \text{TMF}_0(\ell)_p \to *
\]

is a \(BP \)-injective resolution of the spectrum \(Q(\ell) \), the spectral sequence (3.6) coincides with the ANSS for \(\pi_*Q(\ell) \). In particular, the map (3.2) induces a map of ANSS’s

\[
\begin{array}{c}
\text{Ext}_{BP,BP}^{s,t}(BP_*, BP_*) \to \pi_{t-s}S_{(p)} \to \pi_{t-s}Q(\ell)
\end{array}
\]
We shall find that this invariant \(\pi \) because

\[
0 \to BP_\ast \to BP_\ast [p^{-1}] \to BP_\ast /p^\infty \to 0,
0 \to BP_\ast /p^\infty \to BP_\ast /p^\infty [v_1^{-1}] \to BP_\ast /(p^\infty, v_1^{-1}) \to 0
\]
give rise to long exact sequences in \(\text{Ext} \), and the connecting homomorphisms give a composite

\[
(3.8) \quad \delta_{v_1, p} : \text{Ext}_{BP, BP}^0(BP_\ast, BP_\ast / (p^\infty, v_1^{-1})) \xrightarrow{\delta_{v_1}} \text{Ext}_{BP, BP}^1(BP_\ast, BP_\ast / p^\infty) \xrightarrow{\delta_p} \text{Ext}_{BP, BP}^2(BP_\ast, BP_\ast).
\]

The computations of [MRW77] imply the following lemma.

Lemma 3.9. The homomorphism \(\delta_{v_1, p} \) of (3.8) is an isomorphism for \(t > 0 \).

A choice of \(p \)-typical complex orientation

\[
BP \to \text{TMF}_p \to \text{TMF}_0(\ell)_p
\]
sends \(v_1 \) to a non-zero multiple of the Hasse invariant \(E_{p-1} \mod p \). The complex \(C(\ell)^\bullet / p^k \) is a complex of modules over the ring \(\mathbb{Z}_p[v_1^{p^{-1}}] \). The short exact sequences

\[
0 \to C(\ell)^\bullet \to C(\ell)^\bullet [p^{-1}] \to C(\ell)^\bullet / p^\infty \to 0,
0 \to C(\ell)^\bullet / p^\infty \to C(\ell)^\bullet / p^\infty [v_1^{-1}] \to C(\ell)^\bullet / (p^\infty, v_1^{-1}) \to 0
\]
give rise to long exact sequences in \(H^* \), and the connecting homomorphisms give a composite

\[
\delta_{v_1, p} : H^0(C(\ell)^\bullet / (p^\infty, v_1^{-1})), \xrightarrow{\delta_{v_1}} H^1(C(\ell)^\bullet / p^\infty), \xrightarrow{\delta_p} H^2(C(\ell)^\bullet).
\]

Using Lemmas 3.7 and 3.9, we have the following diagram, for \(t > 0 \).

\[
\begin{array}{ccc}
\pi_{4t-2} S(p) & \xrightarrow{f'} & \pi_{4t-2} Q(\ell) \\
\text{Ext}_{BP, BP}^{2, 4t}(BP_\ast, BP_\ast) & \xrightarrow{\delta_{v_1, p}} & H^2(C(\ell)^\bullet) \\
\text{Ext}_{BP, BP}^{0, 4t}(BP_\ast, BP_\ast / (p^\infty, v_1^{-1})) & \xrightarrow{\delta_{v_1, p}} & H^0(C(\ell)^\bullet / (p^\infty, v_1^{-1})).
\end{array}
\]

Because \(\pi_{4t-2} S(p) \) contains no elements of Adams-Novikov filtration less than 2, the invariant \(f' \) may be regarded as giving a homotopy invariant through the composite

\[
\pi_{4t-2} S(p) \to \text{Ext}_{BP, BP}^{2, 4t}(BP_\ast, BP_\ast) \xrightarrow{f'} H^0(C(\ell)^\bullet / (p^\infty, v_1^{-1})).
\]

We shall find that this invariant \(f' \) is closely related to the \(f \) invariant of the second author.

We end this section by describing some of the salient features of the invariant \(f' \). Namely, we shall show:

(i) the homomorphism \(f' \) is a monomorphism, and if \(\ell \) generates \(\mathbb{Z}_p^\infty \), the homomorphism \(f' \) is almost an isomorphism, and

(ii) the groups \(H^0(C(\ell)^\bullet / (p^\infty, v_1^{-1})). \) admit a precise arithmetic interpretation in terms of congruences of \(q \)-expansions of modular forms.
The injectivity and almost surjectivity of f'.

