
EXERCISES ON HOMOTOPY COLIMITS

SAMUEL BARUCH ISAACSON

1. Categorical homotopy theory

Let Cat denote the category of small categories and S the category Fun(∆op,Set) of simplicial
sets. Let’s recall some useful notation. We write [n] for the poset

[n] = {0 < 1 < . . . < n}.
We may regard [n] as a category with objects 0, 1, . . . , n and a unique morphism a → b iff a ≤ b.
The category ∆ of ordered nonempty finite sets can then be realized as the full subcategory of Cat
with objects [n], n ≥ 0. The nerve of a category C is the simplicial set N C with n-simplices the
functors [n] → C . Write ∆[n] for the representable functor ∆(−, [n]). Since ∆[0] is the terminal
simplicial set, we’ll sometimes write it as ∗.
Exercise 1.1. Show that the nerve functor N : Cat → S is fully faithful.

Exercise 1.2. Show that the natural map N(C ×D) → N C × N D is an isomorphism. (Here, ×
denotes the categorical product in Cat and S, respectively.)

Exercise 1.3. Suppose C and D are small categories.
(1) Show that a natural transformation H between functors F,G : C → D is the same as a

functor H filling in the diagram

C

id×d1

��

F

''NNNNNNNNNNNNNN

C × [1] H // D

C

id×d0

OO

G

77pppppppppppppp

(2) Suppose that F and G are functors C → D and that H : F → G is a natural transformation.
Show that NF and N G induce homotopic maps N C → N D .

Exercise 1.4. (1) Suppose
F : C

//
D : Goo

is an adjoint pair. Show that N C and ND are weakly equivalent simplicial sets via the
maps NF and N G.

(2) Show that if C has an initial or terminal object, then N C is weakly equivalent to a point.

Suppose C is a small category. The twisted arrow category aC of C is a category with objects
the arrows of C . The maps f → g are factorizations of g through f , i.e., diagrams

X

f
��

Zoo

g

��
Y // W

Note that source induces a functor s : aC → C op and target induces a functor t : aC → C .
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Exercise 1.5. Show that the functors s : aC → C op and t : aC → C both have adjoints. Conclude
that there is a zig-zag of weak equivalences joining N C and N C op.

2. Geometric properties of nerves

For details on the material in this section, see [GJ99]. Recall that ∆[n] is the representable
presheaf [m] 7→ ∆([m], [n]), i.e., the standard n-simplex. For an arbitrary simplicial set X, the
Yoneda lemma gives a natural bijective correspondence between the set Xn and maps ∆[n] → X.
Let’s define the n-skeleton of X to be the sub-simplicial set skn X with k-simplices given by

(skn X)k =
{
g : ∆[k] → X

∣∣ g factors as ∆[k] → ∆[`] → X for some ` ≤ n
}
.

Note that skn is a functor equipped with a natural monomorphism skn → id. We define the
n-coskeleton of X to be the simplicial set ckn X with k-simplices

(ckn X)k = S(skn ∆[k], X).

Note that there is a natural map X → ckn X induced by the maps skn ∆[k] → ∆[k].

Exercise 2.1. Suppose that C is a small category. Check that N C is 2-coskeletal, i.e., that the
natural map N C → ck2 N C is an isomorphism of simplicial sets.

Let’s fix some more notation. For n ≥ 1, let ∂∆[n] = skn−1 ∆[n]. This is the boundary of the
standard n-simplex. For 0 ≤ i ≤ n, we define Λi[n] to be the horn

(Λi[n])k =
{
g : ∆[k] → ∆[n]

∣∣ g factors as ∆[k] → ∆[n− 1] dj

−→ ∆[n] for some j 6= i
}
.

Here dj : [n − 1] → [n] is the unique monomorphism omitting j in the image. The simplicial set
Λi[n] is the union of the n − 1-faces of ∆[n], omitting the ith face. Recall that a map p : X → Y
of simplicial sets is a Kan fibration if in every diagram

Λi[n] //

��

X

p

��
∆[n] //

`

==

Y,

a lift ` exists (not necessarily unique). A simplicial set X is a Kan complex if X → ∗ is a Kan
fibration.

Exercise 2.2. Suppose C is a small category.
(1) Prove that in all diagrams of the shape

(2.1)

Λi[n]

��

// N C

∆[n]

`

<<

with 0 < i < n, a lift ` exists. (Thus N C is a quasicategory—see [Lur06, Joy06]).
(2) If, furthermore, C is a groupoid, show that N C is a Kan complex (i.e., a lift ` exists in

(2.1) for 0 ≤ i ≤ n).

