HOMEWORK 5

DUE: TUESDAY, MARCH 11

Turn in Problems 1 and 2

1. (Hatcher) Consider the equivalence relation \sim_w generated by weak homotopy equivalence: $X \sim_w Y$ if there are spaces $X = X_1, X_2, \ldots, X_n = Y$ with weak homotopy equivalences $X_i \to X_{i+1}$ or $X_i \leftarrow X_{i+1}$ for each *i*. Show that $X \sim_w Y$ iff X and Y have a common CW-approximation.

2. (Hatcher, Sec 4.2, problem 15) Show that a closed simply-connected 3-manifold is homotopy equivalent to S^3 . [Use Poincare duality, and also the fact that closed manifolds are homotopy equivalent to CW-complexes, from Corollary A.12 in the appendix of Hatcher. The stronger statement that a closed simply connected 3manifold is homeomorphic to S^3 is proven. This is the Poincare conjecture.]

3. Argue that there exists a map $\alpha: S^2 \to S^2 \vee S^1$ so that the inclusion

$$S^1 \hookrightarrow (S^2 \lor S^1) \cup_{\alpha} D^3$$

induces an isomorphism on π_1 and \widetilde{H}_* , but is not a homotopy equivalence.