Because v_2 is invertible in $C(\ell^\bullet)/(p^\infty, v_1^\infty)$, there is a factorization (3.11)

\[
\begin{array}{ccc}
\Ext_{BP^*}^2(BP_*, BP_*) & \stackrel{f'}{\longrightarrow} & H^0(C(\ell^\bullet)_{4t}) \\
\cong & \delta_{v_1,p} & \cong \\
\Ext_{BP^*_{BP}}^0(BP_*, BP_*/(p^\infty, v_1^\infty)) & \stackrel{\eta'}{\longrightarrow} & H^0(C(\ell^\bullet)/(p^\infty, v_1^\infty)[v_2^{-1}])
\end{array}
\]

where $\bar{\eta}$ represents the change-of-rings isomorphism, and $\bar{\eta}'$ denotes the element $\beta_{i/j}$ for certain combinations of indices i, j, and k. As usual, $\beta_{i/j}$ denotes the element $\beta_{i/j,1}$.

Proposition 3.12.

(i) The map L_{v_2} of (3.11) is injective, and the cokernel is an \mathbb{F}_p-vector space with basis

$$\{\beta_{p^n/j} : n \geq 2, p^n < j \leq p^n + p^{n-1} - 1\}.$$

(ii) The map $\bar{\eta}$ of (3.11) is injective, and if ℓ generates \mathbb{Z}_p^\times, it is an isomorphism.

Proof. (i) follows directly from the calculations of [MRW77]. (ii) follows from the fact that the map $\bar{\eta}$ factors as

\[
\begin{array}{ccc}
\Ext_{BP^*_{BP}}^0(BP_*, BP_*/(p^\infty, v_1^\infty)[v_2^{-1}]) & \stackrel{\bar{\eta}}{\longrightarrow} & H^0(C(\ell^\bullet)/(p^\infty, v_1^\infty))_{4t} \\
\cong & \bar{\eta}' & \cong \\
\Ext_{BP^*_{BP}}^0(BP_*, BP_*/(p^\infty, v_1^\infty))_{4t} & \stackrel{\bar{\eta}''}{\longrightarrow} & H^0(\mathbb{S}_2, \mathbb{E}_2/(p^\infty, v_1^\infty))_{4t}^{\Gal}
\end{array}
\]

where $\bar{\eta}'$ is the Morava change-of-rings isomorphism, and $\bar{\eta}''$ is the monomorphism given by combining Corollary 7.12 and Lemma 11.1 of [Beh08], which is an isomorphism if ℓ generates \mathbb{Z}_p^\times [Beh08, Lem. 11.1].

We conclude that f' is injective, and if ℓ generates \mathbb{Z}_p^\times, the only generators of $H^0(C(\ell^\bullet)/(p^\infty, v_1^\infty))$ not in the image of f' are those corresponding to the Greek letter elements $\beta_{p^n/j}$ for $j > p^n$.

The arithmetic interpretation of the groups $H^0(C(\ell^\bullet))$.

The groups $H^0(C(\ell^\bullet)/(p^\infty, v_1^\infty))_{4t}$ are computed by the colimit of groups

$$H^0(C(\ell^\bullet)/(p^\infty, v_1^\infty))_{4t} = \colim_{k} \colim_{j=sp^{k-1}} \colim_{s \geq 1} B_{2t/j,k}$$

where

$$B_{2t/j,k} = H^0(C(\ell^\bullet)/(p^k, v_1^j))_{4t+2j(p-1)}.$$
Using the fact that \(v_1 \) corresponds to the Hasse invariant \(E_{p-1} \) in the ring of modular forms, we have

\[
B_{2t/j,k} = \ker \left(\frac{M_{2t+j(p-1)}}{(p^k, E_{p-1}^j)} \oplus \frac{M_{2t+j(p-1)}(\Gamma_0(\ell))}{(p^k, E_{p-1}^j)} \right).
\]

Serre [Kat73, Prop. 4.4.2] showed that two modular forms \(f_1 \) and \(f_2 \) over \(\mathbb{Z}/p^k \) are linked by multiplication by \(E_{j(p-1)} \) (for \(j \equiv 0 \mod p^{k-1} \)) if and only if the corresponding \(q \)-expansions satisfy

\[
f_1(q) \equiv f_2(q) \mod p^k.
\]

Using this, and (3.4)-(3.5), the following theorem is proven in [Beh08].