For a pointed Kan complex (X, x0), the nth homotopy group πn(X, x0) is the collection of ∆[1]-
homotopy classes of maps (∆[n], ∂∆[n]) → (X, x0). Geometric realization induces an isomorphism
πn(X, x0) → πn(|X|, |x0|).

Exercise 2.3. Suppose G is a small groupoid. Show that πkG = 0 if k > 1.
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Exercise 2.3 fails spectacularly if G is not a groupoid: in Section 3, we’ll show (modulo a technical
lemma) that every homotopy type in S contains the nerve of a category.

Exercise 2.4. Give an example of a category C so that πk

∣∣ N C
∣∣ 6= 0 for some k > 1.

3. The bar resolution and homotopy colimits

Let’s write S(2) for the category of bisimplicial sets, i.e., the category Fun(∆op ×∆op,Set). We
define a diagonal functor diag : S(2) → S given by restriction along the diagonal ∆ → ∆×∆. By
adjunction, we may view bisimplicial sets as simplicial objects in the category S, i.e., as functors
∆op → S. We’ll usually take this point of view.

Exercise 3.1. Show that there is a natural isomorphism

diag X·· ∼=
∫ n∈∆

Xn ×∆[n]

for X·· ∈ S(2). Here,
∫ n∈∆ denotes the coend: it is the disjoint union qn,nXn ×∆[n] modulo the

relation (f∗x, y) ∼ (x, f∗y) for x ∈ Xm, y ∈ ∆[n], and f : [n] → [m] an arrow in ∆ (see [ML98]).

We’ll recall the following result without proof:

Theorem 3.2. Suppose X and Y are bisimplicial sets and f : X → Y a map which induces weak
equivalences Xn → Yn for all [n] ∈ ∆. (As above, let’s view X and Y as simplicial objects in S).
Then diag f induces a weak equivalence diag X → diag Y .

Suppose I is a small category and F : I op → S and X : I → S are diagrams. The bar
resolution B·(F,I , X) is the bisimplicial set whose simplicial set of n-simplices is∐

i:[n]→I

F (i(n))×X(i(0)).

This coproduct is taken over all functors i : [n] → I . The simplicial operators are given by their
action on the domain of i together with the functoriality of F and X. For example, recall that
d1 : [0] → [1] is the map sending 0 to 0 (omitting 1 in the image). Given a functor i : [1] → I ,
we send the i summand F (i(1)) × X(i(0)) to the inclusion of the summand i ◦ d1 : [0] → I
with value F (i(0))×X(i(0))—since F is covariant, the map i(0) → i(1) induces the required map
F (i(1)) → F (i(0)). The homotopy colimit of X is the simplicial set

hocolim
I

X = diag B·(∗,I , X).

Here ∗ is the constant diagram on the simplicial set ∗.
Exercise 3.3. Show that hocolimI ∗ is weakly equivalent to the nerve N I .

Exercise 3.4. Show that there is a natural augmentation hocolimI X → colimI X.

Exercise 3.5. Suppose that f : X → X ′ is a natural transformation of diagrams I → S so that
fi : X(i) → X ′(i) is a weak equivalence for all i ∈ obI . Show that the induced map on homotopy
colimits hocolim f : hocolim X → hocolim X ′ is a weak equivalence.

We can view homotopy colimit as the derived functors of colimit. In fact, the realization of the bar
resolution for X is the colimit of a canonical “cofibrant” resolution of X. There is an analogous story
for homotopy limits using cosimplicial spaces. See, for example, [BK72] or [Hir03, DHKS04, Shu06]
for more modern treatments. An important conceptual result is the following alternative description
of the diagonal of a bisimplicial set, which I will cite without proof:

Theorem 3.6. Suppose X : ∆op → S is a bisimplicial set. Then diag X and hocolim∆op X are
weakly equivalent.
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As promised, we also have the following result, which says that categories model all homotopy
types in S. This is part of a beautiful story linking the homotopy theory of spaces with all abstract
homotopy theories (“model categories”). Cisinski’s dissertation [Cis06] along with [Mal05] are
wonderful references.

Exercise 3.7. Suppose X is a simplicial set. The natural map

hocolim
∆n→X

∆n → colim
∆n→X

∆n

is a weak equivalence (this is proved in, e.g., [Hir03] in the section on Reedy categories). Conclude
that X is weakly equivalent to N(∆ ↓ X) by a zig-zag of weak equivalences.

