HOMEWORK 9

DUE: THURSDAY, 4/24

Turn in problems 1 and 4

In the following problems, when I say "compute the Serre spectral sequence", what I mean is

- (1) Identify E^2 .
- (2) Compute the differentials.
- (3) Analyze E^{∞} and its relationship to the (co)homology of the total space.
- 1. Let $S^1 \to S^3 \to S^2$ be the Hopf fibration. Compute the Serre spectral sequence for this fibration.
- 2. (Hatcher's spectral sequence notes, Sec. 1.1, prob. 1) Let $\phi_n: S^k \to S^k$ be the degree n map for n, k > 1. Compute the homology of the homotopy fiber of ϕ_n .
- 3. (Hatcher's spectral sequence notes, Section 1.2, problem 1) Use the Serre spectral sequence to compute $H^*(F; \mathbb{Z})$ for F the homotopy fiber of a map $S^k \to S^k$ of degree n for k, n > 1, and show that the cup product structure in $H^*(F; \mathbb{Z})$ is trivial.
- 4. Pretend that you don't know that $K(\mathbb{Z},2) = \mathbb{C}P^{\infty}$. Give a new computation of $H^*(K(\mathbb{Z},2))$ with its cup product structure by applying the cohomological Serre spectral sequence to the homotopy fiber sequence

$$K(\mathbb{Z},1) \to * \to K(\mathbb{Z},2).$$