Theorem 3.13 ([Beh08, Thm. 11.3]). There is a one-to-one correspondence between the additive generators of order \(p^k \) in \(B_{t/j,k} \) and the modular forms \(f \in M_{t+j(p-1)}(\mathbb{Z}/p^k) \) satisfying

1. We have \(t \equiv 0 \mod (p-1)p^{k-1} \).
2. The \(q \)-expansion \(f(q) \) is not congruent to 0 mod \(p \).
3. We have \(\text{ord}_q f(q) > \frac{t^2}{12} \) or \(\text{ord}_q f(q) = \frac{t^2}{12} \).
4. There does not exist a form \(f' \in M_{t'} \) such that \(f'(q) \equiv f(q) \mod p^k \) for \(t' < t+j(p-1) \).
5. There exists a form \(g \in M_t(\Gamma_0(\ell)) \) satisfying

\[
f(q') - f(q) \equiv g(q) \mod p^k.
\]

Remark 3.14. It follows from [Beh08, Cor. 11.8], that a modular form satisfying (1)-(5) corresponding to \(f' \) is independent of the choice of the prime \(\ell \).

4. The relation between \(f \) and \(f' \)

Let \(\ell \) be a generator of \(\mathbb{Z}_p^\times \). We start with a cohomology class

\[
x \in \text{Ext}^{2t}_{BP,BP}(BP_*, BP_*)
\]

with corresponding invariant

\[
f'(x) \in B_{t/j,k} = H^0(C^*(\ell)/(p^k, v_1))_{2t+j(p-1)}.
\]

By Theorem 3.13, a representative of \(f'(x) \) is a \(\mathbb{Z}/p^k \) modular form \(\varphi \) of weight \(t+j(p-1) \) satisfying certain congruences. It is only well defined up to multiples of \(E_{p-1}^j \). We view \(\varphi \) as a divided congruence, more precisely, as an element of \(D \otimes \mathbb{Z}/p^k \).

Theorem 4.1. The \(f \)-invariant of the class \(x \) is given by

\[
p^{-k}E_{p-1}^{-j}(\varphi - q^0(\varphi))
\]

where \(q^0 \) is the 0th Fourier coefficient.

Remark 4.2. For \(t > 0 \), Theorem 3.13(3) implies that there exists a representative \(\varphi \) of \(f'(x) \) with \(q^0(\varphi) = 0 \).
Corollary 4.3. The class
\[p^k E^j_{p-1} f(x) \]
is congruent to a \(\mathbb{Z}/p^k \)-modular form \(\varphi \) of weight \(t + j(p-1) \) up to modular forms of weights \(j(p-1) \) and \(t + j(p-1) \). Moreover, \(\varphi \) satisfies the conditions (1)-(5) of 3.13.

Let \(T \) be \(\text{TMF}[\frac{1}{p}] \) and \(M^{(2)} \) the Hopf algebroid of cooperations of \(T \). An element of \(M^{(2)} \) is a modular form in two variables which is meromorphic at \(\infty \) and has (away from 6) an integral Fourier expansion (see [Lau99]). The map
\[\phi : (M_k^{(2)})_{\mathbb{Z}_p} \rightarrow M_k(\Gamma_0(l))_{\mathbb{Z}_p} \times (M_k)_{\mathbb{Z}_p} \]
given in terms of \(q \)-expansions by
\[f \mapsto (l^k f(q,q'), l^k f(q,q)) \]
induces a map of resolutions and hence a commutative diagram
\[
\begin{array}{ccc}
(M_k)_{\mathbb{Z}_p} & \xrightarrow{d_0-d_1} & (M_k^{(2)})_{\mathbb{Z}_p} \\
\downarrow & & \downarrow \phi \\
(M_k)_{\mathbb{Z}_p} & \xrightarrow{d_0-d_1} & M_k(\Gamma_0(l))_{\mathbb{Z}_p} \times (M_k)_{\mathbb{Z}_p}
\end{array}
\]

Lemma 4.4. The induced map in cohomology
\[H^0(M_\ast/(p^\infty, E^\infty_{p-1})) \rightarrow H^0(C^\ast(\ell)/(p^\infty, v_1^\infty)) \]
is an isomorphism.