4. Homotopy left Kan extensions and homotopy colimits

Suppose F : I → J is a functor between small categories and X : I → S is a I -diagram of
simplicial sets. The functor F induces an adjunction

F! : SI //
SJ : F ∗oo

between categories of diagrams, where the right adjoint F ∗ is given by restriction along F and the
left adjoint F! is left Kan extension [ML98]. When I and J are groups, this is simply induction.
We can compute F! as follows. Given j ∈ J , we let F ↓ j be the comma category with objects
pairs i ∈ I , ϕ : Fi → j and morphisms (i, ϕ) → (i′, ϕ′) given by arrows h : i → i′ making

(4.1)
Fi

Fh //

ϕ
��?

??
??

??
? Fi′

ϕ′
��~~

~~
~~

~~

j

commute. There is a projection functor π : F ↓ j → I forgetting the map to j. Then

(F!X)(j) ∼= colim
F↓j

π∗X.

Let’s define a homotopy-invariant version of F!. Note that for all j ∈ J , there is an I op-diagram
of sets sending i to J (Fi, j). We may regard this as a diagram of constant simplicial sets. The
homotopy left Kan extension of X along F is the J -diagram

(LF!X)(j) = diag B·
(
J (F−, j),I , X

)
.

Note that if J is the terminal category, then LF! is simply hocolimI . At the other extreme, if F
is the identity functor I → I , there is a natural augmentation

diag B·(I (−, i),I , F ) → F (i)

given by iterated composition; it induces a weak equivalence L id! X → X.

Exercise 4.1. Show that LF! is homotopy-invariant, i.e., that if f : X → X ′ induces a weak
equivalence fi : X(i) → X ′(i) for all i ∈ I , then (LF!f)(j) is a weak equivalence for all j ∈ J .

Exercise 4.2. Note that π : F ↓ j → I induces a homotopy functor SI → SF↓j . Check that the
derived version of 4.1 holds, i.e., that there is a weak equivalence

(LF!X)(j) ' hocolim
F↓j

π∗X

(compare [Cis03]).
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5. Thomason’s theorem

In this section, we will prove a generalization of Thomason’s theorem for homotopy colimits in
Cat [Tho79]. We’ll take the following two results as black boxes. See [Hir03] for a reference or ask
me. In Section 6 below, we’ll prove a special case of Theorem 5.1.

Theorem 5.1 ([Hir03, Theorem 19.6.7 (a)]). Suppose F : I → J is a homotopy right cofinal
functor, i.e., that N(j ↓ F ) is (weakly) contractible for all j ∈ J . If X is a diagram J → S, then
F induces a weak equivalence

hocolim
I

F ∗X → hocolim
J

X

of homotopy colimits.

Theorem 5.2. Suppose

I
F // J G // K

are functors between small categories. There is a weak equivalence LG!LF!X → L(GF )!X natural
in diagrams X ∈ SI .

The weak equivalence in Theorem 5.2 has a brief description: there is a natural augmentation

diag B·
(
K (−, k),J ,diag B·(J (−,−),I , X)

)
→ diag B·(K (−, k),I , X).

This map realizes LG!LF!X → G!LF!X—the latter functor is isomorphic to L(GF )!X, and the
map is a weak equivalence.

Exercise 5.3. Suppose that G : I → J is a right adjoint. Show that G is homotopy right cofinal.

Suppose F : I → Cat is a functor. The Grothendieck construction of F is a category I
∫

F
whose objects are pairs (i, x) with i ∈ I and x ∈ F (i). Maps (i, x) → (i′, x′) are pairs of maps
f : i → i′ and ϕ : F (f)(x) → x′. (The latter is an arrow in F (i′).) Composition is forced upon
us; see [Tho79] for the details. Note that there is a projection functor Π : I

∫
F → I given by

forgetting x. Think of Π as a sort of fibration displaying Fi as the fiber over I (our terminology
here is somewhat backwards). In the following exercise, we’ll make use of the comma category
Π ↓ j. We’ll abuse notation a bit and regard the objects of Π ↓ j as pairs i → j, x ∈ F (i).

Exercise 5.4. Suppose that j ∈ I .

(1) There is a functor h : Π ↓ j → F (j) sending the data (f : i → j, x ∈ F (i)) to F (f)(x).
Show how to define h on maps to actually make it a functor.