Proof. By [HS05], there is a change-of-rings isomorphism
\[
H^0(M_\ast/(p^\infty, E^\infty_{p-1})) = \text{Ext}^0_{\text{TMF}_p, \pi_* \text{TMF}_p}(\pi_* \text{TMF}_p, \pi_* \text{TMF}_p/(p^\infty, E^\infty_{p-1})) \\
\cong \text{Ext}^0_{BP, BP}(BP_\ast, BP_\ast/(p^\infty, v_1^\infty)[v_2^{-1}]).
\]
The lemma follows from the isomorphism \(\tilde{\eta} \) of Proposition 3.12. \(\square \)

Next we explain how to get from an element in
\[H^0(M_\ast/(p^\infty, E^\infty_{p-1})) \cong \text{Ext}^0_{M^{(2)}}(M_\ast, M_\ast/(p^\infty, E^\infty_{p-1})) \]
to a congruence in
\[D_\mathbb{Q}/(D_{\mathbb{Z}[1/6]} \oplus (M_0)_\mathbb{Q} \oplus (M_{k+1})_\mathbb{Q}). \]
For this, we first describe how a class \(\varphi \) in
\[\text{Ext}^0_{M^{(2)}}(M_\ast, M_\ast/(p^\infty, E^\infty_{p-1})) \]
gives rise to a class in
\[\text{Ext}^2_{M^{(2)}}(M_\ast, M_\ast). \]
We use the geometric boundary theorem

Theorem 4.5. [Rav86] Write \(E_\ast(X) \) for the \(E_\ast \)-term of the \(T \)-based Adams Novikov spectral sequence which conditionally converges to the homotopy of the \(T \)-nilpotent completion of \(X \). Let
\[W \xrightarrow{f} X \xrightarrow{g} Y \xrightarrow{h} \Sigma W \]
be a cofiber sequence of finite spectra with $T_*(h) = 0$. Assume further that $[s] \in E^{t,n}_{2+}(Y)$ converges to s. Then $\delta[s]$ converges to $h_*(s)$ where δ is the connecting homomorphism to the short exact sequence of chain complexes

$$0 \to E_1(W) \to E_1(X) \to E_1(Y) \to 0.$$

For a multi index I let

$$M(I) = M(i_0, \ldots, i_{n-1})$$

be the generalized Moore spectrum with

$$BP_*M(I) = \Sigma^{-||I||-n}BP_*/(p^{i_0}, v^{i_1}_1, \ldots, v^{i_{n-1}}_n)$$

where

$$||I|| = \sum_j 2i_j(p^j - 1)$$

Each $M(I)$ admits a self map

$$\Sigma^{2i_{n-1} - (p^n - 1)}M(I) \to M(I)$$

which induces multiplication by v^n_i. Its fiber is $M(I, i_n)$. We apply the geometric boundary theorem to the sequences

$$\Sigma^{2i_1(p-1)}M(i_0) \to M(i_0) \to \Sigma M(i_0, i_1) \to \Sigma^{2i_1(p-1) + 1}M(i_0)$$

and

$$S \xrightarrow{p_{i_0}^*} S \to \Sigma M(i_0) \to S^1.$$

For

$$\varphi \in E^0_2(M(i_0, i_1)) = \text{Ext}^0_{M(2)}(M_*, M_*/(p^{i_0}, E^{i_1}_{p-1}))$$

we have

$$\delta \varphi = \left[\frac{d^0 \varphi - d^1 \varphi}{E^{i_1}_{p-1}} \right] \in E^1_2(M(i_0)) = \text{Ext}^1_{M(2)}(M_*, M_*/p^{i_0})$$

and

$$\delta \delta \varphi = \left[p^{-i_0} \sum_{i=0}^2 (-1)^i d^i \left[\frac{d^0 \varphi - d^1 \varphi}{E^{i_1}_{p-1}} \right] \right] \in E_2^2(S) = \text{Ext}^2_{M(2)}(M_*, M_*).$$

where d^i denote the differentials of the cobar complex Ω_T. The maps of spectra

$$T \xrightarrow{q^0} K_{\mathbb{Z}[1/6]} \xrightarrow{\rho} H_{\mathbb{Q}}$$

induce maps of complexes

$$\rho : \Omega_T \to \Omega_{T,K,H}$$

with

$$\Omega_{T,K,H} : M_* \xrightarrow{\rho} (D)_{\mathbb{Z}[1/6]} \xrightarrow{\rho} (D)_\mathbb{Q}/((0_M)_\mathbb{Q} \oplus (M_*)_\mathbb{Q}).$$

The first differentials are given by

$$d^0 = \iota, \quad d^1 = q^0$$

and the second ones by

$$d^0 = \iota, \quad d^1 = d^2 = 0$$

where ι the canonical inclusion. The induced map in cohomology is the inclusion

$$\iota^2 : \text{Ext}^2_{M(2)}(M_*, M_*) \hookrightarrow D_{\mathbb{Q}}/((D)_{\mathbb{Z}[1/6]} \oplus (0_M)_{\mathbb{Q}} \oplus (M_*)_{\mathbb{Q}} \oplus (M_{k+1})_{\mathbb{Q}}).$$
Hence we have
\[\rho_\ast \delta \varphi = p^{-i_0} E_{p^{-1}i_1}(\varphi - q^0(\varphi)) \]
and the proof of the theorem is completed.

5. EXAMPLES AT \(p = 5 \)

Below are some computations of the \(q \)-expansions of the modular forms \(f_{i/j,k} \) representing \(f'(\beta_{i/j,k}) \) at \(p = 5 \). The \(q \)-expansions of the corresponding \(f \) invariants, by Theorem 4.1, are given by
\[f(\beta_{i/j,k}) = p^{-k} E_{p^{-1}k} f_{i/j,k}(q). \]
The computations were performed using the MAGMA computer algebra system, with \(\ell = 2 \), as follows.

(i) A basis \(\{ F_\alpha(q) \} \) of \(q \)-expansions of forms in \(M_{24i} \) satisfying Theorem 3.13(3) was generated.

(ii) A basis \(\{ G_\beta(q) \} \) of \(q \)-expansions of holomorphic forms in \(M_{24i-4j}(\Gamma_0(\ell)) \mathbb{Z}/5^k \) was generated.

(iii) Basic linear algebra is used to calculate a basis of linear combinations
\[\sum_\alpha a_\alpha F_\alpha \] such that
\[\sum_\alpha a_\alpha (F_\alpha(q^2) - F_\alpha(q)) \equiv \sum_\beta b_\beta G_\beta(q) \mod 5^k. \]

Note 5.1. The following modular forms are normalized so that the leading term has coefficient 1. Therefore, they may differ from the \(f' \)-invariants of \(\beta_{i/j,k} \) by a multiple in \(\mathbb{Z}_p^\times \).

\[f_{1/1,1} = \Delta^2 = \]
\[q^2 + 2 q^3 + q^7 + q^{12} + 2 q^{13} + q^{17} + 2 q^{18} + 2 q^{22} + 2 q^{23} + 3 q^{28} + q^{32} + 4 q^{33} + q^{37} + 2 q^{42} + 2 q^{43} + q^{47} + 2 q^{48} + q^{52} + 2 q^{53} + 2 q^{62} + 2 q^{63} + q^{67} + 3 q^{68} + q^{72} + 2 q^{73} + 2 q^{77} + 4 q^{78} + 2 q^{82} + 2 q^{83} + q^{92} + 4 q^{93} + q^{97} + 3 q^{98} + 0(q^{100}) \mod 5 \]

\[f_{2/1,1} = \Delta^4 = \]
\[q^4 + 4 q^5 + 4 q^6 + 2 q^9 + 4 q^{10} + 3 q^{14} + 3 q^{15} + 3 q^{16} + 4 q^{19} + 2 q^{20} + 3 q^{21} + 2 q^{24} + 2 q^{26} + q^{29} + 3 q^{30} + 2 q^{34} + 4 q^{35} + 3 q^{36} + 3 q^{39} + 2 q^{44} + 3 q^{45} + q^{51} + 4 q^{54} + 3 q^{55} + q^{56} + 2 q^{59} + 4 q^{60} + 2 q^{70} + q^{79} + 4 q^{80} + 4 q^{81} + 4 q^{84} + 4 q^{85} + q^{86} + 3 q^{89} + 3 q^{90} + q^{91} + 4 q^{94} + 4 q^{96} + 4 q^{99} + 0(q^{100}) \mod 5 \]
\[f_{3/1,1} = \Delta^6 = \]
\[q^6 + q^7 + 2q^8 + 3q^9 + 3q^{11} + 2q^{12} + 2q^{13} +
q^{16} + 4q^{17} + q^{18} + 4q^{19} + 2q^{22} + 4q^{24} +
3q^{26} + 3q^{27} + 3q^{28} + 3q^{29} + 4q^{31} + 4q^{32} +
4q^{33} + 4q^{34} + q^{36} + 4q^{44} + 4q^{46} + 4q^{48} + 4q^{49} +
q^{51} + 2q^{53} + 4q^{54} + 3q^{56} + 4q^{58} + q^{62} +
4q^{63} + 3q^{64} + 3q^{66} + 4q^{67} + 3q^{68} + q^{69} +
2q^{72} + 4q^{73} + q^{74} + q^{76} + 4q^{77} + 3q^{78} +
4q^{79} + q^{82} + 3q^{84} + 2q^{86} + q^{87} + 4q^{88} +
4q^{89} + 3q^{91} + q^{92} + 2q^{93} + 4q^{94} + 3q^{96} +
3q^{97} + q^{98} + 2q^{99} + O(q^{100}) \mod 5 \]