(2) We can define a functor ` : F (j) → Π ↓ j sending x ∈ F (j) to (idj , x). Check that ` is left
adjoint to h. Conclude that h is homotopy right cofinal.

Exercise 5.5 (Thomason’s theorem). Suppose X : I
∫

F → S is a diagram of simplicial sets.

(1) Show that hocolimI
R

F X ' hocolimI LΠ!X.
(2) Show that there is a natural weak equivalence (LΠ!X)(i) ' hocolimF (i) X. Note that we

may restrict X to a diagram on F (i) by the functor F (i) → I
∫

F sending x ∈ F (i) to
(i, x).

(3) Combine these two results to show that hocolimI
R

F X ' hocolimi∈I hocolimF (i) X.
(4) Show that N(I

∫
F ) ' hocolimi∈I N F (i).

In Exercise 5.5, part 4 is what’s usually known as Thomason’s theorem for homotopy colimits
in Cat. The generalization in part 3 is found in, e.g., [CS02].
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6. Quillen’s Theorem A

In this section we’ll prove the following theorem.

Theorem 6.1 ([Qui73, Theorem A]). Suppose F : C → D is a homotopy right cofinal functor.
That is, for all d ∈ D , the simplicial set d ↓ F is weakly contractible. Then N F : NC → N D is a
weak equivalence.

I am unable to improve on Quillen’s excellent exposition in [Qui73]. Our proof will follow his
paper exactly. Of course, we could apply Theorem 5.1 to the constant D-diagram on ∗ to obtain
Theorem 6.1. Actually, to obtain part 4 of Exercise 5.5, Quillen’s Theorem A is sufficient. Recall our
definition of the Grothendieck construction in Section 5. The construction of the comma category
d ↓ F is functorial in d ∈ D , i.e., there is a functor F̃ : Dop → Cat sending d ∈ obD to d ↓ F .
Given a map j : d′ → d, we define

F̃ (j)(c, ϕ : d → Fc) = (c, ϕ ◦ j).

Let S(F ) = Dop
∫

F .

Exercise 6.2. Verify the following description of S(F ): objects are triplets (c, d, ϕ) with c ∈ C ,
d ∈ D , and ϕ : d → Fc. Arrows (c, d, ϕ) → (c′, d′, ϕ′) are pairs of arrows j : d′ → d, i : c → c′ so
that F (i) ◦ ϕ ◦ j = ϕ′.

Note that S(F ) is equipped with functors πD : S(F ) → Dop (because it is a Grothendieck
construction) and πC : S(F ) → C (sending (c, d, ϕ) to c). Define a bisimplicial set T (F ) with

T (F )p,q =
{
(α, β, f)

∣∣ α : [p] → Dop, β : [q] → C , f : α(0) → F (β(0))
}
.

In the following exercise, we’ll compute the homotopy type of NT (F ) in three ways: by computing
its diagonal directly and then by viewing it as a simplicial object in S in two ways. Recall that
realization and the diagonal functor coincide (Exercise 3.1 and Theorem 3.2).

Exercise 6.3. (1) Check that diag T (F ) ∼= N S(F ).
(2) Check that for fixed p, T (F )p is the simplicial set∐

α:[p]→Dop

N(α(0) ↓ F ).

Thus T (F ) is the bar resolution p 7→ Bp(∗,Dop,N(− ↓ F )). Use the fact that F is right
homotopy cofinal to show that realization in the p-direction (i.e., the diagonal) induces a
weak equivalence NπD : NS(F ) → N Dop.

(3) Check that for fixed q, T (F )q is the simplicial set∐
β:[q]→C

N(D ↓ Fβ(0)).

Show that realization in the q-direction (again, the diagonal) induces a weak equivalence
N πC : NS(F ) → N C .

Note that we may define a functor ĩdD : Dop → Cat sending d to d ↓ D . The functor F induces
a natural transformation F̃ → ĩdD and hence a functor F ′ : S(F ) → S(idD).

Exercise 6.4. (1) Show that relative to the description of S(F ) and S(id) in Exercise 6.2, the
functor F ′ sends (c, d, ϕ) to the triplet (Fc, d, ϕ).

(2) Show that S(idD) is the twisted arrow category aD .
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(3) Show that the diagram

Dop S(F )
πDoo πC //

F ′

��

C

F

��
Dop S(idD)

πDoo πC // D

commutes. Conclude that F induces a weak equivalence on nerves.
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