\[f_{4/1,1} = \Delta^8 = \]
\[q^8 + 3q^9 + 4q^{10} + 2q^{11} + q^{12} + 4q^{13} + 4q^{14} +
3q^{15} + 2q^{16} + q^{19} + 3q^{21} + 4q^{22} + 2q^{24} +
4q^{26} + 4q^{27} + 4q^{28} + 4q^{29} + 3q^{31} +
4q^{33} + q^{34} + 4q^{35} + 3q^{37} + q^{38} + 2q^{39} +
q^{43} + 3q^{44} + 2q^{47} + 4q^{51} + 2q^{52} + q^{53} +
3q^{54} + q^{56} + q^{57} + 3q^{58} + 2q^{59} + q^{60} +
4q^{61} + 2q^{63} + 3q^{65} + 2q^{66} + q^{67} + 4q^{68} +
2q^{69} + 2q^{71} + q^{73} + q^{74} + 2q^{76} + 2q^{78} +
3q^{79} + 2q^{81} + 3q^{82} + 4q^{85} + 4q^{86} + q^{87} +
q^{89} + 3q^{90} + q^{91} + 3q^{92} + 3q^{93} + 3q^{94} +
4q^{97} + 3q^{98} + 4q^{99} + O(q^{100}) \mod 5 \]

\[f_{5/5,1} = \Delta^{10} = \]
\[q^{10} + 2q^{15} + q^{35} + q^{60} + 2q^{65} + q^{85} + 2q^{90} +
0(q^{100}) \mod 5 \]

\[f_{25/29,1} = \Delta^{50} + 4\Delta^{12}E_4^{24} + 3\Delta^{41}E_4^{27} = \]
\[3q^{41} + 2q^{42} + 4q^{43} + 4q^{44} + 3q^{47} + 2q^{48} +
3q^{49} + q^{50} + q^{51} + q^{52} + 2q^{54} + q^{56} + 4q^{58} +
q^{59} + 4q^{61} + 4q^{62} + q^{63} + 3q^{64} + q^{66} +
4q^{67} + 3q^{68} + 3q^{69} + q^{71} + q^{74} + 2q^{75} +
2q^{76} + 3q^{78} + 4q^{79} + 2q^{81} + 3q^{82} + 2q^{83} +
4q^{84} + 2q^{88} + 3q^{89} + 4q^{91} + q^{92} + 2q^{94} +
2q^{96} + q^{98} + q^{102} + q^{104} + 4q^{106} + 3q^{107} +
3q^{108} + 2q^{109} + 4q^{111} + 4q^{112} + 4q^{114} +
3q^{116} + 2q^{118} + 2q^{119} + q^{121} + 4q^{122} +
3q^{123} + q^{124} + q^{126} + 2q^{127} + q^{129} + 4q^{132} +
q^{134} + 4q^{136} + 4q^{138} + q^{139} + q^{141} +
3q^{143} + q^{144} + q^{147} + 3q^{149} + O(q^{150}) \mod 5 \]
\[f_{25/2} = \Delta^{50} = \]
\[q^{50} + 10q^{55} + 15q^{60} + 5q^{65} + 12q^{70} + 15q^{75} + 20q^{75} + 20q^{80} + 15q^{85} + 10q^{90} + 5q^{95} + 15q^{100} + 10q^{105} + 20q^{110} + 5q^{115} + 20q^{125} + 20q^{135} + 15q^{140} + 20q^{145} + 10q^{150} + O(q^{151}) \mod 25 \]

References

[Beh08] Mark Behrens, Congruences between modular forms given by the divided \(\beta\) family in homotopy theory, Preprint, 2008.